
A Run-Time System for Power-Constrained HPC
Applications

Aniruddha Marathe1 , Peter E. Bailey1 , David K. Lowenthal1 , Barry Rountree2 ,
Martin Schulz2, and Bronis R. de Supinski2

1 Department of Computer Science
The University of Arizona

{amarathe, pbailey, dkl}@cs.arizona.edu

2 Lawrence Livermore National Laboratory
{rountree, schulzm, bronis}@llnl.gov

Abstract. As the HPC community attempts to reach exascale performance, power
will be one of the most critical constrained resources. Achieving practical exas-
cale computing will therefore rely on optimizing performance subject to a power
constraint. However, this additional complication should not add to the burden
of application developers; optimizing the run-time environment given restricted
power will primarily be the job of high-performance system software.

This paper introduces Conductor, a run-time system that intelligently distributes
available power to nodes and cores to improve performance. The key techniques
used are configuration space exploration and adaptive power balancing. Config-
uration exploration dynamically selects the optimal thread concurrency level and
DVFS state subject to a hardware-enforced power bound. Adaptive power bal-
ancing efficiently determines where critical paths are likely to occur so that more
power is distributed to those paths. Greater power, in turn, allows increased thread
concurrency levels, the DVFS states, or both. We describe these techniques in de-
tail and show that, compared to the state-of-the-art technique of using statically
predetermined, per-node power caps, Conductor leads to a best-case performance
improvement of up to 30%, and average improvement of 19.1%.

1 Motivation

The US government, as well as European and Asian agencies, have set a goal to reach
exascale computing in less than 10 years. However, if we were to build an exascale ma-
chine out of today’s hardware, it would consume half of a gigawatt of power [21, 13] and
effectively require a dedicated power plant. In reality, there is a practical power bound,
which is much tighter, and one such bound commonly used by both the research as well
as the industrial high-performance computing (HPC) community is 20 megawatts [2].
It is clear that future HPC systems will have a whole-system power constraint that will
filter down to job-level power constraints. The goal at the job-level will be to optimize
performance subject to a prescribed power bound.

HPC users have enough to handle with ensuring correctness and maintaining suffi-
cient performance, so the task of enforcing the job level power bound should be left to



2

HPC system software. More importantly, system software is in an ideal position to dy-
namically configure applications for the best performance subject to a power constraint.
We define a processor’s configuration as: (1) a value for c, the number of active cores,
and (2) the DVFS state. The power constraint states that the total job power consump-
tion must always be no more than the job-level power bound P, and the goal is to mini-
mize application run time. We use Intel’s Running Average Power Limit (RAPL) [14],
introduced in the SandyBridge microarchitecture, to enforce the power constraint.

This paper describes the Conductor run-time system, which efficiently chooses
an initial configuration resulting in near-optimal application performance for a given
job power bound, then adapts this configuration as necessary during application ex-
ecution according to changing application behavior and power constraints. The fun-
damental ideas behind Conductor are twofold. First, Conductor performs configura-
tion space exploration, which dynamically selects the optimal thread concurrency level
(DCT) and dynamic voltage frequency state (DVFS) subject to a RAPL-enforced power
bound. Second, Conductor performs adaptive power balancing, which locates non-
critical parts of the application (i.e., off the critical path), reduces their power con-
sumption, and uses that excess power to speed up the parts on the critical path.

In Conductor, adaptive power balancing itself is done in three stages. First, Conduc-
tor monitors an application timestep to gauge representative application behavior. Sec-
ond, Conductor continually applies a local, adaptive algorithm to select task configura-
tions to reduce power consumption without increasing task execution time where possi-
ble. Third, Conductor improves performance by reallocating power at the MPI process
level, using a global algorithm that is periodically executed at the end of timesteps.
Conductor uses RAPL to enforce the chosen power allocation on each MPI process.

Specifically, this paper makes the following contributions.

– We design Conductor, the first run-time system that utilizes nonuniform power
distribution, RAPL, DVFS, and DCT for optimizing HPC application performance
under a power constraint.

– Conductor is fully automatic and chooses configurations with no involvement of
the application programmer other than marking the end of an application timestep.

– Conductor chooses and adapts configurations dynamically based on application
characteristics, resulting in efficient execution on a number of applications.

We implement Conductor on a large scale cluster at Lawrence Livermore National
Laboratory, which has infrastructure for constraining power on a per-processor basis.
Our results on up to 64 processors (512 cores) show that over five applications, Conduc-
tor achieves an average performance improvement of 19.1% in a range of power lim-
its over the state-of-the-art method, which is statically selected, per-node power caps.
Moreover, we observe that Conductor achieves best-case performance improvement of
30% over the static allocation scheme.

2 Optimizing Overprovisioned Systems

Traditionally, achieving maximum throughput in HPC clusters has been constrained by
the available (fixed) hardware. However, as we move towards exascale, power, rather



3

Time

r1

r0

FinalizeInit

Isend

Recv

Wait

MPI callTask MessageSlack

Fig. 1. Execution model on two MPI processes. The process with rank 1 sends a message to the
process on rank 0. The process on rank 0 arrives first at MPI Finalize, inducing slack time.

than hardware, will become a limiting factor in achieving optimal performance. With
power consumption in a supercomputing cluster becoming critical, the allocation of
power to individual jobs must comply to strict power constraints.

Under the given power constraint, which is typically imposed at the facility level,
a supercomputing system may run fewer nodes at maximum power or more nodes at a
lower power (known as overprovisioning). The system-level power constraint translates
into job-level power constraints, which motivate the design of techniques to optimize
performance under job-level power constraints. The primary objective is to run each job
at a configuration that is power-efficient and allocate power to the critical path of the
application.

2.1 Execution Model

In order to reason about optimization approaches in overprovisioned systems, we adopt
the task based execution model (Figure 1) that we used in our work on the Adagio run-
time system [23]. A task is the basic unit of scheduling, comprising total communication
and computation that takes place on an MPI process between two consecutive MPI calls.
Note that a process must block at a communication call if there is an inbound receive
edge and the data has not yet arrived, or if a process arrives late to a collective. This can
lead to what we refer to as slack time. As an example of the first case, the MPI process
with rank 0 arrives before the process with rank 1 at MPI Finalize in Figure 1,
inducing slack time.

2.2 Assumptions

We use the execution model discussed above to design our optimizing run-time system,
which we introduce in the next section. Additionally, we currently focus on applica-
tions implemented with the SPMD (Single-Program, Multiple-Data [7]) model and use
OpenMP for intra-node parallelism and MPI for inter-node parallelism. We assume that
programs use MPI THREAD SINGLE, so there are no MPI calls within an OpenMP



4

region. There is nothing that prevents us from conceptually supporting pure MPI pro-
grams (i.e., one MPI rank per core), but because our system chooses a given num-
ber of cores per processor dynamically, a pure MPI approach would require expensive
data redistribution or core oversubscription when the number of cores per processor
changes. We assume that an application is composed of several timesteps, and that
the programmer identifies the end of a timestep (currently accomplished with inserting
MPI Pcontrol into the application code).

Following the work of Li et al. [18], we also restrict each MPI process (and therefore
each OpenMP parallel region), to a single CPU socket/NUMA node, and we assume
that we use the same number of active cores for OpenMP regions between consecutive
MPI calls. This avoids increasing the number of cache misses due to a change in the
number of active cores between two OpenMP regions.

2.3 Challenges

Previous work in the area of power-constrained performance optimization outlines the
following challenges in developing a run-time system to adaptively select the best pro-
cessor configuration for an application. First, the configuration space from which to
select the optimal configuration is large, because modern day processors have over a
dozen frequency steps and provide 16 or more physical cores. Thus finding the opti-
mal configuration for each processor in a job becomes a large combinatorial problem.
Combined with the fact that different configurations can result in vastly different per-
formance [20], the quality of current techniques is unknown. Second, allocating the op-
timal amount of power to individual processors in a job is complicated by the fact that
the critical path may move through multiple processes in a time step. Finally, efficiently
monitoring power usage for individual processors allocated to a job and re-allocating
power with acceptable overhead is a challenge. Conductor addresses all three chal-
lenges and provides a novel approach for effective use of large, power-limited systems.

3 Conductor: Power-Constrained Runtime Scheduling

Conductor continuously monitors the execution behavior of an application and adjusts
its configuration parameters to stay within the job-level power limit while optimizing
performance. In particular, we use two knobs in the configuration of an application,
on a per-processor basis: the number of active threads in a computation phase and the
voltage/frequency setting. For the latter, we use two mechanisms: we use DVFS to
control an application’s speed and power usage based on observational data (predictive
control), while we use RAPL (Runtime Average Power Limit) to set hard power caps for
each processor in case our predicted configurations would violate the power constraint
(prescriptive control).

The algorithm used in Conductor can be split into four steps: initialization, config-
uration exploration, adaptive reconfiguration, and power reallocation.



5

3.1 Initialization

During the first timestep of the application, each MPI process is assigned an equal
amount of power derived from the job-level power constraint. This is the timestep before
Conductor starts the configuration exploration step. The process-level power constraint
is enforced using RAPL. The execution time and power usage of each application task
(i.e., unit of computation between communication events) in the timestep is recorded
and stored in a task graph. At the end of the initialization step, the power constraint per
process is (temporarily) removed to facilitate the configuration exploration step.

3.2 Configuration Exploration

The next step taken by Conductor is to choose the configuration, or combination of
thread concurrency level and the DVFS state for each application task. The choice of
configuration has a significant impact on program execution time (as much as an 30.9%
difference over our five applications). There are a number of ways to choose the ideal
thread concurrency level given a power bound. One way is to profile the code before-
hand, which has the distinct disadvantage that it requires at least one extra program
execution. Another is to build offline models based on program executions, but the dis-
advantage is that the model could lack accuracy and generality, especially in the case
that a given program differs from the set of programs used to build the model.

In Conductor, we take a simpler approach: given n MPI processes executing a given
application, we use a small number of application iterations to perform a parallel ex-
ploration of the configuration space by selecting a different thread/DVFS configuration
on each MPI process. There are k such configurations that we consider, and given n
processes, we simply test all of them and choose the best-performing configuration
depending on the current process-level power constraint. We retain the set of power-
efficient configurations for each task, yielding a per-task power/time Pareto frontier. As
mentioned above, we disable the power bound during this step in our current prototype;
this can be fixed—at the expense of more overhead—by more carefully executing the
configuration exploration.

This clearly adds overhead while we are searching for efficient configurations. In
general, it takes m = dn/ke timesteps to finish testing all configurations. Assume
an example application with a single task per process in each iteration. Suppose that
during a timestep, the optimal configuration of thread concurrency level and DVFS state
takes time topt, and the process with the slowest configuration on timestep i (during the
search phase) takes time tiworst. Then, the smallest upper bound on the execution time
is T =

∑m
i=1(t

i
worst)+

∑n
i=m+1(t

i
opt), assuming that there are n timesteps in total and

m timesteps in the search phase.
Given that high-performance computing applications generally execute many timesteps

(n� m), the overhead in Conductor, compared to an oracle that could choose the opti-
mal thread/power configuration a priori, will be generally small because it is amortized
over the lifetime of the computation. Because Conductor potentially selects the optimal
configuration, this overhead can be expressed as T∑n

i=1(t
i
opt)

.



6

3.3 Adaptive Reconfiguration

The configuration exploration phase makes the assumption that the optimal configura-
tion does not change, which is not true in general. Further, for dynamic applications
with load imbalance, this can lead to wasted power during unnecessary wait operations
(slack time). To handle both of these issues, we additionally introduce a novel adaptive
power-balancing algorithm that changes configurations when appropriate due to appli-
cation behavior. In addition to application behavior, Conductor takes into account the
current power constraint, processor DVFS state and thread concurrency level.

Conductor Monitoring After the thread/DVFS relationships are characterized for each
task during the configuration exploration phase, the per-process power constraint is
re-enforced using RAPL. Conductor monitors application execution during each indi-
vidual timestep and uses this information to predict the behavior of following, similar
tasks. During each timestep, Conductor records the elapsed time and power usage for
each task in a statically selected configuration. Conductor also measures the slack by
observing time spent within the MPI library, if any, for each task. This makes the as-
sumption that the significant portion of the time in the MPI library is spent blocking
waiting for messages, which works as a useful predictor in the absence of the ability to
directly measure slack. This measurement step is borrowed from our previous run-time
system, Adagio [23]. It distinguishes tasks based on callstacks and uses a threshold to
differentiate slack time from MPI processing time.

Adjusting Task Execution Times The previous step simply identifies tasks that con-
tain slack. In the following timesteps, Conductor adjusts task execution times in such
a way that overall execution time will decrease. Conductor avoids adding to existing
application inter-process communication where possible. Accordingly, Conductor han-
dles each task completely locally via the following method.

First, for any task that contains slack, Conductor can guarantee that it is not on the
critical path; by definition, any task that contains slack can be slowed down by some
nonzero amount without slowing down overall application execution. Consequently,
Conductor attempts to fill as much of the slack as possible with computation time with-
out affecting the completion time of the task. For this purpose, Conductor leverages
both DVFS and thread concurrency levels to fill slack. In other words, Conductor will
not allow any (non-critical) path through any task with slack to become the critical
path. Note that the reason that we adjust DVFS and thread concurrency levels and not
the RAPL bound itself is (1) the task granularity is too small to use RAPL, and (2)
RAPL does not adjust thread concurrency.

Second, for any task that has no slack, Conductor conservatively changes its con-
figuration to the one with next fastest thread/DVFS on the Pareto frontier, which was
determined (and saved) as part of the configuration exploration phase. The intuition
here is that Conductor knows that such a task may be critical. Therefore, Conductor
treats it as a task that should decrease its execution time, because the critical path could
potentially decrease. Note that this decision is made locally because the overhead of
determining the exact critical path is prohibitive.



7

3.4 Reallocation of Per-Process Power

While the above step adjusts power consumption using DVFS and thread concurrency
selection, the overall power cap per process is as yet unchanged; this cap ensures that
the power constraint is not violated. Consequently, even after Conductor has adjusted
configurations for individual tasks to fill slack, critical tasks may continue to run at or
near their process’s power constraint, while processes with no critical tasks do not use
all of their power allocation. Such a situation may be caused by load imbalance inherent
to the application or differences in power efficiency between individual processors [22].
Regardless of the cause, Conductor takes advantage of the opportunity to speed up the
application by using a global algorithm to reallocate power between processes.

As an example, Figure 2(a) shows the power consumption profile of an MPI process
in an iterative MPI application with repeating computation and communication phases.
Since the tasks on this process are off the critical path, there is slack in the communi-
cation phase following the computation phase. Figure 2(b) shows that the computation
tasks can be slowed down within the slack boundaries using DVFS and thread concur-
rency selection without affecting the overall execution time.

Fig. 2. Opportunity for re-scheduling excess power in an MPI process that runs off the critical path
with Adagio. Plot (a) shows near-cap power consumption for computation task (C) at the highest
processor DVFS state (highest voltage and frequency). Plot (b) shows lower power consumption
for computation task (C) at a lower DVFS/thread concurrency set by Adagio.

We define the power fraction for a process as the fraction of time between power re-
allocations that an MPI process spends within a small tolerance of its power constraint.
Figure 2(a) shows the fraction of time the process spends operating at power Phigh,



8

which is essentially at Pconstraint. The process consumes Plow power after Conductor
has slowed down the computation operation as shown in Figure 2(b). We define the
power headroom for a processor as the difference between the processor’s power con-
straint and processor’s average power consumption. In Figure 2(b), the power headroom
is the difference between Pconstraint and Paverage.

Conductor gathers power headroom information (which is computed based on all
tasks) from all processes after a configurable number of timesteps of the application.
Using process-level power headroom information, Conductor calculates job-level power
headroom and reallocates process-level power constraints based on the power fraction.
While this technique has the potential disadvantage that the critical path could, for a
pathological situation, move through a process that “donates” power to another pro-
cess, this situation is rare. Moreover, to address it would require power reallocation on
task granularity, which is quite complex.

4 Experimental Setup

We performed all experiments on Cab, a 1200-node Xeon E5-2670 cluster at LLNL
with an InfiniBand QDR interconnect. Each cab node is composed of two 8-core pro-
cessors and 32 GB of DRAM.

4.1 Benchmarks and Tools

The codes we use for comparison are CoMD, LULESH 2.0, SP and BT from NAS-MZ,
ParaDiS and a synthetic benchmark. These benchmarks were selected because they
exhibit performance and scaling behavior typical for a wide range of HPC applications.
We note that the most interesting behavior for these benchmarks occurs between 30 and
60 watts per processor.

CoMD [1] is a molecular dynamics benchmark. CoMD is unique among our tested
benchmarks in that all of its MPI communication is in the form of collectives. As a
result, the only tasks that remain for the power-balancing algorithm are to minimize
load imbalance by reallocating power between processes at every collective call and to
select efficient configurations under processor-level power constraints. We use the input
problem size of 20x40x40 with 100 timesteps.

LULESH 2.0 [17] is a shock hydrodynamics benchmark. In terms of MPI commu-
nication, LULESH differs from CoMD in that it relies on a multitude of point-to-point
messages between collective calls. This behavior complicates analysis of opportunities
to balance power, but we show in Section 5.1 that Conductor improves performance
over state-of-the-art methods for running under a job-level power constraint. We use an
input problem size of 32, with 100 timesteps.

ParaDiS [5] is a production dislocation dynamics simulations application that op-
erates on dynamically changing, unbalanced data set sizes across MPI processes. The
random nature of data set sizes results in varying computational load, introducing load-
imbalance across MPI processes. We use the “Copper” input set provided with ParaDiS
with 600 timesteps.



9

NAS Multi-Zone [27] is an extension of the NAS Parallel Benchmark suite [3]. It
involves solving the application benchmarks BT, LU and SP on collections of loosely
coupled discretization meshes. In our work, we use Block Tri-diagonal (BT-MZ) and
Scalar Penta-diagonal (SP-MZ) algorithms. Both applications use OpenMP for intra-
node computation and MPI for inter-node communication. We use a custom class D
input size with 500 timesteps.

To quantify how a load-imbalanced application can benefit from power reallocation
in Conductor, we developed a synthetic benchmark. The synthetic benchmark has two
properties. First, it is written in such a way that the best configurations under various
power limits use six (out of eight) threads per socket. Second, half of MPI processes
execute nearly six times more computation load than the other half, which leads to
process-level load imbalance. This synthetic program focuses on the opportunity for
Conductor to improve performance through power re-allocation for process-level load
imbalance.

4.2 Overheads

As we instrument every instance of any potentially blocking MPI call in order to capture
slack time and select configurations, our profiler incurs some overhead. The median
measurement overhead is 34 microseconds per MPI call and adds less than 0.05% time
to the tested applications. We use 60 configurations that consist of thread concurrency
levels of 5 to 8 threads per socket and 15 discrete DVFS states. For SP-MZ, BT-MZ,
CoMD and Lulesh, the configuration exploration phase took up to 3 timesteps. For
ParaDiS we run the configuration exploration phase locally over each MPI process due
to nonuniformity in computation phases across MPI processes. For the configuration
exploration phase, we observe an overhead of 1.96 seconds in the worst case (recall this
is amortized over the entire application execution). For the run-time power re-allocation
algorithms, all power allocation decisions are coordinated within existing application
collective calls, with an average overhead of 566 microseconds per invocation. For the
job sizes tested, we consider this an acceptable trade-off. For larger jobs, a hierarchical
power-balancing strategy would be required.

5 Experimental Evaluation

In this section, we compare the performance of Conductor to two alternate policies:
Static, and Config-Only. The Static algorithm, which is the current state of the art,
chooses the largest number of threads possible under the power bound assuming that
the frequency is the lowest possible. Then, it increases the frequency as high as possible
subject to the power bound. Config-Only executes the configuration exploration part of
Conductor and performs one-time configuration selection for each task, but does not
execute the adaptive reconfiguration or power reallocation steps.

5.1 Load-Balanced Applications

Figure 3 shows execution times of our three load-balanced applications for each of the
three policies. This includes Lulesh on 27 (33) MPI processes and BT-MZ and CoMD



10

0
10

20
30

40
50

60
70

30 40 50 60 70 80

Power Limit (W)

E
xe

cu
tio

n 
T

im
e

LULESH

Policy

Static
Config−Only
Conductor

0
5

10
15

20
25

30

30 40 50 60 70 80

Power Limit (W)

E
xe

cu
tio

n 
T

im
e

BT−MZ

Policy

Static
Config−Only
Conductor

0
20

40
60

80
10

0
12

0
14

0

30 40 50 60 70 80
Power Limit (W)

E
xe

cu
tio

n 
T

im
e

CoMD

Policy

Static
Config−Only
Conductor

Fig. 3. Comparison of power allocation policies for our three load-balanced applications: Lulesh,
BT-MZ, and CoMD. We use 27, 32, and 32 processes, respectively.

on 32 processes. The execution times are grouped by process-level power limits on the
x-axis ranging 30 watts to 80 watts in steps of 10 watts; each process is confined to a sin-
gled processor. We make the following important general observations. First, for lower
power limits (30 watts and 40 watts per processor), Conductor performs significantly
better than Static; the difference is as much as 30.4% in the case of Lulesh at 27 tasks.
The improvement in performance is due to the power-efficient configurations selected
by Conductor under the MPI process-level power constraint. Second, at higher power
limits (60-80 watts), the difference between Static and Conductor remains constant, be-
cause the default configuration selected by Static and the optimal configuration selected
by Conductor remain constant. Also, Conductor performs almost identically compared
to Config-Only for the three load-balanced applications. This is because there is vir-
tually no load imbalance. In general, load-balanced applications will execute slightly
faster when using Config-Only if there is opportunity to select a better configuration
over the default configuration chosen by Static. This is because both Config-Only and
Conductor choose the same configuration, and Conductor does not change the power
allocation per MPI process (but does have a slight overhead for monitoring).

5.2 Load-Imbalanced Applications

Figure 4 shows several runs of ParaDiS, SP-MZ, and our synthetic load imbalanced
application at 32 (for SP and the synthetic benchmark) and 64 (for ParaDiS) processes



11

0
10

0
20

0
30

0
40

0
50

0

30 40 50 60 70 80

Power Limit (W)

E
xe

cu
tio

n 
T

im
e

ParaDiS

Policy

Static
Config−Only
Conductor

0
5

10
15

20
25

30 40 50 60 70 80
Power Limit (W)

E
xe

cu
tio

n 
T

im
e

SP−MZ

Policy

Static
Config−Only
Conductor

0
10

20
30

40
50

30 40 50 60 70 80
Power Limit (W)

E
xe

cu
tio

n 
T

im
e

Synthetic Benchmark

Policy

Config−Only
Conductor

Fig. 4. Comparison of power allocation policies in our three load-imbalanced applications: Par-
aDis, SP-MZ, and a synthetic microbenchmark. We use 64, 32 and 32 processes, respectively.

under power limits of 30 watts to 80 watts. For load-imbalanced applications, Conduc-
tor has each process record power and execution times for all configurations because
of potential non-repeatability in the characteristics of computation tasks across MPI
processes.

For lower power limits (30 watts to 50 watts), Config-Only benefits from selecting
the best configuration for individual computation tasks. However, the benefits of our
power re-allocation policy in Conductor are more pronounced. The difference in power
usage across different MPI processes is up to 15% and 20% for process-level power
limits of 30 watts and 40 watts respectively, indicating load-imbalance and potential
benefit through power re-allocation.

Compared to Config-Only, Conductor achieves an improvement of up to 10.4% (for
ParaDiS) and 3.6% (for SP-MZ) improvement at the power limit of 30 watts. For the
same power limit, compared to Static, Conductor achieves an improvement of up to
13.2% (for ParaDiS) and 14.9% (for SP-MZ). Compared to Config-Only, Conductor
achieves an improvement of 5.5% (for ParaDiS) and 5.2% (for SP-MZ) for a power
limit of 40 watts.

Compared to Static, Conductor achieves an improvement of 10.8% (for ParaDiS)
and 15.1% (for SP-MZ). For a 50-watt power limit with ParaDiS, Conductor performs
similar to Config-Only and marginally better than Static. However, in case of SP-MZ,
Config-Only performs marginally worse than Static due to non-repeatability in perfor-



12

mance at the thread concurrency/DVFS configuration selected at 50 watts. At the same
time, Conductor benefits from load-imbalance and performs better than Static.

At higher power limits (60 watts to 80 watts), Conductor generally performs slightly
worse than Config-Only because the computation tasks consume lower power than the
process-level power limit and do not benefit from the power re-allocation scheme. The
performance impact of power re-allocation scheme is affected by how accurately it
can shuffle power between MPI processes without changing the critical path of the
application. We observe that for ParaDiS for power limits of 60 watts and 70 watts, the
power re-allocation scheme alters the critical path of the application before shifting it
back during some time steps. As expected, the higher execution times shown by Static
are due to the choice of sub-optimal configuration of maximum thread concurrency and
DVFS state (8 threads per socket and 2.6GHz on our test system).

For the synthetic program, we show only Conductor and Config-Only; We leave
out the execution times for Static, which are inferior to Config-Only due to the way we
program the synthetic benchmark. For a process-level power limit of 30 watts, the com-
putation times in the load-imbalanced synthetic benchmark are 181 ms and 122 ms for
Config-Only and Conductor respectively (Conductor is 32% faster). The corresponding
change in frequency was from 1.2 GHz to 1.8GHz. This improvement in computation
time results in an overall execution time improvement of 25% with Conductor. For the
power limit of 40 watts, the corresponding execution times for computation tasks are
123 ms and 86 ms (30% faster with Conductor), and the corresponding change in fre-
quency was from 1.9GHz to 2.6 GHz. For higher power limits (60 watts to 80 watts),
the difference between the two policies diminishes as power is not a limiting factor on
any process, regardless of the load imbalance.

6 Related Work

The closest work to Conductor is our own on Adagio [23] and Jitter [16]. In fact, Con-
ductor can be thought of as fusing modified versions of Adagio and Jitter together.

Adagio saves energy in HPC programs with a negligible increase in execution time.
Conductor differs from Adagio in three important ways. First, Conductor optimizes
performance under a power bound, which is a completely different goal. Second, Con-
ductor determines an efficient thread/frequency configuration, while Adagio assumed
single-threaded programs. Third, while Conductor and Adagio both decrease frequency
of tasks that block (and are therefore off of the critical path), Conductor (but not Ada-
gio) simultaneously chooses a faster thread/frequency configuration of tasks that may
be on the critical path.

Conductor differs from Jitter in two ways. First, Conductor shifts power to improve
performance, while Jitter lowers frequency to save energy. Second, Conductor measures
power and makes some power decisions at the task level, while Jitter solely operates at
timestep granularity.

There is other work in optimizing performance under a power bound, especially on
overprovisioned HPC clusters. This includes an empirical study on the effect of different
configurations [20] and choosing configurations via interpolation [26]. In addition, Isci
et al. optimized performance under a power bound on a single multicore node [15],



13

and Bailey et al. did the same for a CPU+GPU node [4]. There has also been work on
scheduling algorithms to improve performance under a power bound [8, 9, 25]. Finally,
there has been work on overprovisioning for commercial applications in a datacenter,
where the goal is increased throughput [10], as well as in improving performance under
power constraints in virtualized clusters in datacenters [19].

Other related work is focused on saving power/energy under a time bound in HPC.
There has been work using linear programming to find near-optimal energy savings with
zero time increase [24]. Other run-time approaches to save energy include those that
trade off power/energy saving for (hopefully minimized) performance degradation [6,
12, 11, 18].

7 Conclusion

Current run-time systems are leaving performance on the table and wasting power, and
these problems will only become more costly with future generations of supercomput-
ers. Conductor effectively allocates power to the parts of the application that primarily
impact application performance. In our experiments, we found that selecting the opti-
mal configuration and adaptively re-allocating power to the critical path can result in
up to a 30% performance improvement compared to the state-of-the-art algorithm for
the same power constraint. In theory, our system can adapt to the job-level power con-
straint, which may vary during application execution time because of external factors,
and adaptively select application configuration and power allocation. Our results also
highlight that incorporating OpenMP (or other configurable node-level parallelism) in
addition to MPI goes a long way toward the goal of flexible power and performance
management.

Acknowledgements

Part of this work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344
(LLNL-CONF-667408).

References

1. CoMD. https://github.com/exmatex/CoMD, 2013.
2. S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra, D. Kothe,

R. Lusk, P. Messina, T. Mezzacappa, P. Moin, M. Norman, R. Rosner, V. Sarkar, A. Siegel,
F. Streitz, A. White, and M. Wright. The opportunities and challenges of exascale computing,
2010.

3. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, P. Frederick-
son, T. Lasinski, R. Schreiber, et al. The NAS parallel benchmarks summary and preliminary
results. In Supercomputing, pages 158–165, 1991.

4. P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B. R. de Supinski.
Adaptive configuration selection for power-constrained heterogeneous systems. In ICPP,
2014.



14

5. V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee, K. Yates,
and T. Arsenlis. Scalable line dynamics in ParaDiS. In Supercomputing, 2004.

6. K. W. Cameron, X. Feng, and R. Ge. Performance-constrained distributed DVS scheduling
for scientific applications on power-aware clusters. In Supercomputing, 2005.

7. F. Darema, D. A. George, V. A. Norton, and G. F. Pfister. A single-program-multiple-data
computational model for EPEX/FORTRAN. Parallel Computing, pages 11–24, 1988.

8. M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing job performance under a
given power constraint in HPC centers. In IGCC, 2010.

9. M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Linear programming based parallel job
scheduling for power constrained systems. In HPCS, 2011.

10. M. E. Femal and V. W. Freeh. Safe overprovisioning: using power limits to increase aggre-
gate throughput. In PACS, Dec 2005.

11. R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU Miser: A performance-directed, run-time
system for power-aware clusters. In ICPP, 2007.

12. C.-H. Hsu and W.-C. Feng. A power-aware run-time system for high-performance comput-
ing. In Supercomputing, Nov. 2005.

13. InsideHPC. Power consumption is the exascale gorilla
in the room. http://insidehpc.com/2010/12/10/
power-consumption-is-the-exascale-gorilla-in-the-room/.

14. Intel. Intel-64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A and 3B:
System Programming Guide, December 2011.

15. C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An analysis of efficient
multi-core global power management policies: Maximizing performance for a given power
budget. In IEEE/ACM International Symposium on Microarchitecture, pages 347–358, 2006.

16. N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time dynamic voltage scaling: Ex-
ploiting inter-node slack to save energy in MPI programs. In Supercomputing, Nov. 2005.

17. I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates and changes. Technical Report LLNL-
TR-641973, August 2013.

18. D. Li, B. de Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos. Hybrid MPI/OpenMP
power-aware computing. In IPDPS, 2010.

19. R. Nathuji, K. Schwan, A. Somani, and Y. Joshi. VPM tokens: virtual machine-aware power
budgeting in datacenters. Cluster computing, 12(2):189–203, 2009.

20. T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supinski. Exploring hard-
ware overprovisioning in power-constrained, high performance computing. In ICS, 2013.

21. S. S. Pawlowski. Exascale science: the next frontier in high performance computing. In
International Conference on Supercomputing, June 2010.

22. B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and M. Schulz. Beyond DVFS:
A first look at performance under a hardware-enforced power bound. In HPPAC, 2012.

23. B. Rountree, D. K. Lowenthal, B. de Supinski, M. Schulz, and V. W. Freeh. Adagio: Making
DVS practical for complex HPC applications. In ICS, 2009.

24. B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. de Supinski, and M. Schulz. Bound-
ing energy consumption in large-scale MPI programs. In Supercomputing, Nov. 2007.

25. O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing throughput of overprovisioned
HPC data centers under a strict power budget. In Supercomputing, 2014.

26. O. Sarood, A. Langer, L. Kalé, B. Rountree, and B. De Supinski. Optimizing power allo-
cation to CPU and memory subsystems in overprovisioned HPC systems. In CLUSTER,
2013.

27. R. F. vanderWijngaart and J. Haopiang. NAS Parallel Multi-Zone benchmarks. 2003.


