
Graph Theoretic Software Watermarks:

Implementation, Analysis, and Attacks?

Christian Collberg, Andrew Huntwork, Edward Carter, and Gregg Townsend

The University of Arizona
{collberg,ash,ecarter,gmt}@cs.arizona.edu

Abstract. This paper presents an implementation of the novel water-
marking method proposed by Venkatesan, Vazirani, and Sinha in their
recent paper A Graph Theoretic Approach to Software Watermarking.
An executable program is marked by the addition of code for which the
topology of the control-flow graph encodes a watermark. We discuss is-
sues that were identified during construction of an actual implementation
that operates on Java bytecode. We measure the size and time overhead
of watermarking, and evaluate the algorithm against a variety of attacks.

1 Introduction

This paper builds upon and elaborates a software watermarking scheme proposed
by Venkatesan, Vazirani, and Sinha in A Graph Theoretic Approach to Software

Watermarking [21]. We will refer to that paper as VVS and to its watermarking
scheme as GTW. The present paper contributes:

– The first public implementation of GTW
– An implementation that operates on Java bytecode
– An example of an error-correcting graph encoding
– The generation of executable code from graphs
– Several alternatives for marking basic blocks
– Extraction (not just detection) of a watermark value
– Empirical measurements of an actual GTW implementation
– Experimental analysis of possible attacks

Graph theoretic watermarking encodes a value in the topology of a control-

flow graph, or CFG [1]. Each node of a CFG represents a basic block consisting
of instructions with a single entry and a single exit. A directed edge connects
two basic blocks if control can pass from one to the other during execution. The
CFG itself also has a single entry and a single exit.

A watermark graph W is merged with a target program’s graph P by adding
extra control-flow edges between them. Basic blocks belonging to W are marked

to distinguish them from the nodes of P . These marks are later used to extract
W from P + W during the recognition process. The GTW process is illustrated
in Figure 1.

? Information Hiding 2004, LNCS 3200, pp. 192–207, c©Springer-Verlag 2004.

� �

int gcd (int x , y){
while (x%y!=0){

t=x%y ;
x=y ;
y=t ;}

return y ;
}

� �

+

� �

void watermark (){
i f (true)

return

else

return

}
� �

a©
⇒

� �

int gcd (int x , y){
while (x%y !=0){

watermark();

t=x%y ;
x=y ;
y=t ;}

return y ;
}

� �

+ b©
⇔

√

√√

P
F

P W P + W

Fig. 1. Overview of graph theoretic watermarking. In a© the code for watermark W is
merged with the code for program graph P , by adding fake calls from P to W . In b©
the same process is shown using a control-flow graph notation. Part b© also shows how
the mark is later recovered by separating the marked (

√
) nodes of W from P with

some tolerance for error.

The VVS paper hypothesizes that naively inserted watermark code is weakly
connected to the original program and is therefore easily detected. Weakly con-
nected graph components can be identified using standard graph algorithms and
can then be manually inspected if they are few in number. Such inspection may
reveal the watermark code at much lower cost than manual inspection of the full
program.

The attack model of VVS considers an adversary who attempts to locate a
cut between the watermark subgraph and the original CFG (dashed edges in
Figure 1). The GTW algorithm is designed to produce a strongly connected
watermark so that such a cut cannot be identified. The VVS paper proves that
such a separation is unlikely. More formally, the GTW algorithm adds edges
between the program P and the watermark W in such a way that many other
node divisions within P have the same size cut as the division between P and
W .

We have implemented the GTW algorithm in the framework of SandMark [4],
a tool for experimenting with algorithms that protect software from reverse en-
gineering, piracy, and tampering. SandMark contains a large number of obfus-
cation and watermarking algorithms as well as tools for manually and automatic
analysis and reverse engineering. SandMark operates on Java bytecode. It can
be downloaded for experimentation from sandmark.cs.arizona.edu.

2

Our implementation of GTW, which we will call GTWSM , is the first publicly
available implementation of the GTW algorithm and this paper is the first empir-
ical evaluation of the algorithm. We have found that GTW can be implemented
with minimal overhead, a high degree of stealthiness, and with relatively high
bit-rate. Error-correcting graph techniques make the algorithm resilient against
edge-flip attacks, in which the basic blocks are reordered, but it remains vul-
nerable to a large number of other semantics-preserving code transformations.
GTW’s crucial weakness is its reliance on the reliable recognition of marked ba-
sic blocks during watermark extraction. We are unaware of any block marking
method that is invulnerable to simple attacks.

The remainder of this paper is organized as follows. Section 2 surveys related
work. Section 3 presents an overview of our implementation, and Sections 4 and 5
describe the embedding and recognition algorithms in detail. Section 6 evaluates
GTW with respect to resilience against attacks, bit-rate, and stealth. Section 7
discusses future work.

2 Related Work

Davidson and Myhrvold [10] published the first software watermarking algo-
rithm. A watermark is embedded by rearranging the order of the basic blocks
in an executable. Like other order-based algorithms, this is easily defeated by a
random reordering.

Qu and Potkonjak [17, 14] encode a watermark in a program’s register allo-
cation. Like all algorithms based on renaming, this is very fragile. Watermarks
typically do not survive a decompilation/recompilation step. This algorithm also
suffers from a low bit-rate.

Stern et al. [20] use a spread-spectrum technique to embed a watermark. The
algorithm changes the frequencies of certain instruction sequences by replacing
them with equivalent sequences. This algorithm can be defeated by obfuscations
that modify data-structures or data-encodings and by many low-level optimiza-
tions.

Arboit’s [2] algorithm embeds a watermark by adding special opaque predi-
cates to a program. Opaque predicates are logical expressions that have a con-
stant value, but not obviously so [8].

Watermarks are categorized as static or dynamic. The algorithms above are
static markers, which embed watermarks directly within the program code or
data. Collberg and Thomborson [5] proposed the first dynamic watermarking
algorithm, in which the program’s run-time behavior determines the watermark.
Their algorithm embeds the watermark in the topology of a dynamically built
graph structure constructed at runtime in a response to a particular key input
sequence. This algorithm appears to be resilient to a large number of obfuscating
and optimizing transformations.

Palsberg et al. [16] describe a dynamic watermarker based on that algorithm.
In this simplified implementation, the watermark is not dependent on a key input
sequence, but is constructed unconditionally. The watermark value is represented

3

as a planted planar cubic tree. Palsberg et al. found the CT algorithm to be
practical and robust.

3 An Overview of GTWSM

Our implementation of GTW operates on Java bytecode. Choosing Java lets us
leverage the tools of the SandMark and BCEL [9] libraries, and lets us attack
the results using SandMark’s collection of obfuscators. Like every executable
format, Java bytecode has some unique quirks, but the results should be generally
applicable.

The GTW embedding algorithm takes as input application code P , water-
mark code W , secret keys ω1 and ω2, and integers m and n. GTWSM uses a
smaller and simpler set of parameters. Values of m and n are inferred from P ,
W , and ω1. The clustering step (Section 4.4) is unkeyed, so ω2 is unused. Thus,
our implementation takes as input application code P , a secret key ω, and a
watermark value.

The GTWSM embedding process proceeds through these steps:

1. The watermark value v is split into k values, {v0, . . . , vk−1} (Section 4.1).
2. The split values are encoded as directed graphs {G0, . . . , Gk−1} (Section 4.2).
3. The generated graphs are converted into CFGs {W0, . . . , Wk−1} by generat-

ing executable code for each basic block (Section 4.3).
4. The application’s clusters are identified (Section 4.4).
5. The watermark is merged with the application by adding control-flow edges

to the graphs (Section 4.5).
6. Each basic block is marked to indicate whether it is part of the watermark

(Section 4.6).

The recognition process described in VVS has three steps: detection of wa-
termark nodes, sampling of subsets of the watermark nodes, and computation of
robust properties of these subsets. The set of robust property values composes
the watermark. The process is as follows:

1. Marked nodes of the program CFG are identified (Section 5.1).
2. The recognizer selects several subsets of the watermark nodes for decoding

(Section 5.2).
3. Each subset is decoded to compute a value, and the individual values are

combined to yield the watermark (Section 5.3).

4 Embedding

The construction of a watermark graph W is not discussed in VVS. In GTWSM

we accept an integer value for transformation into a watermark CFG. The recog-
nition process performs the inverse transformation from CFG to integer.

The embedding process involves several steps: splitting the watermark value
into small integers; constructing directed graphs that encode these values; gen-
erating code that corresponds to the graphs; and connecting the code to the
program.

4

Foot

Head

0 1 2 3 4

Body

Fig. 2. Reducible permutation graph of the integer value 8

4.1 Watermark Value Splitting

GTWSM splits a watermark value v into a multiset S of k integers, k ≥ 2.
Empirically, we have determined that values of k between 5 and 15 produce
watermark methods that are neither overly large nor overly numerous.

A watermark value v is split as follows:

1. Compute the minimum exponent l such that v can be represented using k−1
digits of base 2l.

2. Split the value v into digits v0, v1, . . . , vk−2 such that 0 ≤ vj < 2l and

v =
∑k−2

j=0
2jlvj .

3. Encode the digits in the multiset {s0, s1, ..., sk−1} where s0 = l − 1 and
si = si−1 + vi−1.

For a concrete example, consider splitting a watermark value of 31415926
with k = 10. The minimum radix is 8, so l = 3. This produces a list vi of 6, 6,
1, 7, 5, 6, 7, 6, 1 and finally the multiset {2, 8, 14, 15, 22, 27, 33, 40, 46, 47}.

4.2 Encoding Integers as Graphs

Each integer is converted into a graph for embedding in the application. Several
issues must be considered when choosing a graph encoding:

1. The graph must be a digraph (a directed graph) for use as a CFG.
2. The graph must have the structure of a valid CFG. It should have a header

node with in-degree zero and out-degree one from which every node is reach-
able, and it should have a footer node with out-degree zero that is reachable
from every node.

3. The graph should have a maximum out-degree of two. Basic block nodes
with out-degrees of one or two are easily generated using standard control-
structures such as if- and while-statements. Nodes with higher out-degree
can only be built using switch-statements. These are relatively unusual in
real code, and hence conspicuous.

4. The graph should be reducible [1], because true Java code produces only
reducible graphs. Intuitively, a CFG is reducible if it is compiled from prop-
erly nested structured control constructs such as if- and while-statements.

5

More formally, a reducible flow graph with root node r has edges that can be
split into an acyclic component and a component of backedges, where each
backedge (u, v) has the property that every path from r to u passes through
v. In this case, v is said to dominate u.

5. The control structures represented by the graph should not be deeply nested,
because real programs seldom nest deeply.

In GTWSM each part of the split watermark is encoded as a reducible per-

mutation graph, or RPG [3]. These are reducible control-flow graphs with a
maximum out-degree of two, mimicking real code. They are resilient against
edge-flip attacks and can be correctly decoded even if an attacker rearranges the
basic blocks of a method.

An RPG is a reducible flow graph with a Hamiltonian path consisting of four
pieces (see Figure 2):

A header node: The root node of the graph having out-degree one from which
every other node in the graph is reachable. Every control-flow graph has such
a node.

The preamble: Zero or more additional initial nodes from which all later nodes
are reachable. Any node in the body can have an edge to any node in the
preamble while preserving reducibility.

The body: The set of nodes used to encode a value. Edges within the body,
from the body to the preamble, and from the body to the footer node encode
a permutation that is its own inverse.

A footer node: A node with out-degree zero that is reachable from every other
node of the graph. This node represents the method exit.

There is a one-to-one correspondence between self-inverting permutations and
isomorphism classes of RPGs, and this correspondence can be computed in poly-
nomial time. An RPG encoding a permutation on n elements has a bitrate of at
least 1

4
lg n − 0.62 bits per node [3].

For encoding integers we use only those permutations that are their own
inverses, as this greatly reduces the need for a preamble. An integer n is en-
coded as the RPG corresponding to the nth self-inverting permutation, using
the enumeration of Collberg et al. [3].

4.3 Generating Code from a Graph

A graph is embedded in an application by building a set of instructions that have
a corresponding CFG. We want to generate code (in this case Java bytecode)
that is stealthy, executable, and efficient. In VVS it is expected that watermark
code be connected to the application by means of opaque predicates, and hence
never executed. This leaves the watermarked application open to tracing attacks.
In GTWSM , we generate executable watermark code that has no semantic effect
on the program.

Given a graph, our code generator produces a static method that accepts an
integer argument and returns an integer result. Tiny basic blocks that operate on

6

an integer are chosen randomly from a set of possibilities to form the nodes in the
graph. The basic blocks are connected as directed by the graph, using conditional
jumps and fall-through paths whenever possible. When used in combination with
a graph encoder that mimics genuine program structures (such as our RPG
encoder), the result is a synthetic function that is not obviously artificial.

If the graph has at least one leaf node (representing a return statement) then
the generated function is guaranteed to reach it, so the function can safely be
called. Furthermore, the generator can be instructed to guarantee a positive,
negative, zero, or nonzero function result, allowing the function call to be used
in an opaque predicate.

4.4 Clustering

GTW includes a clustering step before the edge addition step to increase the
complexity of the graphs to which edges are added. If edges are added directly
to control flow graphs, few original nodes will have more than two out-edges or a
small number of in-edges, and high-degree nodes generated by edge adding will
be conspicuous. The clustering step allows complex graphs to occur stealthily.
VVS specifies a clustering step that proceeds by

Partition[ing] the graph G into n clusters using ω as a random seed, so
that edges straddling across clusters are minimized (approximately).

VVS also states that

The clustering step (2) must have a way to find different clusterings for
different values of ω, so that the adversary does not have any knowledge
about the clustering used.

With Java bytecode, edges can be added only within methods or to entry
points of other (accessible) methods. This constrains the usable clusterings. For-
tunately, the natural clustering of basic blocks into Java methods is suitable for
our needs. The proven difficulty of separating W from P does not rely on keyed
clustering, so we have chosen in GTWSM to simply treat each Java method as a
cluster.

Each node in the cluster graph then represents an application or watermark
method, and an edge between two nodes represents a method call. This cluster-
ing scheme is very likely to approximately minimize the number of edges between
clusters, since two basic blocks in the same method are much more likely to be
connected than two basic blocks in different methods. This scheme also allows
us to implement edge addition stealthily, efficiently, and easily. We were un-
able to identify any substantially different clustering scheme with both of these
properties.

4.5 Adding Control-Flow Edges

The GTW algorithm adds edges between clusters using a random walk, with
nonuniform probabilities designed to merge the watermark code indistinguish-
ably into the program. This process begins by choosing a random start node

7

n, then repeatedly choosing another node l, creating an edge between n and l,
and finally setting n = l. This process proceeds until m edges have been added
between P and W .

To ensure that watermark code is not trivially detected as dead code, we then
continue randomly adding edges until no watermark method has degree zero.

VVS does not address the issue of choosing m. Our implementation chooses
m to make the average degree of the watermark nodes approximately the same
as the average degree of the application nodes as follows.

Let p be the number of program clusters and w be the number of watermark
clusters. Set qp = p−1

p+w−1
and qw = w−1

p+w−1
. Let e be the number of edges in the

original cluster graph. Then set

m =
4ew(1 − qw)(1 − qp)

p(2 − qw)(1 − qp) − w(2 − qp)(1 − qw)
. (1)

Within the watermark cluster graph, qw is the probability that the next node
chosen in the random walk will also be a watermark node. The probability that
one edge-ending is added to watermark nodes is 1− qw, qw(1− qw) for two edge-
endings, q2

w(1 − qw) for three, and so on. The expected number of edge-endings
to be added to watermark nodes before leaving to original program nodes is then
Ew =

∑
∞

n=1
nqn−1

w (1 − qw) = 1

1−qw
.

Similarly, qp is the probability that the next node chosen after a cluster from
the original program is another cluster from the original program. We obtain
the analogous value Ep = 1

1−qp
for the expected number of edge-endings to be

added to program nodes before leaving for watermark nodes.
For every two cross edges added, we expect to add 1 + Ew edge-endings

to watermark nodes and 1 + Ep edge endings to program nodes. Let m = 2k.
Since we want the average degree to be the same in original program nodes and
watermark nodes, we have the formula

k(1 + Ew)

w
=

2e + k(1 + Ep)

p
. (2)

Solving (2) for m gives (1).
Because each method is a cluster, adding an edge from cluster A to cluster

B means inserting code into method A that calls method B. The generated wa-
termark methods are pure functions, so they can be executed without affecting
program semantics. Therefore, the added method calls to watermark methods
can actually be executed. However, application code may have arbitrary side
effects, so the edge adding process must not change the number or order of
executions of application methods. Therefore, added application method invo-
cations are protected with opaquely false predicates to ensure that they are not
actually executed. Additionally, application methods may be declared to throw
checked exceptions. Preparing for and catching checked exceptions requires the
addition to A of several blocks other than the method call block.

Also as a result of making each method a cluster, not every edge can be
created. For example, private methods from different classes cannot call each

8

other. In this case, the edge is simply not created and the process continues
normally.

4.6 Marking Basic Blocks

Each basic block that corresponds to a node of the watermark must be individ-
ually marked for later recognition. The VVS paper does not provide an actual
algorithm, but suggests that

one may store one or more bits at a node that flags when a node is
in W by using some padded data after suitable keyed encryption and
encoding.

For marking purposes, the contents of a block can be changed as long as the
modified code is functionally equivalent to the original. Here are some examples
of possible block markers:

1. Add code that accomplishes no function but just serves as a marker, for
example by loading a value that is never used or writing to a value that has
no effect on overall program behavior.

2. Count the number of instructions in a block, and use the parity as a mark.
Add a no-op instruction, or make a more subtle change, to alter the mark.

3. Count accesses of static variables to determine a mark. Add variables and
accesses as necessary to produce the desired results.

4. Compute a checksum of the instructions and use one or more bits of that as
a mark. Alter the code as necessary to produce desired results.

5. Transform the instruction sequence in each block to a canonical form, then
vary it systematically to encode marks.

6. Add marks in the meta-information associated with each block. For example,
alter or create debugging information that associates code locations with
source line numbers.

All of these marking methods are easily defeated if an adversary’s goal is to
disrupt the watermark without necessarily reading it. We are not aware of any
robust block marking technique; this remains an unsolved problem.

For our implementation we have adopted the checksum technique, computing
the MD5 digest [18] of each block. Only instruction bytes and immediate constant
values, such as those in bipush, contribute to the digest value. This makes the
digest insensitive to some simple changes such as reordering of the Java “constant
pool”.

A block is considered marked if the low-order two bits of the checksum are
zero. We expect, then, to alter 3

4
of the blocks in the watermark set but only 1

4

of the other blocks to get the right results. A real application will have many
more application blocks than watermark blocks, so this is a desirable imbalance.

Marking is keyed by concatenating a secret value to the instruction sequence
before computing the MD5 digest. The set of marks cannot be read, nor can it
be counterfeited, without knowing the key.

9

5 Recognition

The recognition process in VVS has three steps: detection of watermark nodes,
sampling of subsets of the watermark nodes, and computation of robust proper-
ties of these subsets. The set of robust property values composes the watermark.

5.1 Node Detection

A basic block that is part of the watermark code can be detected by computing
its MD5 digest, as described in Section 4.6. A digest value ending in two zero
bits indicates a mark. Attacks on the watermarked program may change the
digest value of some blocks, but our recognizer uses “majority logic” to recover
from isolated errors. If 60% of the blocks in a method are marked, the recognizer
treats all the blocks in that method as marked. If fewer than 40% of the blocks
are marked, all are considered unmarked. If the number is between 40% and
60%, the recognizer tries both possibilities.

5.2 Subset Sampling

GTW specifies that after the watermark nodes have been detected, several sub-
sets of them should be sampled. GTWSM uses method control flow graphs as
samples, and every watermark node is contained in exactly one sample set, in
particular, the control flow graph it belongs to.

5.3 Graph Decoding

The recognition process attempts to decode each sampled method control flow
graph as a Reducible Permutation Graph [3] that encodes an integer. A valid
RPG can be decoded into a self-inverting permutation. The decoder proceeds
by first computing the dominance hierarchy of the graph and, once the graph
is verified to be reducible, finding the unique Hamiltonian path in the graph.
This Hamiltonian path imposes an order on the vertices, after which decoding
the graph into a self-inverting permutation is relatively straightforward, as laid
out in [3].

Each graph’s permutation is mapped back to an integer, using the same
enumeration as in Section 4.2. The combined set of integers S is combined to
produce single integer v, the watermark. This calculation is as follows:

1. Let k = |S|. Write S as {s0, s1, . . . , sk−1}, where s0 ≤ s1 ≤ · · · ≤ sk−1.
2. Set l = s0 + 1. For each 0 ≤ j ≤ k − 2, set vj = sj+1 − sj .

3. Then v =
∑k−2

j=0
2jlvj .

5.4 Use in Fingerprinting

Because the recognizer returns a specific watermark value, as opposed to just a
success/failure flag, GTWSM can be used for fingerprinting. This is a technique
where each copy of an application program is distributed with its own unique
watermark value, allowing pirated copies to be traced back to a specific original.

10

6 Evaluation

Most software watermarking research has focused on the discovery of novel em-
bedding schemes. Little work has been done on their evaluation. A software
watermarking algorithm can be evaluated using several criteria:

Data rate: What is the ratio of size of the watermark that can be embedded
to the size of the program?

Embedding overhead: How much slower or larger is the watermarked appli-
cation compared to the original?

Resistance to detection (stealth): Does the watermarked program have sta-
tistical properties that are different from typical programs? Can an adversary
use these differences to locate and attack the watermark?

Resilience against transformations: Will the watermark survive semantics-
preserving transformations such as code optimization and code obfuscation?
If not, what is the overhead of these transformations? How much slower or
larger is the application after enough transformations have been applied that
the watermark no longer can be recognized?

6.1 Data Rate and Embedding Overhead

A watermark of any size can be embedded in even the smallest of programs using
this algorithm. Larger watermarks merely require larger watermark graphs, or
a larger number of them, thus incurring larger overhead in terms of increased
code size.

For non-trivial programs, there is little relationship between watermark size
and code growth, as illustrated in Figure 3. Block marking and edge addition
add code that proportional to the size and complexity of the application, not
the watermark. For watermarks up to 150 bits, size increases varying between
40 and 75 percent were measured.

CaffeineMark [19] benchmark results show the effect of watermarking on
execution time. Some programs were not affected significantly, while others took
20 to 36 percent longer, as shown in Table 1.

Table 1. CaffeineMark scores before and after embedding a watermark

Category Original Watermarked Slowdown

Sieve 8676 6876 20.7%
Loop 25636 16344 36.2%
Logic 20635 13231 35.9%
String 19481 20198 -3.6%
Float 18657 18646 0%

Method 19106 12783 33.1%

Overall 17719 13816 22.0%

11

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

 0 20 40 60 80 100 120 140 160 180

In
cr

ea
se

 in
 c

od
e

si
ze

Watermark bits

Fig. 3. Increase in code size for the machineSim program

6.2 Stealth

Some common attacks against watermarking systems, such as manual attacks
and subtractive attacks, begin by identifying the code composing the watermark.
To resist such attacks, watermarking could should be stealthy: It should be
indistinguishable from the host code. Two useful measures of stealth are the
similarity of the watermark code to the host code and the similarity of the
watermark code to general application code.

GTWSM introduces several new artificially-generated methods to an appli-
cation. These methods are not stealthy in two respects. First, these methods
include a very high percentage of arithmetic operations. While general Java
bytecode includes approximately 1% arithmetic instructions, the methods in-
serted by GTWSM contain approximately 20% arithmetic instructions. Second,
the control flow graphs of the inserted methods are all reducible permutation
graphs. While RPGs are designed to mimic the structure of real control flow
graphs, only 2 of 3236 methods in the SpecJVM benchmarking suite have con-
trol flow graphs that are RPGs. Therefore, RPGs are not stealthy if an attacker
is looking for them.

GTWSM currently introduces unstealthy code to implement edge addition
between clusters. Edges between application methods are protected using the
particularly conspicuous opaque predicate if (null != null). Also, GTWSM

passes a constant for each argument to the called function; real code is more
likely to compute at least one of its arguments.

6.3 Semantics-Preserving Attacks

Automated attacks are the most serious threat to any watermark. Debray [13,
12, 11] has developed a family of tools that optimize and compress X86 and
Alpha binaries. BLOAT [15] optimizes collections of Java class files. SandMark

implements a collection of obfuscating code transformations that can be used to
attack software watermarks.

12

We first tested the robustness of GTWSM on a Java application machineSim

which simulates a Von Neumann machine. Various SandMark obfuscations
were applied to see if a watermark could survive. The watermark was success-
fully recognized after inlining, register re-allocation, local variable merging, array
splitting, class inheritance modification, local variable splitting, and many oth-
ers. It was destroyed by primitive boxing, basic block splitting, method merging,
class encryption, and code duplication. These types of transformations are de-
scribed in [6–8].

Method merging makes such large changes to control-flow graphs that there
is really no hope of recovering the watermark value. Primitive boxing changes
the instructions in many basic blocks in a method, and thereby changes the
marks on the blocks. Code duplication and basic block splitting add nodes to
the control flow graph of a method. While RPGs can survive some kinds of
attacks on edges, they cannot survive node additions.

The attack model considered in VVS is a small number of random changes
to the watermarked application. We have implemented an obfuscation that ran-
domly modifies a parameterized fraction of blocks in a program. If fewer than
about half of the blocks in a watermarked application are modified, the wa-
termark survives. If more than that are modified, the watermark cannot be
recovered.

6.4 False Positive Rates

For our implementation to detect a spurious watermark in an unmarked appli-
cation, the application would have to have at least two methods with acceptable
control-flow graphs in which the majority of basic blocks would produce MD5
digests with two low-order zero bits. The probability of finding a mark in a single
basic block is only 1

4
. We examined a large group of methods from real programs

and found the probability of a control-flow graph being a valid RPG to be 0.002.
While there is a possibility of finding an RPG with only two or three nodes
where all the nodes are marked in a real program, choosing watermark values
from a sufficiently sparse set should be enough to prevent false positives.

7 Discussion and Future Work

Our implementation of the GTW watermarking system is fully functional and
reasonably efficient. It is resilient against a small number of random program
modifications, in accordance with the threat model assumed by VVS.

The system is more vulnerable to pervasive changes, including several ob-
fuscations implemented in the SandMark system. Such vulnerabilities stem
from issues left unaddressed by the VVS paper. These and other areas provide
opportunities for future work.

Static marking of basic blocks is the fundamental mutation applied by the
watermarker. Development of a robust marking method, capable of withstanding
simple program transformations, is still an unsolved problem.

13

Another area of great potential is the encoding of values as graph structures.
In particular, the development of other error-correcting graphs, as postulated by
VVS, would greatly increase the strength of a watermark.

More sophisticated generated code and opaque predicates would improve the
stealthiness of a watermark.

Implementations of GTW for other architectures besides Java would un-
doubtedly prove enlightening, because they would be likely to supply somewhat
different challenges and opportunities.

One key feature of GTW is the algorithm for connecting new code represent-
ing a watermark into an existing application. This algorithm also adds branches
within the pre-existing code and is interesting in its own right as a means of
obfuscation. This also has potential for further research.

8 Summary

We have produced a working implementation of the Graph Theoretic Watermark
described by Venkatesan et al. [21]. The implementation is faithful to the paper
within the constraints of Java bytecode, and includes necessary components
that were left unspecified by the original paper. While the GTW design protects
against detection, its fundamental dependence on static block marking leaves
watermarked programs vulnerable to distortive attacks.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Tech-
niques, and Tools. Addison-Wesley, 1986. ISBN 0-201-10088-6.

2. Geneviève Arboit. A method for watermarking Java programs via opaque pred-
icates. In The Fifth International Conference on Electronic Commerce Research
(ICECR-5), 2002.

3. Christian Collberg, Edward Carter, Stephen Kobourov, and Clark Thomborson.
Error-correcting graphs. In Workshop on Graphs in Computer Science (WG’2003),
June 2003.

4. Christian Collberg, Ginger Myles, and Andrew Huntwork. SandMark — A tool
for software protection research. IEEE Magazine of Security and Privacy. To
appear.

5. Christian Collberg and Clark Thomborson. Software watermarking: Models and
dynamic embeddings. In In Conference Record of POPL ’99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Jan.
1999), 1999.

6. Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report 148, Department of Computer Science,
University of Auckland, July 1997. http://www.cs.auckland.ac.nz/~collberg/

Research/Publications/CollbergThomborsonLow97a.
7. Christian Collberg, Clark Thomborson, and Douglas Low. Breaking abstractions

and unstructuring data structures. In IEEE International Conference on Computer
Languages, ICCL’98, Chicago, IL, May 1998. http://www.cs.auckland.ac.nz/

~collberg/Research/Publications/CollbergThomborsonLow98b/.

14

8. Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Principles of Programming Languages
1998, POPL’98, San Diego, CA, January 1998. http://www.cs.auckland.ac.nz/
~collberg/Research/Publications/CollbergThomborsonLow98a/.

9. Markus Dahm. Byte code engineering. In The Scientific German Java Conference,
September 1999. ftp://ftp.inf.fu-berlin.de/pub/JavaClass/paper.ps.gz.

10. Robert L. Davidson and Nathan Myhrvold. Method and system for generating
and auditing a signature for a computer program. US Patent 5,559,884, September
1996. Assignee: Microsoft Corporation.

11. Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler
techniques for code compaction. ACM Transactions on Programming Languages
and Systems, 22(2):378–415, March 2000.

12. Saumya Debray, Robert Muth, Scott Watterson, and Koen De Bosschere. ALTO:
A link-time optimizer for the Compaq Alpha. Software — Practice and Experience,
31:67–101, January 2001.

13. Saumya Debray, Benjamin Schwarz, Gregory Andrews, and Matthew Legendre.
PLTO: A link-time optimizer for the Intel IA-32 architecture. In Proc. 2001 Work-
shop on Binary Rewriting (WBT-2001), September 2001.

14. Ginger Myles and Christian Collberg. Software watermarking through register
allocation: Implementation, analysis, and attacks. In International Conference on
Information Security and Cryptology, 2003.

15. Nathaniel Nystrom. Bloat – the bytecode-level optimizer and analysis tool. http:
//www.cs.purdue.edu/homes/whitlock/bloat, 1999.

16. Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, and
Yi Zhang. Experience with software watermarking. In Proceedings of ACSAC ’00,
16th Annual Computer Security Applications Conference, pages 308–316, 2000.

17. G. Qu and M. Potkonjak. Analysis of watermarking techniques for graph col-
oring problem. In IEEE/ACM International Conference on Computer Aided
Design, pages 190–193, November 1998. http://www.cs.ucla.edu/~gangqu/

publication/gc.ps.gz.
18. Ronald Rivest. The MD5 message-digest algorithm. http://www.ietf.org/rfc/

rfc1321.txt, 1992. The Internet Engineering Task Force RFC 1321.
19. Pendragon Software. Caffeinemark 3.0. http://www.pendragon-software.com/

pendragon/cm3/, 1998.
20. Julien P. Stern, Gael Hachez, Francois Koeune, and Jean-Jacques Quisquater. Ro-

bust object watermarking: Application to code. In Information Hiding, pages
368–378, 1999.

21. Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph theo-
retic approach to software watermarking. In 4th International Information Hiding
Workshop, Pittsburgh, PA, April 2001.

15

