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Abstract. Problems in simultaneous graph drawing involve the lay-
out of several graphs on a shared vertex set. This paper describes a
Graph Simultaneous Embedding Tool, GraphSET, designed to allow the
investigation of a wide range of embedding problems. GraphSET can
be used in the study of several variants of simultaneous embedding in-
cluding simultaneous geometric embedding, simultaneous embedding with
fixed edges and colored simultaneous embedding with the vertex set par-
titioned into color classes. The tool has two primary uses: (i) studying
theoretical problems in simultaneous graph drawing through the pro-
duction of examples and counterexamples and (ii) producing layouts of
given classes of graphs using built-in implementations of known algo-
rithms. GraphSET along with movies illustrating its utility are available
at http://graphset.cs.arizona.edu.

1 Introduction

Drawing multiple graphs simultaneously is a problem motivated by its appli-
cations in bioinformatics, social sciences, and software engineering. The large
networks defined by multiple relationships make using a single layout impracti-
cal. Instead, such networks can be viewed from different perspectives according
to the particular structure, behavior, or scale of interest. When looking for com-
mon patterns and substructures among the heterogeneous representations of the
same data it is essential to preserve the “mental map” of the user. A natural way
to accomplish this is to have common vertices and edges laid out in a similar
manner throughout the various layouts.

Simultaneous embedding problems are difficult to solve and require extensive
manipulation of different instances in order to gain insight. A useful tool is one
that allows for the dynamic manipulation of common vertices while accounting
for how the edge crossings in each graph can change. In addition, having the
ability to visualize each graph separately or as a whole while simultaneously
manipulating each graph can allow one to solve complex problems. Finally, hav-
ing built-in implementations of algorithms related to simultaneous embedding
can also aid in further research.

* This work was supported in part by NSF grants CCF-0545743 and ACR-0222920.
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Fig. 1. An overview of the GraphSET system.

Our Graph Simultaneous Embedding Tool, GraphSET meets the above goals,
allowing the manipulation of up to eight graphs simultaneously with the capa-
bility of displaying each graph separately in its own window. This is an essential
feature that has enabled us to solve several simultaneous embedding problems.

A related tool is the Interactive Multi-User System for Simultaneous Graph
Drawing [15]. Tt only considers simultaneous geometric embedding of two graphs
and the emphasis is on collaboration with the aid of the DiamondTouch device
[3]. Another related tool that can be used to obtain simultaneous drawings of
graphs using force-directed methods is described in [5].

2 System Architecture

Figure 1 gives a high-level overview of the system architecture of GraphSET.
The user can introduce commands using the GUI (menus, dialog boxes, toolbar,
etc.) or directly manipulating the view (Graph Editor). When the user makes
modifications, they are done in the document (graph data structures, applica-
tion settings, etc.) and those changes are reflected on every active view of the
document. When the modifications are done from the view (such as moving a
vertex) the document is modified and reflected back in all active views. The
document can be loaded/saved in the file system. Algorithms are called from
the document. Some algorithms (such as drawing or recognition) only reflect
temporary modifications directly in the view (animation, for example).

Dashed boxes represent plugin components that include customized views
(such as a 3D view we have used for studying 3D morphing). The other dashed
box corresponds to third-party libraries that can be hooked into the algorithms
module via a proxy. For example, we have proxies for LEDA [16] and OGDF
(the Open Graph Drawing Framework available at http://www.ogdf .net). Al-
gorithms from these libraries are called through these proxies. Overlapping boxes
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Fig. 2. Example of a simultaneous geometric embedding of five paths: blue path is
solid in (a), red is dashed in (b), green is dash-dotted in (c), cyan is light-solid in (d)
and yellow is light-dashed in (e). The SGE of all 5 paths is shown in (f).

represent several views of the same type in the document. This allows for the dif-
ferent graph views in which to work with a simultaneous embedding; see Fig. 2.
Features like toggling the grid, snapping, and visibility of a given edge set are
properties of the graph editor view allowing each to have individual settings.

3 Preliminaries

We begin with a few definitions to clarify the various problems of interest.

Two n-vertex graphs G1(V1, E1) and Go(Va, Es) have a simultaneous embed-
ding with mapping if, given a bijection f : V4 — V5, each graph can be drawn
in the plane R? without crossings such that for all v € V4 and f(v) € Vo, v and
f(v) are represented by the same point in their respective drawings. If f is not
given, but this can be done for some bijection, then G; and G2 are simultane-
ously embeddable without mapping. Unless indicated otherwise, a simultaneous
embedding (SE) refers to one with mapping.

A simultaneous geometric embedding (SGE) consists of a simultaneous em-
bedding in which only straight-line edges are used. Simultaneous embedding with
fized edges (SEFE) is less restricted since edges are drawn with simple curves and
common, or fized edges, use the same curve. Clearly, SGE C SEFE C SE.

The problem of colored simultaneous embedding (CSE) is a generalization of
simultaneous embedding with mapping in which each V; is strictly partitioned
into k colors with respect to a k-coloring of a pointset P. Each vertex of a given
color can be mapped to a point of the same color. When k = n this is equivalent
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Fig. 3. Layouts of ULP trees: (a) caterpillar, (b) radius-2 star, and (c) degree-3 spider.

to simultaneous embedding with mapping, and when k£ = 1, to simultaneous
embedding without mapping. Figure 2 is an example of five 5-colored paths on
ten vertices in which there are 5 - 2% = 160 possible mappings, one of which is
shown.

Finding simultaneous embeddings with paths drawn monotonically uses a
restricted form of planarity, called level planarity. Only one of the Cartesian co-
ordinates is allowed to change when attempting to find a crossings-free drawing.

An undirected level graph G(V, E, ¢) has a labeling ¢ : V — [1..k] assigning
each vertex to one of k levels so that ¢(u) # ¢(v) for every edge (u,v). This
prevents any pair of adjacent vertices from being in the same level. In a level
drawing all the vertices of the same level share the same y-coordinate, placed
along a horizontal track, and each edge is drawn strictly y-monotone. If G can
still be drawn planarly, then G is level planar, otherwise, G is level non-planar.
Any level planar drawing with bends has one without bends [4]. Hence, adding
edge bends does not affect the level planarity of a graph.

If G is level planar over all possible labelings, then G is unlabeled level planar
(ULP). In [6], ULP trees were characterized as consisting of three classes of trees:
(i) caterpillars (the removal of vertices that have degree-1 yields a path or an
empty graph); (ii) radius-2 stars (any number of paths of length one or two that
all share a common endpoint), and (iii) degree-3 spiders (three paths that share
a common endpoint); see Fig. 3.

4 Applications

In this section, we describe several successful uses of GraphSET. First, we discuss
how GraphSET has been used in working with ULP trees [6] and a related
problem on colored trees. Second, we consider a pair of trees whose union is
homeomorphic to complete graph K, for n > 3 for which there is a pair without
a SGE [10]. Third, we discuss how GraphSET has aided in verifying gadgets of
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Fig. 4. Layouts of (a) a 25-level caterpillar and (b) a 6-level caterpillar.

reductions used to show that deciding whether a graph pair has a SGE is NP-
hard and whether a graph triple has a SEFE is NP-complete [7,9]. Finally, we
show how GraphSET can be used to find CSE counterexamples, as in [2].

4.1 TUnlabeled Level Planar Trees

When there are more vertices than levels, caterpillars are the only class of trees
that remains ULP. This allows GraphSET to draw any caterpillar without cross-
ings; see Fig. 4. When there is exactly one vertex per level, GraphSET can also
provide level planar layouts of the other two classes of ULP trees; see Fig. 5.

GraphSET also implements the ULP recognition algorithms that highlight
the ULP trees by their class. If the graph is not ULP, a subgraph homeomor-
phic to one of the forbidden ULP trees is highlighted as the user modifies the
graph; see Fig. 6. GraphSET has been instrumental in determining correct and
implementable algorithms for these purposes. Movies of the tool demonstrating
all the ULP tree algorithms can be found at http://ulp.cs.arizona.edu.

4.2 Colored Level Planar Trees

Our tool has the feature of allowing the user to snap and lock vertices to tracks
in order to investigate not only unlabeled level planar graphs but the planarity
of multiple level graphs being simultaneously embedded. Tracks can be colored
so that only vertices of that color can be snapped to that track.

As an example of this utility, we consider the open problem of whether a
3-colored tree-path pair always has a SGE. One approach is to attempt to layout
the path monotonically. Here each colored track has one vertex of its color.
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Fig. 5. Layouts of (a) a 30-level radius-2 star and (b) a 20-level degree-3 spider.

The idea is to find an algorithm to swap vertices between tracks of the same
color until the 3-colored tree becomes level planar. This is not always possible if
the tracks are colored sequentially as in Fig. 7(a). However, if the tracks are col-
ored randomly, then it may be possible to find a sequence of swaps in going from
a level non-planar assignment as in Fig. 7(b) to a level planar one as in Fig. 7(c).
Even in the worst case of sequentially colored tracks there may be relatively few
interchanges of colored tracks needed so that a CSE then becomes possible. This
would then correspond to paths consisting of relatively few monotonic segments
that may have a SGE.
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Fig. 6. ULP recognition algorithms highlighting a caterpillar, a radius-2 star, and a
degree-3 spider (a) and the forbidden trees T%, Ts, and Ty (b).
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Fig. 7. This 3-colored tree (vertices 1-3 are blue, 4-7 red and 8-10 green) is level non-
planar for sequentially colored tracks (tracks 1-3 are blue and solid, tracks 4-7 are red
and dashed, tracks 8-10 are green and dash-dotted) as in (a), but may or may not be
level planar for randomly colored tracks as in (b) and (c), respectively.

4.3 Simultaneous Geometric Embedding of Pairs of Trees

In this section, we consider the simultaneous geometric embedding of two trees
T1(V, E1) and Ta(V, E3) on n? —2n+ 2 vertices whose union contains a subgraph
homeomorphic to the complete graph K,, on n vertices for a given n > 3. Both
Ty and T» have a root vertex labeled ‘0’ that is adjacent to the remaining n — 1
vertices of V labeled ‘17, ‘2°, ..., ‘n — 1’. In each tree, these n — 1 vertices have
n — 2 leaves so that each non-leaf vertex has degree n — 1. Leaves are labeled i, j
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Fig. 8. A pair of trees whose union is homeomorphic to K5 (a) in which one tree has
red edges (dashed) and the other has blue edges (solid) with a SGE shown in (b).



for i,7 € [l.n — 1] and i # j. In T} the vertex labeled i € [1..n — 1] has leaves
labeled 4,7 for j € [1..n — 1] such that ¢ # j. Similarly, in 75 the vertex labeled
j € [1.n — 1] has leaves labeled i, j for ¢ € [1..n — 1] such that i # j.

The tool is especially useful in this case given that the user can have different
windows for each graph. GraphSET maintains the crossing count within each
graph while ignoring the crossings of edges from different graphs. Figure 8 shows
two trees for the case of n = 5 on 17 vertices that illustrates a schema to generate
a layout that works up to n = 6. When n > 6, we found that the root vertex
labeled ‘0’ could no longer be centrally located, but rather had to be on the
convex hull of the simultaneous embedding. For large values of n these tree pairs
do not have a simultaneous geometric embedding, as shown by Geyer et al. [10].
It is unknown what is the smallest value of n that forces a crossing; for example,
the case n = 8 is open.

4.4 Gadgets for Planar 3-SAT Reductions

GraphSET supports multiple edges with different colors. These edges may in-
clude bends and can be treated as a single edge (for fixed edges) or as different
edges (for multi-graphs). An application of this is the manipulation of gadgets
for Planar 3-SAT reductions.

In [9] Gassner et al. proved that SEFE is NP-Complete for three graphs.
The proof is a reduction using clause gadgets and literal gadgets; see Fig. 9(a).
There are two possible embeddings for each literal gadget and these embeddings
correspond to true or false values in the matching literals. The argument is that
a drawing of the clause without crossings is only possible if one of the literals
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Fig. 9. Gadget for a clause with 3 literals (a) and a SEFE of the gadget in (b).
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Fig. 10. Five colored paths (blue path is solid, red is dashed, green is dash-dotted,
cyan is light-solid and yellow is light-dashed) without a SEFE in (a) and after some
swaps among vertices of the same color in (b) have a SGE in (c). The split window
shows the cyan path for each step.

is true. In the drawing this implies that we can only get rid of a crossing by
flipping a literal gadget (changing the embedding of the gadget).

GraphSET is useful in exhibiting problems in the gadget construction by
finding initially less than obvious embeddings that may break the argument;
see for example Fig. 9(b). With the aid of GraphSET the correct reduction was
found [7]. The flipping/rotation and the cut/paste operations included in the
tool are essential in constructing and manipulating these kinds of gadgets.

4.5 Colored Simultaneous Embeddings

GraphSET was used to build a counterexample of five 5-colored paths on five
distinctly colored vertices without a SGE to show that there does not exist a
universal pointset for 5-colored paths [2]. One open CSE problem is whether there
exists four paths on four colors that do not always have a SGE. We illustrate
the difficulty of this problem with a potential alternate counterexample of five
5-colored paths not using distinctly colored vertices with Figs. 2 and 10. Here
the five 5-colored paths are on ten vertices in which each path has two vertices of
the same color corresponding to its endpoints. As given in Fig. 10(a) a crossing
will always occur regardless of the placement of vertices. This is due to the fact
that each pair of vertices with the same color is connected by four edges of the
other colors. This means that when each of these vertex pairs are contracted
they form the example of five paths on five colors in [2].
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Fig. 11. Three cycles whose union forms a K7 with no common edges in (a) and the
corresponding SGE in (b).

However, vertices of the same color can exchange adjacencies. The tool lets
one swap the adjacency lists between two vertices of the same color in one
of the graphs. A series of such swaps in the five graphs results in Fig. 10(b),
which has the SGE in Fig. 10(c). While this is not the counterexample we are
after, it illustrates the utility of GraphSET when attempting to construct such
counterexamples.

Another open CSE problem in which GraphSET is very useful is shown in
Fig. 11(a). One starts with an arrangement of three cycles whose union forms a
K. In general, any odd prime p has a decomposition into (p —1)/2 cycles whose
union forms a K, in which each edge in the union is in exactly one cycle. This is
of interest because the three 6-colored cycles whose union forms a K3 3 without
a SGE given in [2] are constructed so that each edge in the union belongs to two
of the three paths. This forces one of the cycles to have a self crossing.

It is an open problem to find a set of cycles without any common edges that
do not have a SGE. While this example for K7 has a SGE shown in Fig. 11(b),
this requires several small angles between pairs of incident edges along the same
cycle. We conjecture for sufficiently large p that such a SGE no longer exists.

5 Implementation

GraphSET is a stand-alone Windows application written in C++ that can be
downloaded from http://graphset.cs.arizona.edu, where the source code is
also available. GraphSET can also run under Linux and MacOS using wine.
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Fig. 12. A random labeled tree (a) made proper (b) with a level planar embedding (c).

GraphSET contains other related algorithms for graph drawing as support
for the previous applications. This includes implementation of the PQ-tree data
structure and the planarity testing algorithm by Booth and Lueker [1] . The
level planarity testing and embedding algorithms by Healy et al. [11,12] are
also available. These algorithms require the graph to be proper, i.e., there are
only edges between vertices in consecutive levels. When the graph is non-proper,
GraphSET adds dummy vertices along edges; see Fig. 12. The runtime for these
algorithms is O(|V|?) provided the graph is proper.

6 Conclusions and Future Work

We presented GraphSET, a tool that has been valuable in studying problems
related to simultaneous embedding. We hope that other researchers interested
in these problems will find this tool useful.

While currently GraphSET only includes the recognition and drawing al-
gorithms for ULP trees, we plan to incorporate algorithms for all ULP graphs.
We foresee using this tool in the research of minimal level non-planar (MLNP)
patterns; the first step is to implement MLNP patterns recognition algorithms
for trees [8]. We also plan to incorporate the faster O(|V|log|V]|) level planarity
testing and embedding algorithms by Jiinger, Leipert and Mutzel [13,14].
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