
Accurate Data Redistribution Cost Estimation
in Software Distributed Shared Memory Systems ∗

Donald G. Morris III
Hewlett-Packard Company
19447 Pruneridge Avenue

Cupertino, CA 95014

dmorris@cup.hp.com

David K. Lowenthal
Dept. of Computer Science
The University of Georgia

Athens, GA 30602

dkl@cs.uga.edu

ABSTRACT
Distributing data is one of the key problems in implementing
efficient distributed-memory parallel programs. The prob-
lem becomes more difficult in programs where data redis-
tribution between computational phases is considered. The
global data distribution problem is to find the optimal distri-
bution in multi-phase parallel programs. Solving this prob-
lem requires accurate knowledge of data redistribution cost.

We are investigating this problem in the context of a soft-
ware distributed shared memory (SDSM) system, in which
obtaining accurate redistribution cost estimates is difficult.
This is because SDSM communication is implicit: It de-
pends on access patterns, page locations, and the SDSM
consistency protocol.

We have developed integrated compile- and run-time anal-
ysis for SDSM systems to determine accurate redistribu-
tion cost estimates with low overhead. Our resulting sys-
tem, SUIF-Adapt, can efficiently and accurately estimate
execution time, including redistribution, to within 5% of
the actual time in all of our test cases and is often much
closer. These precise costs enable SUIF-Adapt to find effi-
cient global data distributions in multiple-phase programs.

1. INTRODUCTION
Large-scale, time-consuming scientific programs are ideal

candidates for parallelization on distributed-memory multi-
computers. One of the fundamental problems in distributed-
memory parallelization is to distribute data to the processors
(nodes) so that communication is minimized and the com-
putational load is balanced. The data distribution problem
is complicated when scientific applications consist of mul-
tiple phases (sections of code between barrier synchroniza-
tion points). Given a program that consists of a collection of
phases, one must determine a global data distribution, which
is an assignment of one distribution to each phase. It is of-

∗Supported by NSF Grant CCR-9733063.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPOPP’01, June 18-20, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-346-4/01/0006 ...$5.00.

ten the case that better performance can be obtained using
optimal per-phase distributions. However, if two successive
distributions are distinct, a data redistribution is necessary.

A data redistribution in an explicit message-passing pro-
gram is performed between phases by inserting send and
receive calls on each participating node. While redistribu-
tion and computation are cleanly separated, message passing
programs are often thought to be complex and error prone.

Software distributed shared memory (SDSM) systems [11,
2, 9] eliminate explicit internode communication by provid-
ing the abstraction of shared variables. Unfortunately, in
an SDSM model, data redistribution is implicit and is in-
tertwined with the execution of the subsequent phase, mak-
ing it difficult to determine redistribution cost accurately.
In particular, it is necessary to take into account the state
each page is in after phase i, the type of access that will be
performed on that page during phase i + 1, and the SDSM
consistency protocol that is used. Furthermore, because we
are interested in applications where an effective global data
distribution cannot be determined statically, SDSM redis-
tribution times cannot be determined until run time. This
means that any algorithm to estimate redistribution cost
must have low overhead.

We are developing an approach to determining accurate
redistribution times, with low overhead, in SDSM systems.
We focus in this paper on supporting applications with reg-
ular communication patterns but possibly unbalanced work-
loads. Our approach has been implemented within the SUIF-
Adapt system [6], which is a combination of the SUIF Stan-
ford compiler toolkit [4] and the Adapt run-time data dis-
tribution system [12]. First, we modified the compiler to
to generate deferred regular section descriptors (DRSDs),
which are similar to regular section descriptors [5] except
that they are created partially at run time. The key element
of a DRSD is what we call a translation function, which is
used by the run-time system to determine dynamically the
write and reference sets for each node. We also modified
the run-time system to determine redistribution time by (1)
using the DRSD to determine which SDSM pages are ac-
cessed and then (2) dynamically simulating the state of the
SDSM in each phase, using a state machine to determine
protocol actions. In particular, this allows SUIF-Adapt to
distinguish between page transfers and page invalidations.
Furthermore, we develop an accurate model of redistribu-
tion between phases i and i+1 that takes into account both
per-node and per-phase redistribution. Finally, we describe
a series of improvements to our analysis that, in total, re-

duces its running time by an order of magnitude.
Performance results indicate the following:

• SUIF-Adapt estimates total phase time, including po-
tential redistribution, to within 5% of the actual time.

• SUIF-Adapt uses the accurate estimates to determine
efficient global data distributions. In particular, these
estimates lead to choosing a more effective data distri-
bution in many cases. This is important because the
best distribution in our experiments was at least 10%
better than the other candidate distributions whenever
(1) the computational characteristics were nonuniform
or (2) the nodes were not dedicated to the parallel ap-
plication. Also, as the computation to communication
ratio increases, the disparity grows.

• The time for our analysis, which is generally amortized
over many iterations of the computation, was less than
2 seconds (out of a total of 50-150 seconds) for a pro-
gram with several array accesses.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our framework and explains SUIF-Adapt.
Section 3 provides implementation details, and Section 4
presents performance results. Section 5 discusses the ap-
plicability of our work to both irregular applications and
write-shared protocols, and Section 6 concludes.

2. OVERVIEW
In this section we describe the computational model upon

which our system is based and the basic strategy used by
SUIF-Adapt.

2.1 Computational Model
Our model of computation is Single Program Multiple

Data (SPMD), in which each node executes the same code
but references a different subset of the data elements. The
applications we currently address use regularly-accessed ar-
rays and are divisible into one or more phases, which are
sections of application code between two barrier synchro-
nization points. We also consider only data distributions
where the first dimension is distributed. This is because in
an SDSM system, distributing more than one dimension re-
quires a new SDSM protocol or significant compiler support
[18, 3]. Furthermore, we assume the existence of a loop that
directly encloses one or more phases; we call this a phase
cycle. Our model assumes each phase uses either a vari-
able block distribution, where a contiguous (but possibly
unequal) set of rows are assigned to each node, or a cyclic
distribution, where the rows are assigned to nodes in a mod-
ulo fashion. However, in this paper we focus exclusively on
variable block distributions (of which BLOCK is a degener-
ate case). Finally, we assume that effective per-phase data
distributions cannot be determined statically. A sample ap-
plication (flame simulation) that has two phases enclosed in
a phase cycle is presented in the left-hand side of Figure 1.

The key for a good data distribution is to minimize the
maximum execution time of any node. In our work we are
investigating multi-phase applications, so we seek a series
of local distributions that will provide good performance for
the entire phase cycle. This involves a tradeoff between good
intra-phase performance and inter-phase redistribution cost.

We use a shared-memory programming model, which is
provided through a software distributed shared memory, or

SDSM. Hence, application programs can be written as con-
ventional shared-memory programs as opposed to more com-
plicated message-passing ones. When a non-local reference
is made, a page fault occurs, and the SDSM system im-
plicitly resolves the reference by sending a message to the
node that owns the page. Note that we use a multi-threaded
SDSM, so multiple page faults can be outstanding. Further
information on SDSM systems can be found in, for exam-
ple, [7]. A key issue involved in building an SDSM system
is solving the memory coherence problem, which is typically
done through a page consistency protocol ; in this paper, we
use the write-invalidate protocol [11], where each page has
either a single writer or multiple readers.

2.2 SUIF-Adapt Strategy
Below we describe the aspects of SUIF-Adapt that pertain

to this paper. The basic SUIF-Adapt strategy is described
in detail in [6].

For a phase cycle with N phases, SUIF-Adapt constructs
an (N + 1) × (N + 1) directed graph that we call the run-
time data distribution graph, or RDDG. An example of an
RDDG is shown in the right-hand side of Figure 1. This
graph is similar to the one introduced by Kennedy and Kre-
mer in their compiler-only solution to the global data distri-
bution problem [10], which is similar to the “communication
graph” originally described by Anderson and Lam [1]. For
phase i, vertex (i, i) is the best local distribution for that
phase. The other N vertices in row i consist of the best
local distributions for all other phases in the phase cycle,
plus a sequential distribution (which considers whether it is
better to avoid parallelization of a phase). The last row is
a copy of the first one, indicating that control returns from
phase N − 1 to phase 0. Edges in the RDDG are weighted
to represent the execution time for the source phase in the
original distribution plus the time spent to redistribute data
(implicitly via SDSM page faults) into the target distribu-
tion. Adapt keeps track of time per row for each phase and
so can predict the completion time for any one-dimensional
distribution (e.g., BLOCK- and CYCLIC-based distributions).

Once the graph is constructed, SUIF-Adapt uses a greedy
heuristic that finds shortest paths between the first and last
rows; the minimum shortest path is an effective global dis-
tribution for the phase cycle. The redistribution is effected
by modifying the loop ranges in a similar manner as [8]; this
causes the necessary SDSM page faults.

Figure 1 shows the RDDG for flame simulation. In the
first phase (numbered 0), the workload is uniform and the
communication is nearest neighbor, so a BLOCK distribution
for all arrays is desired; our modified SUIF compiler can in-
fer this. Hence, vertex (0, 0) is BLOCK. The best distribution
for the second phase is unknown statically because the work-
load of AdaptiveSolver depends on the value of x[i]; Adapt
will determine an appropriate variable-block distribution by
measuring at run-time the computation time for each row
and then dividing the rows between the nodes such that the
load is balanced. For brevity, we denote this distribution
as VARBLOCK, which becomes vertex (1, 1). In our example
(for 2 nodes), nodes 0 and 1 are assigned 1/4 and 3/4 of
the data, respectively. From this, the RDDG is constructed
by placing each distribution in each row (along with a ver-
tex for sequential). For example, in Figure 1, VARBLOCK was
found to be best in phase 1 and so is considered a candi-
date in phase 0, even though BLOCK is better in phase 0.

for time := 1 to timesteps {

for i := 1 to N

for j := 1 to N

x[i,j] := x[i,j] +

F(y[i-1,j],y[i,j],

y[i+1,j],z[i+1,j])

for i := 1 to N

for j := 1 to N

z[i,j] := AdaptiveSolver(x[i,j])

} B(1)

B(0) +
R(B,Seq)

Phase 0

VARBLOCK

Phase 1

VARBLOCK

Final

VARBLOCK

Phase 0

BLOCK

Phase 1

BLOCK

Final

BLOCK

Final

SEQUENTIAL

Phase 1

SEQUENTIAL

Phase 0

SEQUENTIAL

P1: x[N/2:N][0:N]

P1: x[N/2:N][0:N]

P1: x[N/2:N][0:N] P1: x[N/4:N][0:N]

P1: x[N/4:N][0:N]

P1: x[N/4:N][0:N] P1: none
P0: x[0:N][0:N]

P0: x[0:N][0:N]
P1: none

P1: none
P0: x[0:N][0:N]

P0: x[0:N/2−1][0:N]

P0: x[0:N/2−1][0:N]

P0: x[0:N/2−1][0:N]

P0: x[0:N/4−1][0:N]

P0: x[0:N/4−1][0:N]

P0: x[0:N/4−1][0:N]

Figure 1: Flame simulation outline and resulting RDDG. On the left-hand side is the code for the flame
kernel; each (entire) for i loop constitutes a phase. On the right-hand side is the resulting RDDG (assuming
two nodes). In this example, only the distribution of array x is shown. We assume that the run-time
measurements taken by Adapt find that to balance the load in phase 1, node 0 does 1/4 of the work and node
1 does 3/4. For brevity, we denote this distribution as VARBLOCK. Two edges are highlighted; B(1) denotes the
time to execute phase 1 in a BLOCK distribution (there is no redistribution cost). The other edge must include
R(B, Seq), the time to redistribute from BLOCK to a sequential distribution.

The effective global distribution is determined by finding
the minimum of the three shortest paths (BLOCK, phase 0
to BLOCK, final phase; VARBLOCK, phase 0 to VARBLOCK, final
phase; and sequential, phase 0 to sequential, final phase).

This paper focuses on computing precise redistribution
estimates. There are two primary difficulties. The first is
producing accurate per-node redistribution costs. This re-
quires ensuring that SUIF-Adapt can distinguish between
page transfers and (much cheaper) page invalidations. Oth-
erwise, we cannot precisely determine costs due to differ-
ences in data access sets between phases. Precise estimates
are determined through a combination of compile-time anal-
ysis, where deferred regular section descriptors (DRSDs) are
generated, and run-time analysis, where the bounds of the
DRSDs are computed, and the SDSM is dynamically simu-
lated in each phase. It also requires “unrolling” the RDDG
to represent explicitly multiple iterations of a phase cycle
(Figure 2). In other words, the first two rows of the graph
are copied and placed directly below the current first two
rows, and the final row is placed last. A path through this
graph would represent two iterations of a phase cycle. Oth-
erwise, the edge costs can contain errors due to inaccuracies
in the SDSM state upon entering the first phase in a phase
cycle.

The second difficulty is producing accurate per-phase re-
distribution costs. Specifically, SUIF-Adapt needs to take
into account both redistribution and computation. Other-
wise, it is unclear what is the exact per-phase cost; the most
likely choice would be to use the maximum redistribution
cost of any single node, which is inaccurate (see Section 3).

The process of determining accurate per-node and per-
phase redistribution costs is nontrivial. The next section

Phase 0

BLOCK

Phase 0 Phase 0

VARBLOCK SEQ

Phase 1

BLOCK

Phase 1 Phase 1

VARBLOCK SEQ

BLOCK VARBLOCK SEQ

Phase 0

BLOCK

Phase 0 Phase 0

VARBLOCK SEQ

BLOCK

Phase 1 Phase 1

VARBLOCK SEQ

Phase 1

Final Final Final

Figure 2: Unrolled RDDG. The first two rows rep-
resent the first iteration of the phase cycle, and the
second two rows represent the second iteration. As
before, the last row represents a return to the first
phase.

will explain how we address these issues.

3. IMPLEMENTATION
We have developed our analysis to obtain accurate redis-

tribution times within the SUIF-Adapt system [6]. Of note
is that SUIF-Adapt is implemented on top of the Filaments
package [13], which provides a multithreaded software dis-
tributed shared memory (SDSM). As described above, we fo-
cus on the write-invalidate protocol; furthermore, we assume
that the pages are padded when necessary to avoid false shar-
ing. Section 5 discusses possible extensions to SUIF-Adapt
to handle most write-shared protocols. In this section, we
describe in turn the key compiler modification and the key
run-time modifications.

3.1 SUIF Modifications
As discussed in Section 2, a model for precise page access

determination is needed for the run time system to accu-
rately estimate redistribution costs. From the compiler side,
this requires informing the run-time system about each ar-
ray expression in each phase.

To carry out this task, we modified SUIF to generate
what we call Deferred Regular Section Descriptors (DRSDs).
DRSDs extend Regular Section Descriptors (RSDs) [5]; both
express an array reference in a simple, compact form of a
start, end, and step in each dimension of the array. One
DRSD is generated for each array reference in each phase.

The difference between DRSDs and RSDs is that the for-
mer defers computation of the start and end, in exactly one
of the dimensions, until run time. This is done through a
translation function, which is a function that is exactly the
first index expression that contains the phase loop variable.
In this way the local loop bounds for each node are deter-
mined. This allows correct determination of changes in page
ownership. For example, A[α1i + β1] and A[α2i − β2] pro-
vide different ownership and access ranges for the same loop
(where α1 �= α2 or β1 �= β2). Regular RSDs for such refer-
ences would allow Adapt to know that some node referenced
the array; the translation function present in the DRSD al-
lows the run-time system to calculate exactly which node
performs which accesses. Without a translation function, it
would be necessary to perform static analysis to determine
read and write sets for each array reference (similar what
is done in Fortran D [17]). However, this would be prob-
lematic, because Adapt modifies loop bounds at run time
to balance the load, which would cause the sets to become
stale. An example of the code generated by our SUIF fron-
tend is shown in Figure 3; it includes one DRSD. Note also
the dynamic instantiation of the loop bounds in each phase.

3.2 Adapt Modifications
As described in Section 2, SUIF-Adapt must label each

RDDG edge with an accurate redistribution cost. To obtain
this cost, we first must calculate accurate per-node redistri-
bution costs. These costs can be used to calculate per-phase
redistribution costs.

In this section, we first describe how SUIF-Adapt deter-
mines per-node costs and then how it determines per-phase
costs. Finally, we describe two optimizations that we imple-
mented in SUIF-Adapt, one to improve the accuracy (un-
rolling the RDDG) and one to reduce the overhead (“fast-
forwarding”).

translationFunc(int i) {

return i+1

}

adpCreateDRSD() {

D = ConstructDRSD("z", 2)

D->phase_loop_var_dimension = 1

D->func = translationFunc

D->dim[1].step = 1

// evaluation in dim. 1 of start, end deferred

D->dim[2].start = 1

D->dim[2].end = n

D->dim[2].step = 1

adpAddDRSD(0, D, READ)

}

adpPhaseCycle(2) // contains 2 phases

adpCreateDRSD() // for reference z[i+1][j]

for time := 1 to timesteps {

adpGetLoopBounds(0, &start, &end, &step)

for i := start to end by step

for j := 1 to N

x[i,j] := x[i,j] +

F(y[i-1,j],y[i,j],

y[i+1,j],z[i+1,j])

adpGetLoopBounds(1, &start, &end, &step)

for i := start to end by step

for j := 1 to N

z[i,j] := AdaptiveSolver(x[i,j])

}

Figure 3: A portion of the output of our SUIF fron-
tend for the Flame code. A DRSD is shown for the
array reference z[i + 1][j]. Note that the evaluation
of start and end in the first dimension is deferred
(because i is the loop variable). Note also that the
loop bounds are determined dynamically.

3.2.1 Per-Node Redistribution Costs
To determine the per-node redistribution costs precisely,

SUIF-Adapt uses the DRSDs generated by the compiler to
calculate precise lists of SDSM pages accessed during phase
execution; then, page state transitions are computed. Fig-
ure 4 shows a DFA for page state transitions using the write-
invalidate protocol. The page state in phase i and whether
the page is read or written in phase i+1 determines the type
of communication needed. For example, suppose a page φ is
held by node 0 in exclusive mode in a source distribution in
phase i, and is read by node 1 in phase i + 1. SUIF-Adapt
adds the cost of a page transfer from 0 to 1 to the total
redistribution cost incurred by node 1 as well as the cost
of a page service to the cost incurred by node 0. Further-
more, the target distribution is updated so that page φ is
read shared between nodes 0 and 1 after phase i + 1. Note
that the preceding example assumes that node 1 knows the
owner of page φ; if not, SUIF-Adapt adds in the cost of
forwarding page requests.

The procedure above is used on each page in each DRSD.
The problem becomes how to efficiently obtain all pages

EXCLUSIVE

Node i

Node j reads (C0)

Node j writes (C2)

C1: Node i sends inval, j receives inval
C2: Node i sends page, j receives page
 Ownership also transferred
C3: Node j sends page, i receives page
 Ownership also transferred
C4: Node j sends page, i receives page
C5: Node j sends inval, i receives inval
C6: No communication needed

Node j writes (C5)EXCLUSIVE

READ

Nodes i,j

SHARED

Node i or j reads (C6)

Node i reads
(C4)(C3)

Node i writes
(C1)

Node j

Node j reads or writes (C6)

Node i reads or writes (C6)

Node i writes

C0: Node i sends page, j receives page

Figure 4: DFA showing page state transitions and resulting communication costs for the write invalidate
protocol. Note that page forwarding is not included, though it is handled by SUIF-Adapt.

accessed from each DRSD.
A straightforward algorithm for determining which pages

are accessed is to simply generate each element in each
DRSD. However, this is unnecessarily expensive, because
the granularity of communication in an SDSM is a page.
Hence, our initial approach to obtain page accesses from a
DRSD was to generate elements from the DRSD only when
a new page is accessed. To accomplish this, we kept track of
the number of elements needed to fill a page. For example, if
a two-dimensional array fits the entire second dimension on
a single page, only the first dimension needs to be traversed.
Similarly, if half of the second dimension fits on a page, the
DRSD is traversed by half the size of that dimension. The
original step of the DRSD is still used if it is larger than the
number of array elements per page.

The above algorithm invokes the redistribution cost algo-
rithm once per DRSD per edge. This means that each page
in each DRSD is traversed for each edge in the RDDG, with
potentially many DRSDs covering large arrays. In an N×N
RDDG, if phase i + 1 entails a total of Φ page accesses, re-
calculation at every edge for the transition between phases
i and i + 1 requires N2Φ calls to determine the next page.

The key observation is that in the RDDG, a row of nodes
represents a single phase of program execution. Because all
nodes execute the same code, the union of all SDSM pages
touched by the nodes in a phase is the same, regardless of
the distribution of the data. The ownership of the pages will
change with different distributions, leading to corresponding
changes in communication costs. However, we are guaran-
teed that pages are accessed by some node, independent
of the particular distribution. Hence, we modified our al-
gorithm so that we determine the pages accessed once per
phase and then compute N2 source/destination pairs (in-
cluding communication costs) for that phase. This reduces
the number of calls for the transition between phase i and
phase i + 1 to Φ, for a savings of N(N − 1) calls. Note that
the state of each page still must be updated each time; in
other words, for each different source/destination pair, we
must recompute the new SDSM state.

3.2.2 Per-Phase Redistribution Costs
Given accurate per-node redistribution costs, we need to

find accurate per-phase redistribution costs. This requires

Action T0 T1 Total Time

Rk
i,i+1 8 2 —

Phase i + 1 (comp. only) 10 15 15

Phase i + 1 (comp. + Rk
i,i+1) 18 17 18

Ri,i+1 – – 3

Table 1: Redistribution time example. Ti is the time
incurred on node i for a particular action. In this
example, we assume that node 0 takes 8 time units
to redistribute and 10 units to compute; node 1’s
values are 2 and 15. Rk

i,i+1 is the time for node k to
redistribute from phase i to i + 1. The two middle
rows show times for phase i + 1 both excluding and
including redistribution time. Although the largest
local redistribution time for a node is 8 time units,
the global redistribution time (Ri,i+1) is only 3.

consideration of redistribution and computation.
We now describe how we find the per-phase redistribu-

tion cost (denoted Ri,i+1) between two RDDG vertices in
different phases. This assumes that there are P nodes and
that communication can proceed in parallel between differ-
ent pairs of nodes. First, find the maximum of the execution
times of the nodes in phase i + 1, Texec = maxP−1

k=0 {T k
i+1},

where T k
i+1 represents the execution time for node k in phase

i + 1. Next, find the maximum of the total per-node times
(the sum of execution time and redistribution time), Ttotal =
maxP−1

k=0 {T k
i+1 + Rk

i,i+1}, where Rk
i,i+1 is the time spent due

to redistribution from phase i to i + 1 for node k. Recall
that we described how to compute Rk

i,i+1 in the previous
section. Then R = Ttotal − Texec is the correct weight of
the edge, as it represents the difference between when the
computation does finish, given the redistribution, and when
it would have finished, if no redistribution were done. An
example is shown in Table 1.

3.2.3 Optimizations
We make two main improvements to the procedures de-

scribed above. First, for accuracy, we unroll the graph once.
This avoids inaccuracy due to a different SDSM state upon
entry to a phase cycle than upon return at the end of the
phase cycle. In general, phase cycles are executed many

for step := 1 to numsteps {

for i := 1 to N

for j := 1 to N

y[i][j] = 0.25 * (x[i-1][j] + x[i+1][j] +

x[i][j-1] + x[i][j+1]);

for i := 1 to N

for j := 1 to N

x[i][j] := y[i][j];

}

Figure 5: Jacobi iteration outline.

times, so the SDSM state at the first phase in a phase cy-
cle is, except for the first time it is executed, the one after
the last phase in the phase cycle. We could unroll further,
but we obtained good results by unrolling just once (see
Section 4).

Second, for efficiency, we can in some cases avoid gener-
ating redundant page accesses. For example, given accesses
such as B[i + β1][j] and B[i + β2][j], where | β1 − β2 | is
small, the associated DRSDs will have significant overlap.
We remove the redundancy by adding a bit per page be-
tween each row of the RDDG. When a page is accessed for
the first time, the corresponding bit is marked. During a
traversal of a DRSD, SUIF-Adapt checks to see if a page
is unmarked before reporting it accessed. If a page is al-
ready marked, the algorithm “fast forwards” to either the
next unmarked page or the first page owned by a different
node, whichever occurs first. This method allows us to pro-
ceed through the entire DRSD descriptors without accessing
any pages other than boundary ones, if all the pages have
previously been generated. It is more general than a com-
piler scheme to generate code to “factor out” all repeats;
such a scheme is limited by what can be inferred statically.
For programs such as Jacobi iteration and flame simulation,
this reduces the page set determination cost substantially
(see Section 4).

4. PERFORMANCE
This section discusses the performance of our accurate re-

distribution cost measurement in SUIF-Adapt. We perform
three kinds of experiments, to determine: (1) how expen-
sive our analysis is, (2) how well our analysis accurately
models redistribution time, and (3) how much payoff we
get due to accurate redistribution times. We use two test
programs. Figure 5 shows Jacobi iteration, a well-known
benchmark with two phases, a uniform amount of work in
each, and nearest-neighbor communication. The other pro-
gram is a flame simulation benchmark; we use the kernel
that was shown in Figure 1. To simulate different amounts
of work, we inserted parameterizable delay loops into each
phase. The version of flame simulation that we tested had
large amounts of work in both phases, though the second
phase had an unbalanced load clustered in the top quarter
of the grid.

All tests were run on 2, 4, and 8 200 MHz Pentium Pros
connected by a switched 100Mbs Fast Ethernet1. Both the
SUIF-Adapt system itself and the test programs were com-

1Although the machines are relatively slow by current stan-
dards, the key issues we investigate also arise on faster ma-
chines.

Microbenchmarks

0

500

1,000

1,500

2,000

Transfer Forward,
Transfer

2 Forwards,
Transfer

Invalidation Page
service

Inval
service

Event

T
im

e
(m

ic
ro

se
co

n
d

s)

Figure 6: Time, in microseconds, for a single page
transfer (with and without forwarding), page invali-
dation, page service, and invalidation service. Each
test measured 512 events and took the average time
per event. To obtain these numbers, we executed
microbenchmarks in which one node requests sev-
eral pages, which are served by another node; this
is followed by one node invalidating the pages. (For
forwarding, we used one or two intermediate nodes,
explicitly setting the probable owner field to ensure
the request would be passed on.)

piled under gcc with the -O2 flag. Both programs used
matrices of size 1024 × 1024.

We used isolated experiments to determine the times for
page transfer, page servicing, page invalidation, invalidation
servicing, and page forwarding. These are the overheads
that occur in a write-invalidate SDSM. In our microbench-
marks (see Figure 6), one node requests several pages, which
are served by another node; this is followed by one node in-
validating the pages. The total times are measured and
divided by the number of events, which are then used by
SUIF-Adapt to estimate the cost per event. Recall that
our SDSM is Filaments [13], which can execute in multi-
threaded mode (allowing simultaneous outstanding page re-
quests). This cuts the average page transfer time during
redistribution approximately in half compared to when it
executes in single-threaded mode. Furthermore, we had to
modify our training set numbers to take into account that
the time to service a page fault or invalidation is affected by
page requests and servicing actions of the servicing node,
which slows service time. For example, node i may request
pages from node j, which would normally take time t1, but
if node j has to either request pages or serve other nodes
itself, it will take node i time t2 > t1 to obtain its pages.
This is not reflected in the figure, although it is implemented
internally in SUIF-Adapt.

4.1 Cost of Analysis
Figure 7 shows the times to determine redistribution cost

for the three different algorithms (described in Section 3).
As can be seen, fast forwarding performs quite well (almost
a factor of 2 improvement over the “by row” algorithm),
whereas the original algorithm (“by edge”) does not. Given
that the redistribution time is amortized over many iter-
ations, we believe that fast forwarding performs quite ac-

Analysis Times

0
2
4
6
8

10
12
14

J
(2)

F
(2)

J
(4)

F
(4)

J
(8)

F
(8)

T
im

e
(s

)
By RDDG
Edge
By RDDG Row

"Fast
Forwarding"

Figure 7: Time for execution of our analysis for Ja-
cobi iteration (J) and flame simulation (F) in sec-
onds for two, four, and eight nodes. By edge means
that the set of pages accessed was determined once
per RDDG edge, and by row means that the set was
determined once per RDDG row. “Fast-forwarding”
is the optimization that avoids processing a page
multiple times.

ceptably. The execution time of our algorithm depends on
number of array accesses per phase, as well as how much of
each array is accessed. In Jacobi, there are 5 array references
in one phase and 2 in the other; those numbers are 6 and 2
for Flame. In both, the entire array is accessed. While this
is a moderate amount of array references, it is important
to note that if the number of array references increases, the
time taken by the computation itself will surely increase;
hence, our analysis time should remain a small percentage
of the overall computation. The analysis cost scales linearly
with the number of nodes, because we check each node to
determine whether or not it accesses each page. However,
the cost per check is low, and in the case that few nodes
actually access the page, little overhead is added. The cost
also scales linearly with the number of unique pages accessed
(as a result of array accesses).

Note that this analysis is not executed on each iteration; it
is executed only (1) after the first iteration of a phase cycle
or (2) when conditions change in the middle of a program.
The latter can occur, for example, when a subset of the
nodes become busy executing other processes.

4.2 Accuracy of Analysis
The accuracy of our algorithm is quite good, as shown

in Table 2 (next page). The estimated and actual phase
completion times are quite close, which is evidence that we
have accurately modeled the major aspects of the SDSM.
Note that these numbers were obtained with the RDDG
unrolled once (see below). We attribute the small difference
to experimental error caused by daemon processes, network
delays, etc. In particular, our system precisely determined
the number of invalidations and page faults caused by data
redistribution (we instrumented our SDSM with counters
for verification), which is critical because a page fault is five
times more expensive than an invalidation.

The next test we ran was with flame simulation. We mea-
sured the effect of unrolling the RDDG; Figure 8 (previous

Effect of Unrolling RDDG

0

5

10

15

20

25

2 nodes 4 nodes 8 nodes

P
er

ce
n

ta
g

e
d

if
fe

re
n

ce

Not Unrolled
Unrolled

Figure 8: Comparison of accuracy between the
RDDG when unrolled and not unrolled for flame
simulation. The percentage difference refers to the
difference between the estimated and actual execu-
tion times. It is clear that unrolling the graph makes
a significant difference when there is redistribution
(on eight nodes SUIF-Adapt chooses not to redis-
tribute).

Total Time for Flame Simulation

0

50

100

150

200

250

2 nodes 4 nodes 8 nodes

T
im

e
(s

) SUIF-Adapt
BB
BV
VV

Figure 9: Flame simulation times in seconds. Let-
ters (B/V) correspond to statically chosen distribu-
tions (BLOCK/VARBLOCK) for a phase. Note that SUIF-
Adapt is competitive with the best hand-coded dis-
tribution in all cases. This is due to the accurate es-
timates produced by SUIF-Adapt. Without distin-
guishing between invalidations and page transfers,
BB would be chosen in all cases. If redistribution
time itself is not considered, BV will be chosen in
all cases.

Number of Nodes 2 4 8
Predicted Actual Predicted Actual Predicted Actual

Jacobi, Phase 0 .184 .182 .094 .098 .050 .054
Jacobi, Phase 1 .097 .095 .048 .048 .025 .028

Flame, Phase 0 11.7 11.8 6.07 6.38 2.85 2.79
Flame, Phase 1 3.75 3.78 2.86 2.94 2.77 2.77

Table 2: Accuracy of Jacobi iteration and flame simulation. All times are in seconds. Our analysis produces
estimated program execution times that are close to the actual program execution time. Note that in Flame,
different distributions are used on four and eight nodes; the four-node tests include redistribution cost in
phase 0, whereas the eight-node tests use BLOCK in both phases and hence do not redistribute. (The overall
speedup is not superlinear.)

page) shows the results. Clearly, unrolling the graph pro-
duces a much more accurate estimate. The reason for this
is that upon entry to the phase cycle, each node exclusively
owns an equal-sized block of each array (the chosen initial
distribution). Hence, if the graph is not unrolled, SUIF-
Adapt will overestimate some redistribution edges because
page transfers appear necessary for all pages written by a dif-
ferent node in the next phase. However, the final row of the
RDDG represents a return to the first phase; at this point,
one of the arrays has pages that are read-shared between
two nodes. In the steady state, this actually will cause only
invalidations when one of the sharing nodes writes. Note
that unrolling makes no difference on eight nodes because
BLOCK (the initial distribution) is chosen for both phases.

4.3 Utility of Analysis
The above numbers show that SUIF-Adapt computes ac-

curate redistribution costs. However, this is only of use if
better decisions can be made when SUIF-Adapt uses this
analysis. Figure 9 (previous page) shows results from our
flame simulation kernel. On two and four nodes, a redis-
tribution is chosen by SUIF-Adapt; on eight nodes, BLOCK
is chosen in both phases. This does indeed match the best
hand-coded distribution. It is important to note that the
hand-coded distribution uses prior knowledge of application
behavior, which is not available in general. Interestingly, if
the RDDG is not unrolled, the assumed page transfers de-
scribed above cause SUIF-Adapt to choose BLOCK for both
phases for not just eight nodes, but also two and four. This
leads to a degradation of around 10%.

While choosing the correct distribution in the Flame pro-
gram led to a modest improvement, it is important to note
that it can be much larger. We ran Jacobi iteration for
100 iterations, starting an unrelated competing process (im-
plemented as a tight loop) on half of the nodes. Signifi-
cant changes had to be made to Adapt to accomodate non-
dedicated environments; further details are contained in [14].
Other work for non-dedicated environments that integrates
the compiler, run-time system, and OS is described in [16].

We started the competing process on either the 20th, 60th,
or 90th iteration. For two, four, and eight nodes, we ran
both (1) a SUIF-Adapt version where the decision to re-
distribute is made dynamically and (2) a comparable hand-
coded version that was identical except that it made the
opposite decision concerning redistribution. For example, if
SUIF-Adapt chose to redistribute, then the hand-coded ver-
sion did not redistribute. Figure 10 shows that due to the
accurate measure of redistribution time, SUIF-Adapt in gen-
eral adjusts the workload only when it is beneficial. When

the competing processes start on the 20th iteration, the re-
distribution time is amortized. This is correctly determined
by SUIF-Adapt. If redistribution time is overestimated, as
it is if either (1) the graph is not unrolled, or (2) page inval-
idations are counted as page transfers, SUIF-Adapt would
have potentially chosen not to redistribute. On the other
hand, SUIF-Adapt does not redistribute when it would be
harmful; if the competing processes start on the 90th iter-
ation, the redistribution time cannot be amortized. If re-
distribution time is not considered or is underestimated, a
redistribution may occur.

When the competing processes are started on the 60th it-
eration, the execution times with and without redistribution
are extremely close on four and eight nodes; in other words,
the time saved by data redistribution on future iterations
is almost equal to the cost of redistribution. SUIF-Adapt
chose the correct distribution on four nodes; however, on
eight nodes, it chose to redistribute when it would have been
better to avoid redistribution. However, the difference be-
tween the two versions, excluding the SUIF-Adapt analysis
time, is around 2%, which is the closest between the versions
in all of our tests.

While SUIF-Adapt typically makes the proper decision
when redistributing data, the improvement in execution time
in our version of Jacobi iteration is relatively small (around
10%). However, the improvement grows with the compu-
tation to communication ratio. This ratio can increase in
several ways, such as an increase in problem size or when
the amount computation between synchronization points in-
creases. For example, the latter occurs in Jacobi if we use
a 9-point stencil instead of a 4-point one. Figure 11 shows
the savings per iteration for different computation to com-
munication ratios.

5. DISCUSSION
Our work shows that it is possible to accurately estimate

redistribution costs in write-invalidate SDSM systems. This
section first discusses applying our analysis to programs with
irregular communication patterns. Next, we discuss whether
or not write-shared protocols such as Munin [2] and Tread-
marks [9] could be used.

Irregular Applications
Our current framework supports applications with a regular
structure. We utilize this assumption by restricting our at-
tention to BLOCK- and CYCLIC-based distributions as well as
efficiently estimating alternative distributions without actu-
ally executing the program in those distributions.

Applications with arbitrary access patterns pose a rather

Jacobi Iteration with One Competing
Process (Iteration 20)

0

20

40

60

80

100

2 nodes 4 nodes 8 nodes

T
im

e
(s

)

SUIF-Adapt (with
best
redistribution)
No redistribution

Jacobi Iteration with One Competing
Process (Iteration 60)

0

10

20

30

40

50

60

70

2 nodes 4 nodes 8 nodes

T
im

e
(s

)

SUIF-Adapt (with
best
redistribution)
No redistribution

Jacobi Iteration with One Competing
Process (Iteration 90)

0

10

20

30

40

50

60

2 nodes 4 nodes 8 nodes

T
im

e
(s

) SUIF-Adapt (no
redistribution)
With
redistribution

Figure 10: Jacobi iteration with one competing pro-
cess. In this experiment, we started executing Ja-
cobi iteration as the only application process on
the machine. At the iteration specified (20, 60, or
90), we introduced a competing process (on half
the nodes) that repeatedly executes a tight loop.
This figure shows that SUIF-Adapt almost always
makes the correct decision on whether to redis-
tribute; when it does not, the difference is almost
negligible. Times are in seconds; note that the
SUIF-Adapt times include redistribution analysis.

SUIF-Adapt vs. No Redistribution,
Different Workloads

0

5

10

15

20

25

30

35

2 nodes 4 nodes 8 nodes

P
er

ce
n

ta
g

e
S

av
in

g
s

Light
Moderate
Heavy

Figure 11: Percentage savings per iteration for Ja-
cobi with SUIF-Adapt when there are competing
processes. The benefit of the redistribution selected
by SUIF-Adapt compared to a hand-coded version
(without redistribution) is shown for two, four, and
eight nodes. For each, we tested a light, medium,
and heavy computational load. The amount of se-
quential computation for each is 0.75 seconds, 1.44
seconds, and 3.51 seconds, respectively. The im-
provement per iteration when using SUIF-Adapt
grows with the amount of computation.

difficult problem; one way to handle such programs would
be to update an auxiliary data structure to keep track of
which elements are accessed. This would entail a great deal
of overhead. However, many irregular scientific applications
use indirection arrays, where the array subscript is itself an
array reference. In this case the indirection array is often a
regular section. Support for aggregating communication for
these kind of applications through compile- and run-time
analysis was presented in [15]. Our goal is to determine
efficient data distributions. For applications where a BLOCK

or VARBLOCK distribution is called for, such as some versions
of non-bonded force interactions [15], our analysis could be
applied. We would need to inspect the indirection array and
write a bit vector corresponding to its values; we could then
determine the accessed pages.

Write-Shared Protocols
The write-invalidate page consistency protocol (PCP) is in-
sufficient when there are multiple nodes that access a single
page, and at least one of them writes. This is known as
false sharing, which usually leads to thrashing. Write-shared
PCPs tolerate false sharing by cloning a page that is being
falsely shared; at a later acquire point, a single consistent
copy of the page is obtained.

To support write-shared protocols, our DRSDs could be
used to determine not only which pages are falsely shared,
but also which locations within those pages are written.
Then, the DFA describing page states would need to be mod-
ified to describe write-shared behavior. For example, writ-
ing to a read-shared page no longer causes an invalidation.
The exact DFA modifications depend on the write-shared

update strategy [7]. We will discuss three such strategies:
eager, lazy, and home based.

The easiest version of write-shared to support would be
home based, because it is conceptually the simplest. Using
the DRSDs, SUIF-Adapt could know which pages are sent
to the home and run isolated experiments to determine the
cost of the diff (based on its size) performed at the home. An
eager scheme is more complicated than a home-based one,
but as long as each node exchanges its diffs with all other
nodes in its copyset, a DFA can be developed that could
capture communication. The lazy scheme would be most
difficult to support because protocol actions span phases;
write sharing in phase i will cause no action; if the page
is read in phase i + 1, then diffs are accumulated and a
consistent copy is obtained. This would cause a circularity,
because the distribution chosen greedily by SUIF-Adapt in
phase i+1 depends on that chosen in phase i. Furthermore,
periodic garbage collection may occur with the lazy scheme;
this complicates the matter further.

The above discussion assumed that barriers are the only
form of synchronization. In some cases, locks give our ap-
proach problems, because we cannot determine in what or-
der processes will acquire and release them. This presents a
problem in the case that the amount of communication in-
curred by processes depends on the order of lock acquisition;
this is not common, but possible. However, if reductions are
used instead, communication only occurs at synchronization
points, which makes our analysis possible.

6. CONCLUSION
This paper has described our approach to estimating data

redistribution cost accurately in software distributed shared
memory (SDSM) systems. We have implemented the ap-
proach in SUIF-Adapt. We extended the compiler to gener-
ate deferred regular section descriptors (DRSDs). We also
modified the run-time system to use the DRSDs along with
the knowledge of consistency protocol actions to develop an
algorithm to accurately determine data redistribution time.
This allows us to in turn accurately estimate total phase
time. Through optimizations, the performance of our algo-
rithm was made quite acceptable.

Performance results showed that our estimate of total
phase time are within 5% of the actual time. This accu-
racy allowed us to choose effective global data distributions.
In particular, the distributions chosen by SUIF-Adapt lead
to a performance benefit of over 10% in some of our tests.
Furthermore, in general the benefit can be much more.

7. REFERENCES
[1] J. Anderson and M. Lam. Global optimizations for

parallelism and locality on scalable parallel machines.
In Proceedings of the SIGPLAN ’93 Conference on
Program Language Design and Implementation, pages
112–125, June 1993.

[2] J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and performance of Munin. In
Proceedings of 13th ACM Symposium On Operating
Systems, pages 152–164, Oct. 1991.

[3] S. Chandra and J. R. Larus. Optimizing
communication in HPF programs on fine-grain
distributed shared memory. In Sixth Symposium on
Principles and Practice of Parallel Programming,
pages 100–111, June 1997.

[4] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam.
Maximizing multiprocessor performance with the
SUIF compiler. IEEE Computer, 29(12):84–89, Dec.
1996.

[5] P. Havlak and K. Kennedy. An implementation of
interprocedural bounded regular section analysis.
IEEE Transactions on Parallel and Distributed
Systems, 2(3):350–360, 1991.

[6] G. M. Howard and D. K. Lowenthal. An integrated
compiler/run-time system for global data distribution
in distributed shared memory systems. In Second
Workshop on Software DSM, May 2000.

[7] L. Iftode. Home-Based Shared Virtual Memory. PhD
thesis, Princeton University, June 1998.

[8] S. Ioannidis and S. Dwarkadas. Compiler and run-time
support for adaptive load balancing in software
distributed shared memory systems. In Proceedings of
the Fourth Workshop on Languages, Compilers, and
Run-Time Systems for Parallel Computing, pages
107–122, May 1998.

[9] P. Keleher, S. Dwarkadas, A. Cox, and
W. Zwaenepoel. TreadMarks: Distributed shared
memory on standard workstations and operating
systems. In Proceedings of the 1994 Winter Usenix
Conference, pages 115–131, Jan. 1994.

[10] K. Kennedy and U. Kremer. Automatic data layout
for distributed-memory machines. ACM TOPLAS,
20(4):869–916, 1998.

[11] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on
Computer Systems, 7(4), Nov. 1989.

[12] D. K. Lowenthal and G. R. Andrews. An adaptive
approach to data placement. In Proceedings of the
10th International Symposium on Parallel Processing,
pages 349–353, Apr. 1996.

[13] D. K. Lowenthal, V. W. Freeh, and G. R. Andrews.
Using fine-grain threads and run-time decision making
in parallel computing. Journal of Parallel and
Distributed Computing, 37:41–54, Nov. 1996.

[14] D. K. Lowenthal and F. Lowenthal. Supporting regular
data distributions on nondedicated parallel machines
(submitted to Supercomputing ’01). May 2001.

[15] H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Compiler and distributed shared
memory support for irregular applications. In Sixth
Symposium on Principles and Practice of Parallel
Programming, pages 48–56, June 1997.

[16] U. Rencuzogullari and S. Dwarkadas. Dynamic
adaptation to available resources for parallel
computing in an autonomous network of workstations.
In Eighth Conference on Principles and Practice of
Parallel Programming (to appear), June 2001.

[17] C.-W. Tseng. An Optimizing Fortran D Compiler for
MIMD Distributed-Memory Machines. PhD thesis,
Rice University, Jan. 1993.

[18] K. Zhang, J. Mellor-Crummey, and R. J. Fowler.
Compilation and runtime optimizations for software
distributed shared memory. In Fifth Workshop on
Languages, Compilers, and Run-Time Systems for
Scalable Computers, pages 83–88, May 2000.

