
Finding the Limits of Power-Constrained Application
Performance

Peter E. Bailey
Aniruddha Marathe
David K. Lowenthal

Dept. of Computer Science
The University of Arizona

Barry Rountree
Martin Schulz

Lawrence Livermore National Laboratory

ABSTRACT
As we approach exascale systems, power is turning from an opti-
mization goal to a critical operating constraint. With power bounds
imposed by both stakeholders and the limitations of existing in-
frastructure, we need to develop new techniques that work with
limited power to extract maximum performance. In this paper, we
explore this area and provide an approach to find the theoretical up-
per bound of computational performance on a per-application basis
in hybrid MPI + OpenMP applications.

We use a linear programming (LP) formulation to optimize ap-
plication schedules under various power constraints, where a sched-
ule consists of a DVFS state and number of OpenMP threads for
each section of computation between consecutive MPI calls. We
also provide a more flexible mixed integer-linear (ILP) formula-
tion and show that the resulting schedules closely match schedules
from the LP formulation. Across four applications, we use our LP-
derived upper bounds to show that current approaches trail optimal,
power-constrained performance by up to 41.1%. This demonstrates
the untapped potential of current systems, and our LP formulation
provides future optimization approaches with a quantitative opti-
mization target.

1. INTRODUCTION
With power consumption becoming a critical—if not the critical—

supercomputer operating constraint, future systems must adhere to
strict power limits. For example, in the US, exascale systems cur-
rently have a target power consumption—set by the Department
of Energy—of 20 MW, other agencies world-wide have set simi-
lar limits. We anticipate that total machine power will be divided
across multiple simultaneous jobs, with each job being allocated a
power bound and a set of nodes. This motivates the development
of techniques for optimizing performance under a strict power con-
straint for multi-node, multi-core systems. The problem at hand is
then to choose a per-processor configuration (a number of cores and
frequency/voltage [DVFS] state) for a given application executing
on a particular number of nodes.

Any technique for choosing configurations under a job-level power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

constraint suffers from a configuration space that is combinatori-
ally large. A single processor commonly has 16 or more hardware
threads and supports a dozen DVFS states. Multiplied by the num-
ber of processors in a typical job, the size of the configuration space
makes finding the optimal configuration for each processor into a
large combinatorial problem, and any analytical solution for the
optimal configuration of all processors in the job becomes compu-
tationally intractable. Combined with the fact that different config-
urations can result in vastly different performance [20], we cannot
reliably establish the quality of existing approaches, which are po-
tentially missing out on significant performance gains.

In this paper, we develop the first theoretical formulation of the
power-constrained performance optimization problem for MPI +
OpenMP applications. We present a near-optimal verified linear
programming (LP) formulation, which places a theoretical upper
bound on the application performance that can be achieved on power-
constrained systems. We also present an integer linear program-
ming (ILP) formulation of the same problem, which, while opti-
mal, is not feasible for realistic problem sizes. However, we show
that the LP and ILP formulations yield similar results, and that the
LP allows us to find theoretical limits for realistic problem sizes.

By taking traces of application execution across multiple config-
urations and applying either linear or integer programming, we cre-
ate a schedule of configuration changes that, if applied at runtime,
would result in near-optimal execution time under the given job-
level power constraint. We emphasize that we are not proposing
this methodology as a production runtime system. Rather, the tech-
niques described in this paper can be used to evaluate runtime sys-
tems to determine how closely they approach the theoretical bound.

In this paper, we make the following contributions:

• We develop a linear programming formulation to maximize
performance under a job-level power constraint through con-
figuration selection and scheduling.

• We validate the LP formulation and the resulting schedules
on a cluster system.

• We demonstrate an ILP formulation and show that it closely
matches our LP formulation.

• We compare our LP results with those of state-of-the-art heuris-
tics and show there is room for improvement in online power-
constrained performance optimization.

As we show in Section 6, our LP-generated schedule yields up to
41.1% improvement in power-constrained performance over state-
of-the-art power reallocation systems, and up to 74.9% improve-
ment over the de facto standard of static uniform power caps. This
both demonstrates the shortfalls of current techniques and provides

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized Time vs. Power

Power (w)

N
or

m
al

iz
ed

 T
im

e

●
● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads

Convex Pareto Frontier

Figure 1: Time vs. processor power for a task from CoMD. For
a specific number of threads, power increases and task time
decreases with increasing processor frequency.

the research community with an approach to evaluate future sys-
tems against realistic performance targets.

In the rest of this paper, Section 2 gives a background to the
problem of optimizing power-constrained performance. Section 3
provides step-by-step analysis of our solution, Section 4 details
contemporary algorithms for running an application under a power
constraint, and Section 5 identifies our test system and benchmarks.
Next, Section 6 presents analysis and interpretation of our results.
Finally, Section 7 explores related work, and Section 8 concludes.
.

2. OVERVIEW
With power and performance becoming equally important in su-

percomputer design and operation, every design or operation deci-
sion must take both into account, as they are directly related. Past
supercomputer designs have largely sidestepped this issue by de-
signing for worst-case power consumption, but future designs will
require careful consideration of every system-level power-perfor-
mance tradeoff [26]. With a multitude of such tradeoffs under con-
sideration, the limits of power-constrained application performance
remain an open question.

Numerous factors influence both application power and time to
solution in modern parallel, distributed-memory machines. Some
of these factors are fixed; in this paper, we focus on dynamically
tunable options that can be effected at run time. The simplest
runtime choices are node-level configuration options, such as Dy-
namic Voltage and Frequency Scaling (DVFS)—dynamically ad-
justing the processor voltage and frequency—and Dynamic Con-
currency Throttling (DCT) [7]—dynamically adjusting the number
of threads used in a parallel region.

2.1 Job-Level Power-Constrained Optimization
To our knowledge, this paper is the first to present an upper

bound on power-constrained performance for MPI + OpenMP ap-
plications on a specified number of nodes. Prior work has in-
vestigated maximizing power-constrained performance on a single

Configuration Freq. (GHz) Threads
Ci, 1 2.6 8
Ci,... ... 8
Ci,15 1.2 8
Ci,16 1.2 7
Ci,17 1.2 6
Ci,18 1.2 5
Ci,19 1.2 4

Table 1: A sample of time/power Pareto-efficient configura-
tions, Ci, from the task shown in Figure 1.

node [5, 6]. These works share a common theme, which is to find
Pareto-efficient configurations. The set of Pareto-efficient config-
urations maximizes performance given a power constraint. An ex-
ample of a time-power Pareto frontier is shown in Figure 1.

Previous efforts have targeted distributed-memory applications
that can be represented as a directed acyclic graph (DAG); Fig-
ure 2 shows an example graph. In this DAG, vertices correspond
to collective operations as well as point-to-point message initia-
tion/reception, and edges correspond to either message transmis-
sions between MPI processes (weighted by a linear function of
message size) or computation tasks between two MPI calls on the
same process (for the latter we use “edges” and “tasks” interchange-
ably). Extending this DAG to model hybrid MPI + OpenMP appli-
cations means that computation edges can be run in many DVFS
and DCT configurations.

Importantly, previous efforts have not targeted maximization of
power-constrained performance. Configuration selection has been
applied in MPI and MPI + OpenMP applications for the purpose
of minimizing energy consumption [18] and to find the extent to
which it is possible to save energy without decreasing performance
[23]. The goals of minimizing energy and maximizing power-
constrained performance are related, yet substantially different. It
is important to note that the approaches presented in [18, 23] make
no attempt to constrain power, and their requirement that perfor-
mance be maintained near maximum leaves little room for trading
off power and performance in general. Consequently, these ap-
proaches require a system with fully provisioned worst-case power,
a luxury we won’t have in future systems.

The problem that we are solving—optimizing performance sub-
ject to a job-level power bound in MPI + OpenMP applications—
cannot simply borrow existing techniques such as the ones men-
tioned above. MPI semantics facilitate complex interactions and
dependencies between processes, and, at any given time, multiple
computation tasks will be running. The presence of multiple tasks
overlapping in time adds complexity to the optimization problem;
increasing performance (and therefore power) of a single task re-
duces available power for other simultaneously running tasks on
other ranks, potentially increasing overall time to solution.

More importantly, determining all possible sets of co-scheduled
tasks is computationally intractable, but any method of optimiz-
ing power-constrained performance must determine exactly which
tasks are executing at a given point in time. This requirement is
complicated by the fact that changing a task’s power allocation may
shift the task in time, thus changing its set of co-scheduled tasks
and potentially changing its optimal power allocation. A valid so-
lution to this problem must determine per-rank power constraints
covering the entirety of application execution. These power con-
straints may change over time, depending on changing application
characteristics such as load imbalance. The rank-level power con-
straints must be selected to maximize application performance un-

Init Finalize

Isend Wait

Recv

A
2

A5

A 1

A3

A
6

A
4

a)

A1

A2

A3

A5

A6

A
4

Time

r1

r0

FinalizeInit

Isend

Recv

Wait

MPI callTask MessageSlack

b)

V1

V2

V3

V4

V5

Figure 2: A simple application task graph (a) and timeline (b).

time

r0
r1
r2
r3
r4

time

r0
r1
r2
r3
r4

a b

c

a b

dcd

Figure 3: An application’s instantaneous power is determined
by tasks that overlap in time. A single task may run simulta-
neously with many tasks, and a change in task’s duration may
change the set of tasks it overlaps. In this example, task a is
slowed down, which causes a to overlap with d, and b to cease
overlapping with c.

der a global job-level constraint, and each rank must select an ap-
propriate configuration for each of its tasks according to varying
power availability.

Figure 3 shows the co-scheduling problem. On rank 3, tasks a
and b are shown, and task a is slowed. This leads to a different set
of tasks executing at the event between tasks a and b demarcated by
the dotted line. As practical applications have more than two MPI
ranks, it is important to find an efficient solution method for such
problems. We introduce our method in Section 3.

2.2 Assumptions
In this paper, we examine applications that meet the following

characteristics, which are common in modern HPC applications
across all application areas: they (a) are written with MPI and
OpenMP, (b) call MPI functions from outside OpenMP parallel re-
gions (e.g., MPI_THREAD_MULTIPLE), and (c) run one multi-
threaded process per socket. The first requirement serves to maxi-
mize the range of configurations available for each MPI task, while
the second requirement dramatically simplifies the ILP/LP formu-
lations. The third requirement avoids NUMA effects and simpli-
fies power measurement, as RAPL [8] (the mechanism we use for
power measurement and per-processor capping) reports data at the
socket level, and the processors in our test system only support
DVFS at the socket level.

In this paper, we assume that the number of MPI ranks is se-
lected by the user. In a power-constrained environment, this as-
sumption may lead to wasted power and suboptimal performance,
but the problem of efficiently allocating resources between jobs in
a power-constrained cluster is not the focus of this paper, and has
been examined previously (e.g. [20]).

2.3 Summary

Previous approaches to power/energy optimization problems have
focused either on a single node or on “best-effort” power/energy ap-
proaches subject to limited performance loss. It is much more com-
plicated to optimize performance under a power constraint, because
changes made to improve performance can result in task-shifting
that violates the power constraint. Nontrivial optimization-based
approaches—i.e., ones that aggressively attempt to improve per-
formance while respecting the power constraint—require careful
treatment. The next section describes two different approaches.

3. LINEAR AND INTEGER/LINEAR PRO-
GRAMMING FORMULATIONS

To address the concerns raised in Section 2, we present an event-
based LP formulation of the power-constrained performance opti-
mization problem. While LP formulations are impractical for real-
time task scheduling, they provide near-optimal offline solutions,
allowing us, for the first time, to study the optimization potential
in power-limited systems and to evaluate online approaches against
realistic optimization targets.

Below, Section 3.1 provides the implementation details of our
LP formulation, Section 3.2 shows how we handle configurations
in the LP formulation, Section 3.3 explains how the LP formulation
constrains job-level power using events, and Section 3.4 details our
ILP formulation.

3.1 LP Design
Our LP formulation depends on a directed acyclic graph (DAG)

representation of the application’s computation and communication
dependencies, which we obtain from an MPI tracing library. The
DAG edges correspond to communication and computation (tasks),
while the DAG vertices correspond to MPI function calls. Figure 2
shows an example DAG and one potential execution timeline.

Each task can be run in a number of configurations, each as-
sociated with a unique power and duration. Table 1 lists sam-
ple configurations. The power-constrained performance optimiza-
tion problem is an instance of a larger class of problems, namely
Multi-Mode Resource-Constrained Project Scheduling Problems,
or MM-RCPSPs. Drawing on existing treatments of such prob-
lems by Koné et al. [17] and Artigues et al. [3] , we adapt previous
solution strategies to the problem at hand. Our treatment of the
problem differs from previous solutions in that we present a lin-
earization of the event-based formulation that results in realistic,
verifiable schedules, as we will show in Section 3.3.

As shown in Figure 4, the our LP formulation is based on one
objective (1) and several constraints (2)-(4); Table 2 lists the sym-
bols used and their definitions. Equation (1) shows the objective,
which is to minimize application time to solution; we define vM to

Symbol Description
Ci available configurations for task i
ci,j fraction of task i in configuration j
di duration of task i

di,j duration of task i in configuration j
pi average power of task i

pi,j power of task i in configuration j
si start time of task i
vj time of vertex j

Ei,j task precedence; 1 if dest(i) = src(j)
A task set; |A| = N
V vertex set; |V | = M

vM total duration
PC job-level power constraint
Pj power consumption at vertex j
Rj tasks active at vertex j

Table 2: Symbols used in LP formulation and their definitions.

objective : minimize(vM) (1)
v1 = 0 (2)

sj − si >= di ∀(i, j) ∈ E (3)
si = vj ∀(i, j) ∈ {A× V } | src(i) = j (4)

Figure 4: Objective and constraints for task ordering.

be the time of the MPI_Finalize() vertex. Equation (2) sets
the MPI_Init() vertex to time 0. Consequently, all tasks in the
application must start at or later than time 0. Of course, most task
start times will be determined by dependencies inherent in the ap-
plication. Equation (3) sets minimum task spacing in time; this
enforces task precedence relationships inherent in the application.
That is, if task j directly depends on task i, then task j cannot
start until i completes. When applied to all combinations in the ap-
plication task precedence set, E, Equation (3) allows each task to
start only after all its predecessors have completed. Equation (4)
requires all tasks with a common source vertex to start simultane-
ously, which can be the case for collective operations or message
sources (e.g., MPI_Send or MPI_Isend()). While our formu-
lation accounts for slack time (the time in the schedule before the
locally subsequent task can be started minus the task’s execution
time), we require a task to precede its slack for simplicity (i.e., a
tasks executes and then waits until the next task can be executed).
Without Equation (4), slack would be allowed to precede its asso-
ciated task. Due to our assumption that slack power is equal to the
power of the associated task (see Section 3.3), our requirement that
tasks precede their slack does not affect the resulting schedule.

In addition to the constraints in Figure 4, our LP formulation
relies on representations of per-task configurations. Section 3.2 de-
tails their implementation.

3.2 Configurations
Our LP solution procedure handles both discrete and continuous

configuration spaces, governed by the equations in Figure 5. In the
discrete case, each task is in a single configuration for its entire
execution time. In the continuous case, the initial solution places
each task in a configuration that may not correspond to an integral
number of threads or available DVFS states, but results in a shorter
time to solution (assuming negligible configuration switching over-
head). In either case, the problem is initially formulated with con-

ci,j ∈ {0, 1} ∀i ∈ A ∀j ∈ Ci (discrete) (5)
0 <= ci,j <= 1 ∀i ∈ A ∀j ∈ Ci (continuous) (6)

di =
∑
j∈Ci

di,jci,j ∀i ∈ A (7)

pi =
∑
j∈Ci

pi,jci,j ∀i ∈ A (8)

∑
j∈Ci

ci,j = 1 ∀i ∈ A (9)

Figure 5: Equations constraining task configurations.

tinuous configurations, and the resulting solution is rounded to pro-
duce discrete configurations that are realizable in terms of avail-
able concurrency levels and DVFS states. The continuous case is
implemented by switching the configuration mid-task to emulate
the effect of the optimal configurations using multiple physically
available discrete configurations, while the discrete case is rounded
by selecting the configuration closest to the optimal point on the
Pareto frontier. We take this approach because if the problem is
initially formulated with discrete configurations, it becomes mixed
integer/linear (ILP). This requires a significantly less efficient solu-
tion method, which prohibits us from solving realistic problems.

In the discrete case, Equation (5) restricts each task i to a single
configuration. We require all tasks to run in a single configuration
for their entire duration to avoid excess DVFS overhead, and be-
cause changing the concurrency level mid-task is not supported in
OpenMP. In the continuous case, Equation (6) restricts each task
to a point along a continuum of configurations. In practice, the
resulting configuration selection will lie between two neighboring
discrete configurations. Equation (7) states that the time required
to complete task i is equal to the sum of the time spent in each con-
figuration, and Equation (8) states that the average power for a task
is equal to the weighted average power over all configurations used
for that task. Equation (9) requires each task to be completed in at
least one configuration. Equations (6)-(9) are in common with the
LP formulation by Rountree et al. [23].

The introduction of configurations to the problem requires us to
find Pareto-efficient, convex (with respect to power and time) sets
of configurations for each task in order to create a purely linear
formulation of the problem. Figure 1 depicts one such frontier,
along with all possible configurations of the task. Without the con-
vexity requirement, the Pareto frontiers would force the problem
to become mixed integer/linear, since a non-convex Pareto frontier
cannot be represented as a convex, piecewise-linear function.

Figure 1 also provides the basis for part of our run-time power
reallocation algorithm, introduced in Section 4.2; for many applica-
tion tasks that we tested, increasing the number of threads reliably
increased performance, and running with fewer than the maximum
number of threads was only Pareto-efficient (on the convex fron-
tier) at the minimum processor frequency.

3.3 Role of Events in the LP Formulation
Our LP formulation constrains power consumption at discrete

events. Events correspond to vertices in the application DAG, and
the required power for each event is determined by the active tasks
at that event. Tasks are considered active at an event if they start at
or are running at the time of the event in an initial schedule.

The initial event order is provided by a power-unconstrained

Pj >=
∑
i∈Rj

pi ∀j ∈ V (10)

Pj <= PC ∀j ∈ V (11)

vi <= vj ∀(i, j) ∈ V 2 | event(vi) < event(vj) (12)

vi = vj ∀(i, j) ∈ V 2 | event(vi) = event(vj) (13)

Figure 6: Power-related constraints in the fixed-vertex order
LP.

schedule for the application DAG that has been modified to re-
duce slack time. The modification does not change the overall
time to solution, but slows tasks off the critical path as much as
possible. This initial schedule also provides the task activity set,
R. To maximize flexibility in event ordering, slack power is as-
sumed equal to its corresponding task power in this formulation. If
a task’s slack power were treated as distinct from the active power
(as in the Appendix), additional power would be available for use
in other simultaneously running tasks, at the expense of introduc-
ing additional events at task/slack boundaries. For the event-based
formulation, we favor having fewer events over a marginal increase
in power sharing to maximize each task’s power and performance
scaling range.

We consider a restricted version of the event-based formulation
in which the time order of events is fixed; this differs from Koné
et al. [17] in which the event order is determined by the solver,
which requires a mixed integer-linear (ILP) formulation. Our ap-
proach results in a strictly linear formulation, which allows for lin-
ear solvers and efficient, polynomial-time solutions. This method
could be applied to thousands of processes and hundreds of edges
per process with little difficulty due the low overhead of our tracing
library and the efficiency of LP solvers, whereas existing ILP for-
mulations have only solved instances of tens of edges, which limits
analysis to only two MPI processes and a single message exchange.

Figure 6 lists the constraints that make up the fixed-vertex order
formulation. Equation (10) provides a lower bound on power at
each event as the sum of task power for active tasks at that event;
recall that tasks are considered active at an event if they start at
or are running at the time of the event in an initial schedule. The
vertex/event power is the key variable that enables us to constrain
job-level power consumption, and Equation (10) establishes its def-
inition. Equation (11) restricts each vertex/event power to be un-
der the job-level power constraint, and, in combination with the
event and task ordering constraints, ensures our goal of optimiz-
ing power-constrained performance. Equations (12) and (13) keep
events in their initial order with respect to time. Without Equa-
tions (12) and (13), we would be unable to guarantee that the job-
level power constraint is respected because arbitrary tasks could
overlap in time, and such an overlap may result in higher power
consumption than the fixed event order.

3.4 Flow ILP
As detailed in Section 3, our LP/ILP formulations are based on

a DAG derived from the application. The flow ILP depends on
an additional DAG to account for power consumption. The power
DAG closely tracks the application DAG, but also includes edges
that depend on a sequencing relationship between tasks (x). In ef-
fect, the ILP solver ensures that power flows forward in time from
an artificial power source vertex at time zero (vertex 0) to an artifi-
cial power sink vertex (vertex N + 1) at the end of the application
(that is, after the last MPI process reaches MPI_Finalize). By

Init

Finalize

Isend

Wait

Recv

E
xc

e
ss

 p
o
w

e
r

Power source

Power sink

Figure 7: An example overlay of application (black) and power
flow (red) DAGs in the flow formulation.

limiting the power input to the power DAG and carefully constrain-
ing how that power is used, we ensure that the resulting application
schedule never violates its power constraint. Figure 7 shows an
example.

In contrast to our LP formulation, which fixes event order, the
flow formulation requires the ILP solver to determine event or-
der. Much of the complexity in solving flow formulation instances
arises from the size of the x space; a small two-rank application
DAG could result in 2100 possible x states. For this reason, we fo-
cus on the linear, fixed-vertex order formulation in this paper. The
Appendix contains a detailed description of the flow-based, ILP
formulation.

While the flow ILP formulation is practically limited to solving
small (i.e. fewer than 30 DAG edges) problems, our LP formula-
tion reaches equivalent schedules on a synthetic benchmark over a
range of power constraints. The results are shown in Figure 8. For
all but three of the 106 power limits tested, the two formulations
agree on the application schedule time to within 1.9%. Under the
power limits in which the fixed-order and flow formulations dis-
agree, it is clear that providing less than a watt of additional power
to the fixed-order formulation would allow it to achieve an equiva-
lent schedule.

4. POWER-ALLOCATION ALGORITHMS
We use our LP formulation to evaluate the effectiveness of two

contemporary power-allocation algorithms presented in our previ-
ous work [19]. The first is a simple static allocation, and the second
is a run-time system called Conductor. They are described in turn
below.

4.1 Static: Fixed, Uniform Power Allocation
The simplest method to allocate per-node power is to distribute

application-level power equally between the nodes, which we term
Static; this method has been used effectively in production clusters
within the U.S. Department of Energy. In Intel Xeon processors,

●●

●●●

● ●

●

● ●

●

● ●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

35 40 45 50 55 60

2
4

6
8

10
12

14
Flow vs. Fixed−Vertex Order

Total Power (w)

S
ch

ed
ul

e
T

im
e

(s
)

● Fixed
Flow

Figure 8: Comparison of flow and fixed-vertex order formu-
lations on a two-process asynchronous message exchange. Re-
sults from both formulations in all cases beyond 60w are within
1.9% of each other.

power can be capped at the socket level with RAPL by writing the
desired power limit to a hardware register [8, 13]. RAPL runs as a
control algorithm in firmware that operates asynchronously with re-
spect to the application and selects DVFS states. Because RAPL is
implemented in firmware, it is unable to change application concur-
rency levels or other user-level or OS-level configuration options
that may affect power and performance. To maximize performance
for most applications, we fix the thread concurrency level at eight
per processor, which is the number of hardware cores. Static serves
as a baseline in our experiments.

4.2 Conductor: Adaptive Power Allocation
To overcome the limitations of RAPL and to reduce load im-

balance, we use an adaptive power-allocation algorithm, Conduc-
tor [19], that periodically changes, based on application behavior
and the current power constraint, processor frequency and thread
count. Conductor consists of two major components: a configura-
tion exploration step, which selects the optimal thread concurrency
level for individual computation tasks under the power limit; and, a
power reallocation step, which intelligently re-assigns power based
on per-process power usage. The following subsections briefly de-
scribe these components.

A typical time step may involve several computation operations,
each of which may run optimally at a different configuration. Be-
cause RAPL can only scale the processor frequency (via DVFS and
clock modulation), Conductor must select the optimal configura-
tion for each computation operation. In order to select the optimal
configuration, Conductor records the power and performance pro-
file of each computation operation at all possible configurations.
To reduce the run-time overhead of exploring all configurations,
Conductor runs several configurations in parallel by assigning a
unique configuration to each MPI process and collecting the pro-
filed information at the end of the time step. The profiling itself is
implemented transparently to the application through the MPI Pro-

filing Interface. Using the profiled information, Conductor creates
a list of power-efficient configurations (that are Pareto-efficient) for
each computation operation. During application execution, a new
node-level power limit may be assigned, at which time Conductor
will select the new optimal configuration under the updated power
constraint.

In the second step, Conductor monitors power usage per MPI
process, estimates the critical path of the application, and reallo-
cates power to speed up the critical path. Conductor first deploys
Adagio [22] to reduce power consumption in non-critical computa-
tion operations by selecting a low-power configuration that finishes
computation without perturbing the critical path of the application.
After Adagio has slowed non-critical operations to free up power,
critical operations run at or near their process-level power con-
straint, while processes with no (or very few) critical tasks do not
use all of their power allocation. Such a situation may be caused by
load imbalance inherent to the application, or differences in power
efficiency between individual processors. Conductor takes advan-
tage of the difference in power usage to speed up the application by
reallocating power between processes without violating the con-
straint. Conductor performs the power reallocation step at the end
of several time steps demarcated using MPI_Pcontrol1, which
we assume has been added by the user.

5. EXPERIMENTAL SETUP

5.1 System and Setup
All experiments were performed on Cab, a 1296-node Xeon E5-

2670 cluster at LLNL with an InfiniBand QDR interconnect. Each
cab node is composed of two 8-core processors and 32 GB of DRAM.

We use the same number of active cores for OpenMP regions be-
tween consecutive MPI calls; that is, we only change the number
of active threads at task boundaries, which are demarcated by MPI
calls. This mirrors previous work by Li et al. [18]; the reason for
making this restriction is that our dynamic selection of OpenMP
concurrency (i.e., dynamic concurrency throttling, or DCT) poten-
tially reduces the effectiveness of caching. Changing the number
of active cores between two parallel regions temporarily increases
the rate of cache misses.

5.2 Benchmarks and Tools
We analyzed and validated our optimizations and runtime power

reallocation systems on CoMD, LULESH 2.0, and SP and BT from
NAS-MZ. These benchmarks were designed to exhibit performance
and scaling behavior typical of applications of interest to the US
Department of Energy, and LULESH was used in evaluation of
bids for the CORAL series of machines [1]. All benchmarks were
tested with 32 MPI processes across 32 8-core processors, using
up to 256 cores at a time. We modified all benchmarks to include
MPI_Pcontrol calls at iteration boundaries to simplify LP data
processing and help Conductor identify application phases.

CoMD [2] is a molecular dynamics benchmark. CoMD is unique
among our tested benchmarks in that all of its MPI communication
is in the form of collectives. As a result, the only task that remains
for the LP solver or power reallocation algorithm is to minimize
load imbalance by reallocating power between ranks at every col-
lective call.

LULESH 2.0 [16] is a shock hydrodynamics benchmark. In
terms of MPI communication, LULESH differs from CoMD in that

1MPI_Pcontrol is part of the MPI profiling interface and allows
application instrumentation to be communicated to tools built on
top of the MPI Profiling interface.

it relies on a multitude of point-to-point messages between collec-
tive calls. This behavior complicates analysis of opportunities to re-
allocate power, but we show in Section 6 that Conductor achieves
performance that closely tracks near-optimal, LP-derived perfor-
mance, trailing by only 5.1% in the average case.

NAS-MZ [27] is an adaptation of the NAS Parallel Benchmarks
[4] to the MPI + OpenMP paradigm. The NAS benchmarks were
originally designed to be representative of computations and data
movement in fluid dynamics applications.

5.3 Comparisons
To demonstrate that contemporary algorithms have much room

for improvement, we compare our LP results with those of Static
and Conductor. Because the flow ILP formulation is limited to
solving small problem instances (i.e., fewer than 30 application
DAG edges), we compare only the fixed-vertex order LP results
to our power reallocation algorithm and uniform static power con-
straints.

Conductor requires a configuration exploration phase to find con-
figurations on the power-time Pareto frontier for all tasks in a given
application. In our comparisons, we discard the first three iterations
of every application, which roughly corresponds to the configura-
tion exploration phase; we assume that applications will run for
enough iterations to amortize the cost of the exploration phase.

6. EVALUATION AND RESULTS
In this Section, we compare the LP-derived schedules with Static

and Conductor. In summary, we find that current power realloca-
tion systems such as Conductor can significantly improve power-
constrained performance over Static, but in some cases trail opti-
mal, LP-derived schedules by up to 41.1%. Conductor closely fol-
lows LP-derived schedules in some applications, though it incurs
a small performance degradation compared to Static (maximum of
2.6%) in some cases. Conductor improves performance by an aver-
age of 6.7% over Static, while the LP indicates an average of 10.8%
potential improvement from Static to an optimal schedule.

If only the configuration selection is performed (but not power
reallocation), there is less overhead than Conductor, but also lower
performance due to the use of uniform power allocation. In gen-
eral, the reason Conductor trails the LP schedules in performance
is not the communication overhead, at least at the scales tested in
this paper. The reasons we found to be significant are thrashing in
the per-rank power allocation (which induces load imbalance) and
configuration switching overhead.

6.1 Validation
To verify that our LP and ILP schedules are realizable and within

their power constraints, we replay them on their originating bench-
marks by selecting a configuration for each task according to the
LP/ILP-derived schedule. As the application encounters each MPI
call, our replay mechanism changes the configuration appropriately
for the next computation task according to the prescribed schedule.

Changing configurations between every pair of tasks introduces
significant overhead, especially for applications composed primar-
ily of short tasks. To counteract this, we only change configurations
if the schedule indicates that the upcoming task will be of sufficient
duration to justify the overhead. We use a threshold of 1ms for this
purpose.

6.2 Overheads
As we instrument every instance of many MPI calls, our pro-

filer incurs some overhead. The median measurement overhead
is 34 microseconds per MPI call, and adds less than 0.05% time

30 40 50 60 70 80

BT
CoMD
LULESH
SP

LP vs. Static

Average Power per Processor Socket (w)

P
ot

en
tia

l I
m

pr
ov

em
en

t (
%

)

0
10

20
30

40
50

60
70

Figure 9: Potential speedup of LP-derived schedules vs. Static.
Some benchmarks were not able to be scheduled at the lowest
average per-socket power constraint.

to the tested applications. When replaying LP-derived schedules,
our runtime makes DVFS transitions between tasks. These incur
additional overhead, resulting in a median per-task overhead of
145 microseconds. For the runtime power reallocation algorithms,
all power allocation decisions are made synchronously at applica-
tion MPI_Pcontrol calls, with an average overhead of 566 mi-
croseconds per invocation. This overhead is amortized across it-
erations, as power allocation decisions are made after every 5-10
MPI_Pcontrol calls.

6.3 Results Overview
Across all benchmarks, we find that Static lags the near-optimal

LP performance by up to 74.9%. However, this varies across bench-
marks and power constraints; in some cases, Static is completely
sufficient, as the LP-derived schedule shows no benefit. The LP
schedule’s indication of potential performance improvement is de-
rived primarily from two features: (1) selection of Pareto-efficient
configurations for all tasks and (2) frequent adjustment of per-process
power allocation to benefit tasks on the critical path. The LP op-
timizes these two features simultaneously, resulting in higher per-
formance than is achievable by both Static and Conductor unless
perfect knowledge of the system and applications exists. Nonethe-
less, we conclude that the naive Static approach is effective in a
surprising number of situations, including some nontrivial applica-
tions (e.g., CoMD).

The largest advantages of the LP schedules over Static are gener-
ally at low per-processor power constraints, which can be observed
in Figure 9. Such low power constraints may be encountered when
a job scheduler prioritizes other co-scheduled jobs, or when a user
runs a completely memory-bound application. The advantage of
the LP is due the LP schedules’ non-uniform power allocation and
optimal configuration selection. In the Static schedules, MPI pro-
cesses are restricted to eight threads at low frequency, whereas the
LP schedule selects more power-efficient configurations and allo-
cates enough power to critical tasks to run fewer threads at higher
frequency and voltage while minimizing load imbalance. Except
for SP, this is also true for individual benchmarks; the greatest

30 40 50 60 70 80

BT
CoMD
LULESH
SP

LP vs. Conductor

Average Power per Processor Socket (w)

P
ot

en
tia

l I
m

pr
ov

em
en

t (
%

)

0
10

20
30

40

Figure 10: Potential speedup of LP-derived schedules vs. Con-
ductor. Some benchmarks were not able to be scheduled at the
lowest average per-socket power constraint.

gains come at the lowest power constraint. This behavior results
in a 35.6% potential speedup over Static for LULESH at 40 watts
per MPI process and a 74.9% potential speedup over Static for BT
at 30 watts per MPI process.

Figure 10 shows potential improvement in Conductor [19]. Rel-
ative to the LP, Conductor’s performance is uncorrelated with power
constraints. Regardless, the performance of Conductor is close to
the optimal results derived from LP schedules in many cases; for
CoMD, SP, and LULESH, the performance of Conductor is within
4.2% of the LP schedules. In one case in CoMD and one case in
LULESH, Conductor and the LP arrived at equivalent schedules.

6.4 Individual Benchmarks
In the following discussion of benchmark results, we emphasize

that the LP improvement vs. Static is potential improvement, as the
LP is not an online runtime system. The Conductor improvement,
however, is demonstrated performance improvement over Static.

For applications with minimal load imbalance, our LP-derived
schedules show limited benefit over Static at power constraints above
30 watts per processor. The LP-derived schedules for CoMD (see
Figure 11) show up to 12.6% potential performance improvement
for Static, with the median 4.6% and the minimum 2.4%. On
the other hand, Conductor is extremely close to the LP schedules
(within 3%). At an average of 30 watts per processor (see Fig-
ure 12), the LP allocates power between ranks such that the longest
task takes about 1.2s and many tasks use more than 30 watts, yet
the job-level power constraint is not violated. In contrast, Static is
limited to 30 watts on every socket, which triggers RAPL to se-
lect lower DVFS states on some sockets, leading task times rou-
tinely above 1.3s and as high as 1.47s. Both the LP and Static
select 8 threads per processor in this case, while Conductor selects
7 threads per processor for less than 1% of long-running (> 0.5s)
tasks and allocates up to 32 watts per processor in contrast to the
LP’s 36 watts. As a result, Conductor trails optimal performance
by 1% in this case.

For BT with an average of 30 watts per processor, our LP-derived
schedules indicate that Static trails optimal performance by 75%

30 40 50 60 70 80

LP
Conductor

CoMD Improvement
vs. Static

Average Power per Processor Socket (w)

Im
pr

ov
em

en
t (

%
)

0
2

4
6

8
10

12

Figure 11: Performance comparison of LP and Conductor
vs. Static for CoMD.

●

●

●●● ●●

●●

●
●

● ●

●

●
●

●

●

●●

●●●●

●

●
●● ●●
●

●

●

●

●

●

●
●●

●●

● ●
● ●

●

● ●● ●
●●

●●

●

●

●● ●
●

●

●
●

●

●

●

●

●

● ●●

●●

●●● ●

●

● ●● ●●●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●●

●
●

●
●●

●

●

●

●●
●

●●

●●●
●

●●
●
● ●●●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

● ●●

●

●
●

●
●● ●

●

● ●
●

●

●●●

●

●

●

●

●●●

●

●
●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

● ●

●

●
●● ●
●●

●●●●

●

● ●●●●●
●

●

●

●

●

●
●●

●

●

●
●● ●

●●
●● ●●●

● ●● ●

●
●

●
● ●●●●

●

●

●
●●

●
●

●
●

● ●● ● ●● ●
● ●●●

● ●●●

●● ●●

●

●●●

●

●

●

●

● ●
●

●●

●
●●

●

●

●

●● ●●●

● ●●●

●

● ●
●

●

●

●●

●

●
●●

●
●

●

●●

●
●

● ●

●

● ●
●

●

●●

● ●
●

●

●● ●● ●

●

●●

●

●

●

●

● ●

●

●

●

●
●● ●

●

● ●●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●● ●●

●

●●●

●

●

●●
● ●

●

●

●

● ●●

●

●

● ●
●

●

●●

●

●
●●

●● ●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●● ●

●

●

● ●
●

●

●
● ●● ●

●

●

●

●

● ●
●

●
●●

●

●

●
●●
●

●

● ●● ●●●

● ●●●

●● ●●

●

●●●

●

●

●

●

●●●

●

●

●
●●
● ●●

●
● ●●●

●

●● ●

●

● ●●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●● ●●

●

●
●● ●

●

● ●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

● ●●

●

●●

●
●● ●

●
●

●●

●

●●●

●

●

●

●

● ●●

●

●

●●●

●●

● ●●

●

●
●

● ●

●

●

●● ●●
●●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●● ●●
●
●

●

●

●

● ●●

● ●
●

●

●

●
●● ●

●●

●●
●

●
●

●

●

●

●

●● ●● ●●●

●

●

●

●

●

● ●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●● ●

●●

●

●

●

●

●

●
●●

●

●

● ●● ●

●

● ●
●

●
●●

●

●

●●

●● ●●

●

●●●

●

● ●

●● ●
●

●

●

●
●●

●

●

● ●●

●

●●

●

●●●

●

● ●
● ●●●

●

●

●

●

●

● ●●

●

●

●●
● ●

●

● ●● ●●●

●

●●●

●

● ●
●

● ●

●
●

●

●

●

●

● ●
●

●

●

●●● ●

●●

●● ●●
●

●

●

●

●

●

●
●

●

●

●●
●

●

● ●●

● ●●

●

●

● ●●

●●

● ●●
●

●●

● ●●
●

●

●
●

●●●

●

●

●

●
●●●

●

●

●

●

●
●● ● ●● ●●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●●

●●

● ●●

●

●●

●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●
●●

●

●

●
●● ●

●

● ●●
●●●

●

●

●●

●

● ●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

● ●●

●

●●

●●●
●

●
●

●●
●●

●

●

●

●
●●

● ●

●

●

●

● ●●

●

●

● ●● ● ●●

●

● ●

●

●

● ●● ●●

●●

●

●

●

●

● ●●

●
●

● ●
● ●

●

●
●● ●

●
●

●

●●●

●

●
●
●

●●
●

●

●

●
●●

● ●

●●

●

● ●
● ●

●

●
●●
●●

●

●
●●●

●
●

●
● ●●●●

●

●

●

●

● ●

●

●

●

● ●●
●●

●

●
● ●●●

●

●

●●

●
● ●● ●●●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●● ● ●●

●

●●●

●●
●●
●
●

●

●

●

●

●●

●

●
●

●

●

● ●
●

●●

●
●

●
●●●

●●●●

●

● ●●

●

●●●

●

●

●

●

● ●

●

●

●

● ●
● ● ●

●

●
● ●

●●

● ●● ●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●

● ●●

●

●

●

●●
●

●●

●

●● ●

●

● ●●
●●●

●

●

●
●

●
● ●●

●

●

●
●●

●●

●
●●
●

●●

●

●●
●

●● ●
●

●

●●●

●

●

●

●

● ●●

●

●

●
●

● ● ●● ●● ●

●

●

● ●

●

●

●
● ●

● ●
●

●●

●

● ●

●
● ●

●

●

●

● ●● ●

●

● ●●

●

●●

● ●
●●

●

● ●
●
●●

●●

●

●
●●

● ●●

●

●

● ●●
●

●

● ●●
●

●●

●
●

●●

●

● ●●
●●

●●

●

●

●

●

● ●

●

●

●

●
●● ●

●

●

●
●

●
●●

●

●

●●

●
●

●
●

●

●●
●

●

●

●

●

● ●●

●

●

●
●

●
●

●●
●

●
● ●

●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

● ●

●

●

●

● ●●
●

●

●
●

●
●●●

●
●

●

●

●● ●
●

●●●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●
●●

●

●
●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●
●● ●

●

●

●●● ●

●● ●●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●●

●●

●
●● ●●●

●

●

● ●

●

●
●●

●

●●●

●

●

●
●● ●●

●

●

● ●
● ●

●

●
●

●
● ●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●●
●●
●●

●

●

●

●●

●
● ●●

●●
●●

●

●

●●
● ●●

●

●

● ●● ●

●●

●● ●●●

●●●●

●● ●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●●

●●● ●
●

●

●●

●

●

●●

●● ●
●

● ●●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●●
●●

●

●
●

●

●● ●

●●

●

●

● ●

●●

●

●

●

●

● ●
●

●

●

●
●● ●●●

●● ●
●

●

● ●●●

●

● ●
● ●
●●●

●

●

●

●

● ●●

●

●

● ●●

●

●
●

●● ●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

● ●●

●

●

● ●●

●

●

● ●●
●●

●

●

●

●

●

●● ●● ●●●●

●

● ●●

●
●

●

●

●

● ●● ●●
●

●● ●
●

●

●

●

●●

●

●

●● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●
●

●

● ●
●
●

●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●● ●●
● ●

●

●

●

●

●

●
● ●● ●●

●

●

●

●

●●● ●

●

●

●

● ●●

●●

●
●● ● ●

●

●
●

●●

●● ●●

●

●●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●
●

●●

●
●

●

●
●
●

●●●
●

●

●

●●●
●

●

●

●

●

●

● ●●●
●

●

●

●●

●
●

●

●

●●
●●

●●
●●

●

●

●●

●

●

●

●●

● ●

●

●

●
● ●

● ●
●●

● ●●
●

●

●
●
● ●●
●

●

●

●

●

●

●
●●

●

●

●
●●
●

●

● ●
● ● ●
●

●

●

●

●

●
● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●●

●

●

●
●●

●
●

●●

●

●●● ●

●

●
●

● ●

●

●

●
●

●●

●
● ●● ●●

●●

●

●

●

●

● ●●

●

●

●
●

●
●●● ●●

●
●

●

●

●

● ●

●

●
●

● ●
●
●

●

●

● ●●

● ●●

●

●

●
●●

●●

● ●
●

●●

●●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●● ● ●
●

●●

●
●

●
●

●● ●●●
●

●

●

●

●

● ●

●

●

●

●
●●

●●

● ●● ●
●●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●
●● ●●

●
●●

●

●
●

● ●●
●

●
● ●●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
● ●

● ●
●

●

●
●

●
●●

●

●● ●●●●

●

●

●

●
●●

● ●●

●
●

● ●●

●

●● ●●

●

●

●

●

●

●●

●

●
●● ●

●

●●

●

● ●●

●
●●

●

●

●
●

● ●●
●

●● ●
●

●

●
●

●

●

●

●
●●

● ●●

●

●

●

●●
● ●●

●

●

●
●●

●

●
●

●● ● ●●

●

●

●

●

●●
●●●

●

●●

●

●

●

●

●
●●

●●

● ●● ●

●●

●● ●
●

●

● ●
●●

●● ●
●

●

●●
●

●

●

●

●

● ●●

●

●

● ●
● ●

●

●
●●

●

●

●

●

●

● ●

●● ●●
●●●

●

●

● ●
●

●
●●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●● ●

●
● ●●

●

●●

●

●

●
●●

● ●●

●

●

●
●●

●●

● ●●

●

●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

● ●●
●●●

●● ●●●

●

●
●

●

●

● ●● ●●●●

●

●

●

●

●
●●

●●

●
●

● ●

●

● ●
● ● ●●

●●●●

●
● ●●

●

●
●

●

●

●

●●● ●●

●

●

●
●●

●●● ●●
● ●●

●●● ●

●
●

●
●

●●
●●

●

●

●

●

● ●●

●

●

●
●● ●

●

● ●
● ●

●

●

●

●

●
●

●

● ●
● ●

●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●●

● ●● ●

●

●

●

●

●
●

●● ●● ●
●●

●

●

●

●

●

●

●●

●

●

● ●
● ●●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●
●●

● ●●

●●

●

●

● ●
●●

●
●

● ●

●
●
●● ●

●●
●●

●

●

●

●

●

● ●
●

● ●●

●●

●
●●
●●● ●●

●

●●

● ●●●

●

● ●●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●●

● ●

●

● ●●●

●

● ●●

●

●●
●

●

● ●
●

●

●●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●● ●● ●●●
●

●

●

●

●●
●●

●

●

● ●● ●●● ●● ●●
●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●

●
●●

●
●

●
●

● ●

●

● ●
● ●●●

● ●

●

●

●● ●●

●

●
●

●

●

● ●●

●
●

●

●

●

● ●
●

●

●● ●● ●●
●

●

●● ●

●

●
●

●

●

●●●

●

●

●

●

●
●●

●

●

●
●● ●

●

●
●

● ● ●●

●

●●
●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●●
●

●
●

●
●

● ●
●●

●
●

●
●

● ●

●
●

28 30 32 34 36

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

CoMD Task Characteristics

Power (w)

D
ur

at
io

n
(s

)

● LP
Static
Limit

Figure 12: Task duration vs. power for long-running (> 0.5s)
tasks in 100 iterations of CoMD at an average per-socket power
constraint of 30 watts.

and Conductor by 24% (Figure 13). These improvements are due
to the ability of the LP and Conductor to create nonuniform power
allocations across ranks, mitigating load imbalance. By allocat-
ing power to processes on the critical path, the LP and Conductor
are able to choose high-performance configurations where Static
would not. RAPL causes Static to run some processors at 22% of
their maximum clock frequency while using eight threads per pro-
cessor, while the LP and Conductor are able to run fewer threads
at higher frequencies, resulting in higher performance. At higher
power constraints, the three methods are within 4.8% of each other.

SP, a scalar pentadiagonal solver from the NAS-MZ benchmark
suite, presents a challenge for Conductor and shows little room
for improvement via the LP (Figure 14). Conductor frequently
misidentifies the critical path, inappropriately reducing the power
allocation to specific processes. This leads to an average of 1.5%
slowdown compared to Static. In the worst case, at an average of
60 watts per processor, Conductor trails Static by 2.6%. The over-
head of DVFS transitions and associated logic accounts for 14%

30 40 50 60 70

LP
Conductor

BT Improvement
vs. Static

Average Power per Processor Socket (w)

Im
pr

ov
em

en
t (

%
)

0
10

30
50

70

Figure 13: Performance comparison of LP and Conductor
vs. Static for BT.

40 50 60 70 80

LP
Conductor

SP Improvement
vs. Static

Average Power per Processor Socket (w)

Im
pr

ov
em

en
t (

%
)

−
2

−
1

0
1

2
3

Figure 14: Performance comparison of LP and Conductor
vs. Static for SP.

of this difference, adding an average of 17 microseconds per task.
The overhead of power reallocation, at 566 microseconds per iter-
ation, accounts for another 5.1% of the difference. The remaining
difference is entirely attributable to Conductor inducing load im-
balance between ranks by selecting suboptimal configurations for
a subset of tasks in many iterations, thus increasing the time to
solution. Overall, it is clear that a runtime system (Conductor be-
ing no exception) intended to optimize performance under a power
constraint must take care to avoid degrading performance of load
balanced programs.

Applied to LULESH, the LP indicates significant (>14%) room
for improvement for Static at all tested job-level power constraints.
Conductor is able to achieve 99% of the optimal performance in-
dicated by the LP in all cases (Figure 15) and arrives at the LP’s
schedule under an average per-processor power constraint of 50
watts. Table 3 details a single iteration of this 50-watt case. In
this particular iteration, Conductor and LP achieve similar time
to completion by choosing five OpenMP threads per MPI process,
which results in higher performance via lower cache contention and
higher average CPU frequencies (because more power can be allo-
cated to each core) for these strategies. Static selects eight OpenMP
threads, which limits average CPU frequency and decreases perfor-
mance vs. five threads, perhaps due to cache contention. Conduc-

40 50 60 70 80

LP
Conductor

LULESH Improvement
vs. Static

Average Power per Processor Socket (w)

Im
pr

ov
em

en
t (

%
)

0
5

10
20

30

Figure 15: Performance comparison of LP and Conductor
vs. Static for LULESH.

tor and the LP also reduce load imbalance by allowing nonuniform
power allocation between processes, as indicated by the “standard
deviation of power” column in Table 3.

Median Std. Dev. Median
Method time power Threads frequency
Static 4.889 0.009 8 0.8834
Conductor 3.614 0.118 5 0.9942
LP 3.611 0.125 4-5 1.0

Table 3: Task characteristics for a single iteration of LULESH
at 1350w (average of 50 watts per processor), considering only
long-running (>= 1s) tasks. Median frequency is with respect
to the maximum non-boosted clock frequency supported by the
processor.

7. RELATED WORK
The most related work to ours is focused on saving energy with-

out increasing execution time in HPC applications using linear pro-
gramming [23]. The difference between their work and ours is (1)
they assume a flat MPI model, whereas our hybrid MPI + OpenMP
model makes the problem significantly more complicated, and (2)
their work is focused on bounding energy consumption, whereas
our work is focused on bounding performance under a power con-
straint.

Several run-time systems focused on minimizing energy-delay
product (EDP) or saving energy with modest time increase. These
systems included Adagio [22], CPU-Miser [12], AVG [11], and
Jitter [15]. Li et al. [18] was the first to consider hybrid MPI +
OpenMP programs, where the goal was to minimize the energy-
delay product. These systems all leveraged load imbalance or mem-
ory (sometimes both) to allow a reduction of CPU frequency with
small performance degradation.

Several have worked at power-constrained performance optimiza-
tion at the run-time system level. A first step is to optimize perfor-
mance for a single, power-constrained node. The work by Isci et
al. [14] optimized performance under a power bound on a single
multicore node, and in previous work [5], we did the same for a
heterogeneous (CPU+GPU) node. Our work on Conductor uses
a run-time system to choose configurations as well as reallocate
power (described in detail in Section 4) [19].

Symbol Description
E′

ij vertex precedence; 1 if ∃ edge from vertex i to j
fij power flow from task i to task j
TE transitive closure of E
TE′ transitive closure of E′

xij sequencing; 1 if task i finishes before task j starts
A0 A ∪ 0

AN+1 A ∪ {N + 1}
A′ A ∪ {0, N + 1}

Table 4: Additional symbols used in ILP formulation and their
definitions.

There is other work in improving (but not optimizing) cluster
performance under a power bound, especially on overprovisioned
HPC clusters. This includes an empirical study on the effect of
different configurations [20] and choosing configurations via inter-
polation [25]. There has also been work on scheduling algorithms
to improve performance under a power bound [9, 10, 24, 21].

8. CONCLUSIONS
By demonstrating upper bounds on power-constrained hybrid

MPI + OpenMP application performance, we have shown that cur-
rent runtimes are leaving some performance on the table and wast-
ing power. In our tests, we found that an optimal power realloca-
tion and configuration selection algorithm can achieve up to 41.1%
more performance than existing algorithms, and that requiring con-
figurable node-level parallelism such as OpenMP in addition to
MPI goes a long way towards the goal of flexible power and per-
formance management. However, in most cases, our Conductor
runtime is quite close to the near-optimal performance as indicated
by our LP. In some cases, Conductor even achieves optimal sched-
ules as identified by the LP.

The ability to efficiently manage power at runtime will become
increasingly important with future generations of supercomputers,
which will require new power-aware runtimes. Our work in this
paper provides the necessary goalposts and realistic targets for any
future runtime to compare against.

9. APPENDIX: FLOW ILP
The flow-based ILP formulation adds two sets of variables over

the common equations in Figure 4: x, the sequence variables, and
f , the power flow variables; Figure 16 contains constraints neces-
sary for integrating these two variable sets into the flow formula-
tion, and Table 4 lists the additional symbols. In contrast to the LP
formulation, the ILP formulation treats slack separately from com-
putation tasks. Specifically, the boundary between a computation
task and its associated slack is generally treated the same as any
other vertex in the application DAG, and slack power is no longer
assumed equal to its corresponding task power. The ILP formu-
lation assigns a specific power consumption to all slack based on
observed slack power on our test system.

The sequence variables x are binary (14), and represent both task
precedence inherent in the application (15, 18) and task sequencing
determined by the solver for the optimal schedule (16, 17). Specif-
ically, (15) represents all precedence information present in the ap-
plication DAG, (18) prevents a task from depending on itself, (16)
requires that either task i depends on task j, j depends on i, or nei-
ther. (17) is a transitivity requirement; in effect, if xij and xjk, then
xik. (19-22) ensure that slack time is allocated appropriately; (19)
and (21) force edges to start immediately after their source vertex’s
dependencies are completed, while (20) and (22) force edges with

xij ∈ {0, 1} ∀(i, j) ∈ A′ (14)
xij = 1 ∀(i, j) ∈ TE (15)

xij + xji <= 1 ∀(i, j) ∈ A′2 (16)

xik >= xij + xjk − 1 ∀(i, j, k) ∈ A′3 (17)

xii = 0 ∀i ∈ A′ (18)

xij = 0 ∀(i, j) ∈ A′2 | (src(j), src(i)) ∈ TE′ (19)

xij = 0 ∀(i, j) ∈ A′2 | (dest(j), dest(i)) ∈ TE′ (20)

xij = 0 ∀(i, j) ∈ A′2 | src(i) = src(j) (21)

xij = 0 ∀(i, j) ∈ A′2 | dest(i) = dest(j) (22)

sj − si >= −Mij + (di +Mij)xij ∀(i, j) ∈ A′2 (23)
d0 = dN+1 = 0 (24)

p0 = pN+1 = PC (25)

fij >= 0 ∀(i, j) ∈ A′2 (26)

fij <= min(pi, pj)xij ∀(i, j) ∈ A′2 (27)∑
j∈A′

fij = pi ∀i ∈ A0 (28)

∑
i∈A′

fij = pj ∀j ∈ AN+1 (29)

Figure 16: Additional constraints in the flow ILP.

destination vertices of multiple in-degree to finish simultaneously
with their destination vertex time. (23) uses the sequence variables,
x, as indicator variables to enforce a schedule-specific version of
(3); in effect, if task j starts after task i finishes in the schedule un-
der evaluation, then (23) becomes (3), ensuring proper task spacing
in time. Otherwise, (23) is always true.

Equations (24) and (25) refer to two special edges added to the
power DAG. Edge 0 is added prior to the first application vertex
(i.e. MPI_Init), while edge N + 1 is added after the last applica-
tion vertex (MPI_Finalize). These edges act as a source and sink,
respectively, for power, and limit the total instantaneous power con-
sumed by the application to a specific quantity. (26) and (27) estab-
lish lower and upper constraints, respectively, on power flow edges
in the power DAG. (27) sets flow between tasks i and j to 0 if xij

is 0, and the minimum of pi and pj otherwise. Together, (27-29)
establish that the power entering and leaving an application DAG
edge is equal to the power required to execute that edge in the ap-
plication under the current schedule.

10. REFERENCES
[1] Coral benchmark codes.

https://asc.llnl.gov/CORAL-benchmarks.
Accessed: 2015-01-13.

[2] Comd. https://github.com/exmatex/CoMD, 2013.
[3] C. Artigues, O. Koné, P. Lopez, and M. Mongeau.

Mixed-integer linear programming formulations. In
C. Schwindt and J. Zimmermann, editors, Handbook on
Project Management and Scheduling Vol.1, International
Handbooks on Information Systems, pages 17–41. Springer
International Publishing, 2015.

[4] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, et al. The NAS parallel benchmarks summary

and preliminary results. In Supercomputing, pages 158–165,
1991.

[5] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree,
M. Schulz, and B. R. de Supinski. Adaptive configuration
selection for power-constrained heterogeneous systems. In
International Conference on Parallel Processing, volume 43,
2014.

[6] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Pack
& cap: adaptive dvfs and thread packing under power caps.
In Proceedings of the 44th annual IEEE/ACM international
symposium on microarchitecture, pages 175–185. ACM,
2011.

[7] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos,
B. de Supinski, and M. Schulz. Prediction models for
multi-dimensional power-performance optimization on many
cores. In International Conference on Parallel Architectures
and Compilation Techniques, 2008.

[8] H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and C. Le.
RAPL: Memory power estimation and capping. In
ACM/IEEE International Symposium on Low Power
Electronics and Design, pages 189–194. ACM, 2010.

[9] M. Etinski, J. Corbalan, J. Labarta, and M. Valero.
Optimizing job performance under a given power constraint
in hpc centers. In Green Computing Conference, 2010
International, pages 257–267. IEEE, 2010.

[10] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Linear
programming based parallel job scheduling for power
constrained systems. In High Performance Computing and
Simulation (HPCS), 2011 International Conference on,
pages 72–80. IEEE, 2011.

[11] M. Etinski, J. Corbalan, J. Labarta, M. Valero, and
A. Veidenbaum. Power-aware load balancing of large scale
mpi applications. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages
1–8. IEEE, 2009.

[12] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU Miser:
A performance-directed, run-time system for power-aware
clusters. In ICPP, 2007.

[13] Intel. Intel-64 and IA-32 Architectures Software Developer’s
Manual, Volumes 3A and 3B: System Programming Guide,
2011.

[14] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a
given power budget. In IEEE/ACM International Symposium
on Microarchitecture, pages 347–358, 2006.

[15] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time
dynamic voltage scaling: Exploiting inter-node slack to save
energy in MPI programs. In Supercomputing, Nov. 2005.

[16] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates and
changes. Technical Report LLNL-TR-641973, Lawrence
Livermore National Laboratory, August 2013.

[17] O. Koné, C. Artigues, P. Lopez, and M. Mongeau.
Event-based milp models for resource-constrained project
scheduling problems. Computers & Operations Research,
38(1):3–13, 2011.

[18] D. Li, B. de Supinski, M. Schulz, K. Cameron, and
D. Nikolopoulos. Hybrid MPI/OpenMP power-aware
computing. In IEEE International Parallel and Distributed
Processing Symposium, pages 1–12, 2010.

[19] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree,
M. Schulz, and B. R. de Supinski. A run-time system for

power-constrained HPC applications. In International
Supercomputing Conference, 2015.

[20] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R.
de Supinski. Exploring hardware overprovisioning in
power-constrained, high performance computing. In
Proceedings of the 27th international ACM conference on
International conference on supercomputing, pages
173–182. ACM, 2013.

[21] T. Patki, A. Sasidharan, M. Melarth, D. K. Lowenthal,
B. Rountree, M. Schulz, and B. de Supinski. Practical
resource management in power-constrained, high
performance computing. In High-Performance Distributed
Computing, June 2015.

[22] B. Rountree, D. K. Lowenthal, B. de Supinski, M. Schulz,
and V. W. Freeh. Adagio: Making DVS practical for complex
HPC applications. In International Conference on
Supercomputing, Yorktown Heights, N.Y., USA, June 2009.

[23] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R.
de Supinski, and M. Schulz. Bounding energy consumption
in large-scale MPI programs. In Supercomputing, 2007.
SC’07. Proceedings of the 2007 ACM/IEEE Conference on,
pages 1–9. IEEE, 2007.

[24] O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing
throughput of overprovisioned hpc data centers under a strict
power budget. In Supercomputing, 2014.

[25] O. Sarood, A. Langer, L. Kalé, B. Rountree, and
B. De Supinski. Optimizing power allocation to cpu and
memory subsystems in overprovisioned hpc systems. In
CLUSTER, 2013.

[26] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing
technology challenges. In High Performance Computing for
Computational Science–VECPAR 2010, pages 1–25.
Springer, 2011.

[27] R. F. vanderWijngaart and J. Haopiang. Nas parallel
benchmarks, multi-zone versions. 2003.

