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Abstract. We add two minimum level nonplanar (MLNP) patterns for
trees to the previous set of tree patterns given by Healy et al. [3]. Neither
of these patterns match any of the previous patterns. We show that this
new set of patterns completely characterize level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices of
the same level with the same y-coordinates and all edges strictly y-monotonic.
Level planar graphs have level drawings without edge crossings. Hierarchies are
special cases in which every vertex is reachable via a y-monotonic path from a
source at the top level. Many natural hierarchies occur in the sciences includ-
ing biological taxonomies, linguistic universal grammars, object-oriented design,
multi-tiered social structures, and mathematical hierarchies.

Planar graphs are characterized by forbidden subdivisions of K5 and K3,3

by Kuratowksi’s Theorem [7]. The counterpart of this characterization for level
planar graphs are the minimum level nonplanar (MLNP) patterns proposed by
Healy, Kuusik, and Liepert [3]. A minimal obstructing subgraph with a set of
level assignments forcing a crossing constitutes a MLNP pattern.

While Jünger et al. provide linear time recognition and embedding algo-
rithms [5, 6] for level planar graphs, swapping the vertices between levels while
maintaining planarity can be difficult. Heath and Rosenberg showed that decid-
ing if a planar graph has a proper k-leveling is NP-hard [4]. Finding a matching
subgraph of a MLNP pattern can provide a set of candidate vertices to reassign
to different levels in order to achieve planarity. Such a method could improve
existing hierarchical approaches to drawing directed acyclic graphs (DAGs), such
as Sugiyama’s algorithm [8] that greedily assigns vertices to levels.

Di Battista and Nardelli [1] provided three level nonplanar patterns for hi-
erarchies (HLNP patterns); cf. Fig. 3. These patterns each consist of three (not
necessary) disjoint paths linking a pair of levels that are joined by three pairwise
disjoint bridges. If none of the linking paths cross, this condition forces a cross-
ing between one or more bridges. Di Battista et al. showed these HLNP patterns
were a necessary and sufficient condition for level nonplanar hierarchies. Since
these patterns are sufficiently general, they can be extended to determine when
level graphs are nonplanar. Healy et al. refined these HLNP patterns into a set
of MLNP patterns for level graphs. However, the completeness of their charac-
terization was based on the claim that all MLNP patterns must contain a HLNP

pattern. This claim does not hold for the counterexample we provide.

⋆ This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.



g

e

b

c

x

a

f

d
c

b x d

egfa

a

h

c

d

e

f

x

b

g

x

b f e

da

c

g

h

7

8

6

5

4

3

2

1

7

8

6

5

4

3

2

1

9

T9T8

(d)(a) (b) (c)

Fig. 1. Labelings preventing the forbidden ULP trees T8 and T9 from being level planar.

Estrella et al. [2] characterized the set of unlabeled level planar (ULP) trees on
n vertices that are level planar over all possible n! labelings of the vertices from
1 to n in terms of the forbidden trees T8 and T9 in Fig. 1. The given labelings
were used to show that these trees are level nonplanar. Each vertex is assigned
to its own level so that its y-coordinate is based on its level. The level nonplanar
assignment for T9 can be shown not to match any of the three HLNP patterns.
This forms the basis of our counterexample. For every set of three paths linking
any pair of levels in T9, two of the three linking paths always has a bridge that
shares a vertex with the other path. This violates the condition that forces a
crossing between the third linking path and the bridge. As a result, this level
nonplanar tree does not match any of the MLNP patterns given by Healy et al.

Healy et al. provides two of the MLNP patterns, P1 and P2, for trees that
each contain a HLNP pattern; cf. Fig. 2(a) and (b). Both have three disjoint
paths linking the top and bottom levels with the three pairwise bridges that
form a subdivided K1,3. We provide two more MLNP patterns, P3 and P4 for
level nonplanar trees; cf. Fig. 2(c) and (d) based upon T9. Both of these patterns
consist of two paths that have a common vertex x or subpath x  y that lies
between two intermediate levels. A crossing is forced between the two paths since
x or x  y must lie between two different sections of path that they are on in
order to avoid a self-crossing of that path.

Vi

Vj

Vl

Vm

e
x

y

f

a c g

b d h

Vi

Vj

Vl
e

x

f

a c g

b d h

Vm
x

y

Vi
a fc

eg

Vi

Vj

c

x

a f d

egb
Vj

d

b

P4
P2 P3

P1

(d)(a) (b) (c)

Fig. 2. Four minimum level nonplanar (MLNP) patterns for level nonplanar trees.
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2 Preliminaries

A k-level graph G(V, E, φ) on n vertices has leveling φ : V → [1..k] where every
(u, v) ∈ E either has φ(u) < φ(v) if G is directed or φ(u) 6= φ(v) if G is
undirected. This leveling partitions V into V1 ∪ V2 ∪ · · · ∪ Vk where the level
Vj = φ−1(j) and Vi ∩ Vj = ∅ if i 6= j. A proper level graph only has short edges
in which φ(v) = φ(u) + 1 for every (u, v) ∈ E. Edges spanning multiple levels
are long. A hierarchy is a proper level graph in which every vertex v ∈ Vj for
j > 1 has at least one incident edge (u, v) ∈ E to a vertex u ∈ Vi for some i < j.

A path p is a nonrepeating ordered sequence of vertices (v1, v2, . . . , vt) for
t ≥ 1. Let min(p) = min{φ(v) : v ∈ p}, max(p) = max{φ(v) : v ∈ p}, and
P(i, j) =

{

p : p is a path where i ≤ min(p) < max(p) ≤ j
}

are the paths
between levels Vi and Vj . A linking path, or link, L ∈ L(i, j) is a path x y in
which i = min(L) = φ(x) and max(L) = φ(y) = j, and L(i, j) ⊆ P(i, j) are all
paths linking the extreme levels Vi and Vj . A bridge b is a path x y in P(i, j)
connecting links L1, L2 ∈ L(i, j) in which b ∩ L1 = x and b ∩ L2 = y.

Theorem 1 (Di Battista and Nardelli [1]) A hierarchy G(V, E, φ) on k lev-
els is level planar if and only if there does not exist three paths L1, L2, L3 ∈ L(i, j)
linking levels Vi and Vj for 1 ≤ i < j ≤ k where one of the following hold:

(a) Links L1, L2, and L3 are completely disjoint and pairwise connected by bridges
b1 from L1 to L3, b2 from L2 to L3, and b3 from L2 to L3 such that
b1, b2, b3 ∈ P(i, j) and b1 ∩ L2 = b2 ∩ L1 = b3 ∩ L1 = ∅; cf. Fig. 3(a).

(b) Links L1 and L2 share a path C = L1 ∩ L2 ∈ P(i, j) starting from endpoint
p in Vi or Vj that is disjoint from L3, L1 ∩L3 = L2 ∩L3 = ∅, connected by
bridges b1 from L1 to L3 and b2 from L1 to L3 such that b1, b2 ∈ P(i, j) and
b1 ∩ L2 = b2 ∩ L1 = ∅; cf. Fig. 3(b).

(c) Links L1 and L2 share a path C1 = L1 ∩L2 ∈ P(i, j) starting from endpoint
p in Vi and links L2 and L3 share a path C2 = L2 ∩ L3 ∈ P(i, j) starting
from endpoint q in Vj such that C1∩C2 = ∅. Links L1 and L3 are connected
by bridge b ∈ P(i, j) such that b ∩ L2 = b ∩ C1 = b ∩ C2 = ∅; cf. Fig. 3(c).
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Any improper level graph can be made proper by subdividing all long edges
into short edges. A level drawing of G has all of its level-j vertices in the jth level
Vj placed along the track ℓj = {(x, k − j) |x ∈ R}, and each edge (u, v) ∈ E is
drawn as a continuous strictly y-monotonic sequence of line segments downwards.
A level drawing drawn without edge crossings shows that G is level planar. Any
level graph can be made into hierarchy by adding a new source with paths to
all vertices unreachable via a y-monotonic path to a source. A pattern is a set
of level nonplanar graphs sharing structural similarities. Each graph matching a
level nonplanar (LNP) pattern P is level nonplanar. Removing any edge from the
underlying graph of a minimum level nonplanar (MLNP) pattern gives a level
planar graph. A HLNP pattern P is a LNP pattern in which every matching
graph is a hierarchy. The previous theorem gave the set of three HLNP patterns.

3 MLNP Patterns for Trees

We begin by providing an extended set of MLNP patterns for trees.

Theorem 2 A level tree T (V, E, φ) on k levels is minimum level nonplanar if

(1) there are three disjoint paths L1, L2, L3 ∈ L(i, j) for 1 ≤ i < j ≤ k where PA

of Theorem 1(a) applies and the union of the three bridges b1 ∪ b2 ∪ b3 forms
a subdivided K1,3 subtree S with vertex c of degree 3 so that either

(a) c is in Vi and a leaf of S is in Vj as in Fig. 4(a) or c is in Vj and a
leaf of S is in Vi, or

(b) one leaf of S is in Vi and another leaf of S is in Vj as in Fig. 4(b), or

(2) there are four paths L1, L2, L3, L4 ∈ L(i, j) for 1 ≤ i < j ≤ k where L1 and
L4 are disjoint, L1 and L2 join at a vertex in Vj to form a path with endpoints
in Vi, L3 and L4 join at a vertex in Vi to form a path with endpoints in Vj,
and there exist intermediate levels Vl and Vm for some i < l < m < j in
which either L2 or L3 consists of three subpaths C1, C2, and C3 such that
C1 ∈ L(i, m)

(

d e as in Fig. 4(c)
)

, C2 ∈ L(l, m)
(

e f as in Fig. 4(c)
)

,

and C3 ∈ L(l, j)
(

f  g as in Fig. 4(c)
)

, so that

(c) L2 ∩ L3 = x where l ≤ φ(x) ≤ m as in Fig. 4(c), or

(d) L2 ∩ L3 = p a path x y where l ≤ φ(x) < φ(y) ≤ m as in Fig. 4(d).
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Fig. 5. The various cases of deleting any edge from pattern P3 in (a). The dashed curves
represent the removed edges.

Proof. The description of patterns P1 and P2 are more succinctly stated and
more closely match notation used in Theorem 1 from [1] than the Healy et al.
characterization of MLNP T1 and T2 tree patterns given in Section 3.1 of [3];
see the appendix for the original descriptions of T1 and T2.

To show that P1 and P2 match the patterns of T1 and T2 is simply a matter
of verifying that P1 and P2 have the four common conditions listed for T1 and
T2 and that the specific conditions for each one are satisfied, all of which is
immediate from the definitions of P1 and P2. To show that T1 and T2 match P1

and P2 requires applying Lemmas 8, 9, 10 in the appendix from [3]. Given that
the definitions are equivalent, we apply Theorem 7 in the appendix from [3] to
see that P1 and P2 are indeed minimum level nonplanar.

We delete an edge from each linking path or bridge of P3 and P4 and show
how to avoid a crossing in each case.

(i) If an edge is deleted along a  b as in Fig. 5(b), then the remaining path
can reside under the path f  g  h where d is then moved left of b.

(ii) If an edge is deleted along b  x as in Fig. 5(c), then the other path can
take direct advantage of that gap.

(iii) If an edge is deleted along d  e as in Fig. 5(d), then a  b is drawn
through the gap with d left of b.

(iv) If an edge is deleted along x c as in Fig. 5(e), then d e can be drawn
right of b x whereas f  g is drawn left.

(v) If an edge is deleted along e  f as in Fig. 5(f), then d e is drawn left
of b x using the gap to avoid a crossing.

(vi) If an edge is deleted along f  g as in Fig. 5(g), then d e is drawn left
of b c and a b is drawn through the gap of f  g.

(vii) If an edge is deleted along g  h as in Fig. 5(h), then d e is drawn left
of b c that is left of f  g and a b drawn through the gap of g  h.
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The argument used by Estrella et al. [2] to show T9 is level nonplanar easily
generalizes for P3 and P4. Finally, we observe that in the description of T1 and
T2, that both trees have exactly one vertex of degree 3. Since both P3 has a
vertex of degree 4 and P4 has two vertices of degree 3, neither can match P1 or
P2. Hence, all four MLNP patterns are distinct. ⊓⊔

The distinctness of four MLNP patterns shows that P3 and P4 are counterex-
amples to the claim of Theorem 15 of Healy et al. [3] that all level nonplanar
trees are matched by either T1 or T2. They contended that any level nonpla-
nar graph augmented to form a hierarchy would match the same HLNP pattern
before being augmented. We next show why this argument fails for P3.

Lemma 3 P3 augmented to form a hierarchy has a subtree matching P2.

Proof. Fig. 6 shows the highlighted subtrees that match P2 when P3 is aug-
mented to form a hierarchy. However, P2 does not match P3 by Theorem 2. ⊓⊔

The next lemma gives the minimal conditions for a MLNP tree pattern.

Lemma 4 A level nonplanar T (V, E, φ) on k levels must contain three disjoint
links L1, L2, L3 ∈ L(i, j) linking levels Vi and Vj for 1 ≤ i < j ≤ k with bridges
b1 from L1 to L2 and b2 from L2 to L3 with b1, b2 ∈ P(i, j) with endpoints
x = b1 ∩ L2 and y = b1 ∩ L2 so that (i) x = y, (ii) φ(x) > φ(y), or (iii)
φ(x) < φ(y).
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Proof. We observe that these conditions fall short of PA of Theorem 1(a) by only
one bridge. By Lemma 10 of [3] in the appendix, PA is the only HLNP pattern
that can match a tree. Hence, so our assertion holds for P1 and P2, equivalent
to T1 and T2, that Lemmas 8, 9, 10 of [3] show to be special cases of PA.

Let us assume that we have a MLNP pattern P between levels Vi and Vj and
|i− j| is a minimum. Clearly, P must have three (not necessarily) disjoint paths
L1, L2, L3 ∈ L(i, j) linking levels Vi and Vj . Otherwise, if there were just two
linking paths L1 and L2, then there can be no path in P(i, j) joining the two,
since otherwise the path would be part of a third linking path. This implies L1

and L2 are in separate components contradicting the minimality of P .
At least one of the three paths, say it is L2, must be joined to the other two

paths L1 or L3, or P would be disconnected again contradicting the minimality
of P . If b1∩ b2 form a nonempty path, then b1 ∪ b2 would form a subtree homeo-
morphic to K1,3, and either pattern P1 or P2 of Theorem 2 would result. Thus,
b1 and b2 can share at most one vertex as in Pα of Fig. 7(a). Otherwise there
must have endpoints x = b1 ∪ L2 and y = b2 ∪ L2 where either φ(x) > φ(y) as
in Pβ of Fig. 7(b) or (iii) φ(x) < φ(y) as in Pγ of Fig. 7(c). We observe that Pα

matches P3 and Pγ matches P4. ⊓⊔

We next show that P4 is easily derived from P3.

Lemma 5 P4 is only the distinct MLNP pattern for trees that be formed from
P3 (by splitting the degree-4 vertex) not containing a subtree matching P2.

Proof. Fig. 8 shows the three ways in which the degree-4 vertex of P3 can be
split into two degree-3 vertices. Two of the ways contain subtrees that match P2

for intermediate levels.
Applying definition of P3 given in Theorem 2, the links L2 and L3 share a

common vertex x as in Fig. 8(a). If x is replaced by a path x  y, then there
are three cases: (i) L2 ∩ L3 = ∅, (ii) L2 ∩ L3 = x  y with φ(x) > φ(y), and
(iii) L2 ∩ L3 = x  y with φ(x) < φ(y). For (i) and (ii), P2 matches a subtree
between levels Vl and Vm as in Fig. 8(b) and between levels Vi and Vj as in
Fig. 8(c). The final case (iii), which is P4. ⊓⊔

We conclude by showing the completeness of our characterization for level
nonplanar trees.
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Theorem 6 A level tree T is level nonplanar if and only if T has a subtree
matching one of the minimum level nonplanar patterns P1, P2, P3, or P4.

Proof Sketch: We note as in the case of the proof of Lemma 3 in which P3 is
augmented to form a hierarchy, one of the HLNP patterns must apply once the
pattern has been augmented. Since this augmentation can always be done to
avoid introducing a cycle between levels Vi and Vj , either pattern P1 or P2 must
match a subtree of the augmented pattern by Lemma 10 of [3].

Assume there is a MLNP tree pattern P that matches Pα of Lemma 4 that
does not match P1 or P2. There are several cases to consider how the bridges of
Pα in P could spans levels between Vi and Vj . For each case we augment P to
form a hierarchy. We only give the simplest case to illustrate how either P must
match P1 or P2 or contain a cycle preventing it from matching a tree. All the
other cases are similar variants.

Suppose that neither bridge of the Pα in P is strictly y-monotonic. Then P

has a bend at e in level Vl in one bridge and a bend at f in level Vm in the
other as in Fig. 9(a) for some i < l < m < j. Each bend would require being
augmented with a path from the source when forming a hierarchy from above
or below as was the case of P3 being augmented in Fig. 6.

We augment P with a path p e from Vi to Vl to form P ′, a hierarchy, that
must match P1 or P2. We observe between levels Vi and Vm, we have four linking
paths. A third bridge u  v must be present in P ′ that is part of a subtree S

homeomorphic to K1,3. Fig. 9(b) gives one such example. While P ′ matches P2

between levels Vi and Vm, we see that between levels Vi and Vj , P must have
had the cycle u  v  e  b  u, contradicting P being a tree pattern. By
inspection, any other placement of u  v to connect three of the four linking
paths to form P1 or P2 similarly implies a cycle in P .

Hence, P cannot contain any more edges than those of Pα without matching
P1 or P2. We observe that Pα consists of two paths sharing a common vertex x.
Given the minimality of P in minimizing |i− j|, one path has both endpoints in
Vi with one one vertex in Vj that can be split into linking paths L1, L1 ∈ L(i, j).
Similarly, the other has both endpoints in Vj with one vertex in Vi that can also
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be split into the linking paths L3, L4 ∈ L(i, j). In P3 of Fig. 9(a), L1 is a  b,
L2 is b d x c, L3 is d x f  g, and L4 is g  h.

For P to be level nonplanar, a crossing must be forced between these two
paths. This can be accomplished by having L2 or L3 meet the condition of P3

of three subpaths C1 ∈ L(i, m) linking Vi to Vm, C2 ∈ L(l, m) linking Vl to Vm,
and C3 ∈ L(l, j) linking Vl to Vj . This is not the case for the Pα in Fig. 9(a)
since the x  c portion of L2 does not reach level Vm, and the x  d portion
of L3 does not reach level Vl. So for P not to match P3, at least one subpath of
both L2 and L3 from x to Vi or Vj must strictly monotonic as was the case in
Fig. 9(a). However, in this case P can always be drawn without crossings. This
leaves P3 as the only possibility of a MLNP pattern matching Pα that does not
P1 or P2. ⊓⊔

4 Conclusion and Future Work

The sufficiency argument of the MLNP patterns used by Healy et al. is flawed in
its contention that all MLNP patterns contain a HLNP pattern. Given this flaw,
there remains the very likely possibility of the characterization of Healy et al.
omitting some MLNP patterns with cycles.

We provided two new MLNP patterns for trees and showed that the new
set of four was sufficient. We presented a new approach for showing sufficiency
based upon pattern augmentation to form HLNP patterns. However, our ap-
proach heavily relied on the underlying graph of the pattern forming a tree and
avoiding cycles. For future work remains the open problem of finding the re-
maining set, if any, of MLNP patterns for graphs with cycles and proving they
are sufficient to complete the characterization for all level planar graphs.
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Appendix

Characterization of patterns T1 and T2 from Healy et al. in Section 3.1 of [3]:

“Let i and j be the extreme levels of a pattern and let x denote a root vertex
with degree 3 that is located on one of the levels i, . . . , j. From the root vertex
emerge 3 subtrees that have the following common properties (see Fig. 2 for
illustrations of two typical patterns):

• each subtree has at least one vertex on both extreme levels;
• a subtree is either a chain or it has two branches which are chains;
• all the leaf vertices of the subtrees are located on the extreme levels, and if

there is a leaf vertex v of a subtree S on an extreme level l ∈ {i, j} then v is
the only vertex of S on the extreme level l;

• those subtrees which are chains have one or more non-leaf vertices on the
extreme level opposite to the level of their leaf vertices.

The location of the root vertex distinguishes the two characterizations.

(T1) The root vertex x is on an extreme level l ∈ {i, j} (see Fig. 2(a)):

• at least one of the subtrees is a chain starting from x, going to the
opposite extreme level of x and finishing on x’s level;

(T2) The root vertex x is on one of the intermediate levels l, i < l < j (see Fig.
2(b)):

• at least one of the subtrees is a chain that starts from the root vertex,
goes to the extreme level i and finishes on the extreme level j;
at least one of the subtrees is a chain that starts from the root vertex,
goes to the extreme level j and finishes on the extreme level i.”

Note that Fig. 2(a) and (b) of [3] correspond to our Figs. 2(a) and (b).

Next we state Theorem 2 and Lemmas 3, 4, and 5 of [3] with slight rewording
to match our own terminology and previous theorems.

Theorem 7 (Healy et al. Theorem 2) A subgraph matching either of the two
tree characterizations T 1 or T 2 is MLNP.

Lemma 8 (Healy et al. Lemma 3) If HLNP pattern PA of Theorem 1(a)
matches a tree then each one of the paths L1, L2, L3 contains only one ver-
tex being the end vertex of a bridge.

Lemma 9 (Healy et al. Lemma 4) If HLNP pattern PA of Theorem 1(a)
matches a tree then its bridges must form a subgraph homeomorphic to K1,3.

Lemma 10 (Healy et al. Lemma 5) The only HLNP pattern that can be matched
to a tree is PA of Theorem 1.
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