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Abstract. We consider the problem of simultaneous embedding of pla-
nar graphs. We demonstrate how to simultaneously embed a path and
an n-level planar graph and how to use radial embeddings for curvilinear
simultaneous embeddings of a path and an outerplanar graph. We also
show how to use star-shaped levels to find 2-bends per path edge simul-
taneous embeddings of a path and an outerplanar graph. All embedding
algorithms run in O(n) time.

1 Introduction

Embedding trees and other classes of planar graphs on predetermined point-
sets, small integer grids, and levels is motivated by graph layout algorithms and
applications in visualizing hierarchical information. Level and radial embeddings
can also be used for simultaneous embedding of graphs which are in turn useful
in dynamic graph visualization. Simultaneous embedding of planar graphs is also
motivated by its relationship with problems of graph and geometric thickness.

A geometric simultaneous embedding of two vertex-labeled planar graphs on n
vertices in the xy-plane is possible if there exists a labeled point set of size n such
that each of the graphs can be realized on that point set (using the vertex-point
mapping defined by the labels) with straight-line edges without crossings. For
example, any two paths can be simultaneously embedded, while there exist pairs
of outerplanar graphs that do not have a simultaneous embedding [3]. Geometric
simultaneous embeddings are quite restrictive: pairs of trees and triples of paths
may not have such embeddings. Less restrictive versions allow for larger classes
of graphs to be embedded without crossings, using few bends per edge [7].

Suppose an n-vertex path P is labeled 1 to n from one endpoint to the other.
In this paper, we show how to simultaneously embed P with an n-vertex planar
graph G (also labeled from 1 to n) that remains planar when the y-coordinate
of each vertex of G equals its label. We can restrict each vertex of G to lie
on the distinct horizontal line, or level, `j =

{
(x, j) |x ∈ R}

given by its label
j ∈ {1, 2, . . . , n}. Such graphs are called level planar graphs with respect to the
labeling of G. The ability to simultaneously embed P and G in this way depends
on the particular labeling of G. If G is not level planar for the given labeling,
then we give alternative simultaneous embedding techniques provided that G is
outerplanar: we retain the straight-line edges for G, but relax the edges of P to
be either composed of one circular arc each or to have 2 bends per path edge.
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1.1 Related Work

Brass et al. [3] describe linear time algorithms for geometric simultaneous em-
beddings of pairs of paths, cycles, and caterpillars on an O(n)×O(n) grid. Geyer
et al. [10] show that tree-tree pairs do not always have a geometric simultaneous
embedding, and the status of tree-path pairs is open. If bends on the edges are
allowed, Erten and Kobourov [7] show that tree-path pairs can be embedded
simultaneously using at most one bend per tree edge and no bends of path edges
on an O(n) × O(n2) grid. Moreover, pairs of planar graphs can be embedded
simultaneously using at most 3 bends per edge using an O(n2)×O(n2) grid.

A related problem is that of level planarity, where the goal is to display
graphs according to a given hierarchical ordering of the vertices. Such graphs
are called level planar graphs [5]. In particular, Jünger and Leipert [11] present
a linear time planarity embedding algorithm for level planar graphs using PQ-
trees, where the resulting embedding is a set of linear orderings of vertices on
each level. Once a graph is determined level planar, Eades et al. [6] can produce
a straight-line drawing in O(|V |) time, though it may require exponential area.
In [8], a characterization of trees that are level planar for any possible labeling
of the vertices is given. These trees are called unlabeled level planar (ULP).

1.2 Our Contributions

We present results about simultaneous embeddings of pairs of graphs (P, G) on
n vertices without crossings, where P is always a path using curvilinear edges or
piecewise-linear edges and G is one of several different classes of planar graphs.
Our results illustrate the following trade-offs between the class of graphs to which
G can belong and the type of edges used for P :
1. If G is level planar, then we show how both G and P can be simultaneously

embedded with straight-line edges in O(n) time.
2. If G is outerplanar, we show how to find a plane drawing for G simultaneously

with a drawing for P that uses one circular arc per edge in O(n) time.
3. If G is outerplanar and piecewise-linear edges are desirable, we show how to

obtain a plane drawing for G simultaneously with a drawing for P that uses
two bends per edge in O(n) time.
Table 1 summarizes our current results regarding simultaneous embedding of

pairs of planar graphs and relevant previous results. Full details are given in [4].

Pair (P , G) Edges in P Edges in G Condition Reference

(Path, Path) 0 bends 0 bends none [3]

(Path, Tree) 0 bends 1 bend none [7]

(Path, Planar) 0 bends 0 bends G is ULP Theorem 1

(Path, Planar) 0 bends 0 bends G level planar w.r.t. P Theorem 2

(Path, Outerplanar) circular arcs 0 bends none Theorem 3

(Path, Outerplanar) 2 bends 0 bends none Theorem 8

(Path, Tree) 0 bends 0 bends none Open

Table 1. Summary of results. ULP here stands for unlabeled level planar, as defined above.



2 Geometric Simultaneous Embedding

We try to use standard notation when discussing level graphs while focusing on
the aspects of level graphs that give us simultaneous embeddings using straight-
line segments. In doing so, we omit from our definitions certain properties of
level graphs that are not directly relevant to our problem domain.

Let G(V, E) be an n-vertex undirected graph with a labeling L : V
1:1−→
onto

{1, 2, . . . , n}, which induces a level graph G(V, E, φ) with a bijective level as-
signment φ = L onto n levels. A vertex v in V is a j-level vertex if φ(v) = j. A
level drawing is level planar if it admits a plane drawing such that each j-level
vertex v can be embedded onto the horizontal line `j =

{
(x, j) |x ∈ R}

. A level
graph is level planar if it has a level drawing.

While any planar graph G admits some labeling for which it is level planar,
only some planar graphs are level planar regardless of the labeling used. Such
graphs are called unlabeled level planar (ULP) [8] and they can be characterized
in terms of a pair of forbidden subtrees; see Fig. 1. Moreover, the linear-time
recognition and embedding algorithms for ULP trees yield a straightforward
way to simultaneously embed an n-vertex path and an n-vertex ULP tree as
illustrated in the following theorem.
Theorem 1 A geometric simultaneous embedding of an n-vertex graph G and
an n-vertex path P can be computed in O(n) time, provided G is ULP.
Proof. Label the vertices of P sequentially 1 to n, and label the vertices of G
so that L = φ for any n-level bijective assignment φ of the vertices in G and
P . If G happens to be a ULP tree, it is either a caterpillar, radius-2 star, or
degree-3 spider, each of which has an O(n) time algorithm [8] to produce a
compact straight-line level planar drawing of G. If G is not a tree, the O(n)
time algorithm of Eades et al. [6] can provide a planar straight-line drawing of
G with level assignment φ = L. Regardless, the y-coordinate of each j-vertex of
G matches its label j in a level drawing of G. Then we draw the path P in a
y-monotone fashion zig-zagging upward from one level to the next in O(n) time.
This completes our geometric O(n) time simultaneous embedding of P and G
since no path edges of P can cross given its y-monotone nature. ut

The requirement for G to be ULP is overly restrictive. One can use the same
approach to simultaneously embed a planar graph G and a path P , provided

(a) (b) (c) (d)

Fig. 1. Two forbidden trees T1 in (a) and T2 in (b) that fully characterize ULP trees, and
their embeddings with crossings in (c) and (d), respectively, for the given labelings.



that G is level planar with respect to the labeling induced by P . This gives the
following theorem.
Theorem 2 A geometric simultaneous embedding of an n-vertex graph G and
an n-vertex path P can be computed in O(n) time, provided G is level planar
with respect to the labeling given by P .

The disadvantage of this approach to simultaneously embed a path and a
planar graph is that most planar graphs, including most trees, are not level
planar for some labeling. This is not surprising since it is a strong restriction
to have a predetermined order of the y-coordinates of the vertices. What is
surprising, however, is that introducing curvature to the levels, by using circles
in lieu of horizontal lines, is enough to allow us to embed all trees and outerplanar
graphs with circular arcs for path edges. We show this in the next section.

3 Simultaneous Embedding with Curves

This section combines straight-line embeddings of outerplanar graphs with paths
consisting of circular arcs to produce curvilinear simultaneous embeddings. First,
we describe how to obtain a plane drawing of an n-vertex outerplanar graph G
on a set of concentric circles such that each vertex lies on a distinct circle,
determined by the labeling of G. We then use this straight-line crossings-free
drawing of G to simultaneously embed G with an n-vertex path P , such that
each path edge consists of a circular arc that lies between adjacent concentric
circles. This will give the primary theorem of this section.
Theorem 3 An n-vertex outerplanar graph G can be simultaneously embedded
with an n-vertex path P in O(n) time such that G forms a plane drawing and P
is drawn without crossings using one circular arc per edge.

3.1 Embedding an Outerplanar Graph on Concentric Circles

In this section, we describe how to embed a radial plane drawing of an labeled
n-vertex outerplanar graph G on a set of distinct n concentric circles using the
labeling of G. This is similar to a radial level planar embedding on n radial
levels, i.e., circles, except that we are using straight lines instead of radially
monotone polylines for edges. However, as straight-line edges are not necessarily
radially monotone, the radial level planarity test and embeddings algorithms of
Bachmaier et al. [1] cannot be directly applied here. Rather, we use the following
result from Bose [2].
Theorem 4 (Theorem 6.2 of [2]) If the input point set P is in convex position
then O(n) time and space is sufficient to straight-line embed G into P.

Using this theorem we can obtain our linear time radial straight-line embed-
ding of G onto n concentric circles given by the next lemma.
Lemma 5 Given a set C of n concentric circles {C1, C2, . . . , Cn} centered at
the origin o with monotonically increasing radii r1, r2, . . . , rn, it is a sufficient
condition that r1

rn
> cos 2π

n in order to obtain in O(n) time a radial plane drawing
of an n-vertex outerplanar graph G with vertices labeled 1 to n such that each
vertex with label j is embedded on circle Cj.



(a) (b) (c)

(d) (e) (f)

Fig. 2. The vertices of a 12-vertex outerplanar graph G are embedded on a circle in (a).
This embedding follows the general point set P given in (b). The points are then perturbed
radially inward so that each vertex with label j lies on Cj for j = 1, 2, . . . , 12, where C12

is the outermost circle, yielding point set P ′ in (c). Drawing G on P ′ gives (d). Crossings
are avoided by restricting the ratio between the radii of C1 to Cn in (e) giving (f).

Proof Sketch: Our strategy is to first embed G using straight-line edges onto a
circle C with radius r centered at the origin o without crossings in O(n) time
via Theorem 4. We want the vertices of G evenly distributed along the circle,
i.e., on a point set P such that there is a point pi in P at a distance r from the
origin o, i.e., |opi| = r, at every radian angle θk = (k − 1) 2π

n , where θk is the
angle ∠p1opk for k = 1, 2, . . . , n. Clearly, P forms a convex set; see Fig. 2(b).

Then we perturb the vertices in O(n) time in a radial direction so that each
one lies on its own circle according to the labeling of G, i.e., a vertex v labeled
j is placed on Cj where Cn = C. Finally, we determine that if our perturbation
is sufficiently small, i.e., r1

rn
> cos 2π

n , then the radial drawing remains free of
crossings. We do this by perturbing the point set P to match the new locations
of the vertices of G. We call this perturbed point set P ′; see Fig. 2(c).

We note that while Theorem 4 works for any convex point set P, which vertex
is embedded at which point of P is determined by the algorithm. We can show
that when rerunning the algorithm on point set P ′ instead of P, it makes the
same choices. In order to do that it suffices to show that when we perturb the
point set P to P ′ the following two conditions hold:
– all the points of P ′ remain in convex position and
– the order in which each point p′ of P ′ sees all the other points P ′ − p′ using

a radial line sweep centered at p′ remains the same.



(a) (b)

Fig. 3. Routing one circular arc per edge so that fits inside two consecutive concentric
circles is in (a). The concentric circles are centered at o where o′ is the center of a circle
that gives a curve connecting vi and vi+1 that stays within the annulus defined by Ci and
Ci+1. An example of this is given in (b) for the outerplanar graph from Fig. 2(a).

Since the points P are uniformly distributed over all radial angles, retaining
the convexity of P ′ also achieves the condition of retaining relative positioning
provided that the points of P ′ are only perturbed in a radial direction. Next, we
show that r1

rn
> cos 2π

n is a sufficient condition in maintaining the convexity and
same convex hull of P when perturbing the points to P ′.

Perturbing the point pi+1 of P to lie on the innermost circle C1, while letting
its neighboring points pi and pi+2 along the convex hull of P, remain on C = Cn,
gives a worst case in terms of affecting the convexity of P. Fig. 2(e) illustrates
this. Let x denote the midpoint of pipi+2. In order for pi+1 to remain on the
convex hull of P, it is sufficient that the distance from o to x is less than r1,
the radius of the innermost circle C1. Since the angle ∠xopi is 2π

n , if the ratio of
r1
rn

> |ox|
rn

= cos 2π
n , then pi+1 will lie in the outer half-plane formed by the line

passing through pi and pi+2, i.e., the half-plane not containing the origin o. ut

3.2 Embedding a Path of Circular Arcs Between Concentric Circles

From Lemma 5, we have that given n distinct concentric circles C1, C2, . . . , Cn

of monotonically increasing radii r1, r2, . . . , rn, we can create a plane drawing of
any n-vertex outerplanar graph G(V,E) with labeling L : V

1:1−→
onto

{1, 2, . . . , n}
such that v ∈ CL(v) for all v ∈ V provided r1

rn
> cos 2π

n . Here we assume the
n-vertex path P is labeled sequentially 1 to n. We show how to route the edges of
the path using exactly one circular arc per path edge so that the arcs of P form
a radially monotone polyline, which implies that no two circular arcs intersect.

Lemma 6 A radially monotonically increasing crossings-free drawing of an n-
vertex path P (V,E) with vertex set V = {v1, v2, . . . , vn} and edge set E ={
(v1, v2), (v2, v3), . . . , (vn−1, vn)

}
can be realized on n concentric circles C1, C2,

. . . , Cn, where vi ∈ Ci for 1, 2, . . . , n with one circular arc per edge.

Proof. It suffices to show that one circular arc always can be used to connect
two consecutive vertices on the path, vi and vi+1, such that the arc lies strictly
outside circle Ci and inside circle Ci+1 except for the end points of the arc at



vi and vi+1; see Fig. 3(a). Let o be center of the circles. We compute o′, the
center of the circle that forms the desired circular arc connecting vi and vi+1 as
follows. The center o′ is the intersection of the perpendicular bisector of vivi+1

and the line segment ovi+1. The radius of the circle centered at o′ is given by
the distance from o′ to vi. The shorter circular arc between vi and vi+1 connects
the two vertices and is located in the annulus between circles Ci and Ci+1.
Furthermore, the distance from c to any point along the arc from vi to vi+1

is monotonically increasing. Therefore, the entire path P can be realized as a
radially monotone polyline, implying no edge crossings, using one circular arc
per edge; see Fig. 3(b). ut

Lemma 5 together with Lemma 6 gives us Theorem 3. However, as noted,
this only works when we can restrict the radii of the concentric circles to be in
a small range. One might wonder whether it is possible to use radially uniform
concentric circles instead. The next subsection shows this is not the case.

3.3 Trees on Radially Uniform Concentric Circles

In this section we give an example of a 406-vertex tree with a labeling from 1
to 406 that cannot be straight-line embedded on a set of 406 radially uniform
concentric circles such that each vertex lies on its respective circle.

Lemma 7 There exists an 406-vertex tree T (V, E) with labeling L : V
1:1−→
onto

{1, 2, . . . 406} that cannot be straight-line embedded on a set C of 406 radially uni-
form concentric circles {C1, C2, . . . , Cn} centered at o with radii r1, r2, . . . , r406

such that ri = (i − 1)∆ for i = 1, 2, . . . , 406 for any ∆ > 0, where each vertex
with label j is embedded on circle Cj.

Proof. Here we use the ULP forbidden tree T1 with 8 vertices from Fig. 1(a) to
construct a 406 vertex tree T with root x which has 45 subtrees of 9 vertices
each; see Fig. 4(a). Each of the 45 neighbors of x is a degree-2 vertex connected
to a copy of T1. We start by labeling x with 1 placing it on C1, which has radius
0, so x must be embedded at the center o.

(a) (b)

Fig. 4. The 406-vertex tree in (a) cannot be drawn on radially uniform concentric circles
since there must exist one subtree that is a copy of T1 from Fig. 1(a) that fully resides in
a sector such that tangents of circles do not intersect any other circle. We can rotate this
sector so that it lies directly above o so that any vertices placed on the concentric circular
arc in this sector must have strictly increasing y-coordinates as shown in (b).



Then we label each of its 45 neighbors with 362, 363, . . . , 406 so that at least
one subtree, which is a copy of T1, call it T ′1, must lie within the radian angle
2π
45 . W.l.o.g we assume that this sector is centered along a vertical line passing
through the center o since we can rotate the drawing of T as needed.

Within this narrow sector, we observe that the tangents to the circles do
no intersect any other circle; see Fig. 4(b). This is because the radius of ri−1

is strictly less than ri cos 2π
2·45 = ri cos π

45 for i = 1, 2, . . . , 405. In particular,
r405 = 404 < r406 cos π

45 = 405 · 0.997564 = 404.013.
Then we label the kth copy of T1 with the labels from Fig. 1(c) adding the

value of (k−1)8+1 to the labels for k = 1, 2, . . . , 45. This preserves the y-ordering
of the labels such that T ′1 (the copy of T1 lying strictly within the radian angle
2π
45 sector) must have strictly increasing y-coordinates. Hence, if T ′1 could be
embedded on its circles, then it could be level planarly embedded, which is not
the case for the given labeling of T ′1. The inability to level planarly embed T ′1
forbids a straight-line embedding of T . ut

4 Simultaneous Embedding with Bends

This section combines straight-line embeddings of outerplanar graphs with paths
whose edges are drawn with bends. We introduce the notion of star-shaped levels
which allows us to obtain the main result of this section:
Theorem 8 An n-vertex outerplanar graph G can be simultaneously embedded
with an n-vertex path P in O(n) time such that G forms a plane drawing and P
is drawn without crossings with at most 2 bends per path edge.

4.1 Projecting a 3D Outerplanar Graph onto the 2D xy-plane

We start by using the following theorem to get a 3-dimensional embedding of an
outerplanar graph onto a 3-side prism.
Theorem 9 (Felsner, Liotta and Wismath [9]) Every outerplanar graph G(V,E)
with n vertices admits a crossings-free straight-line grid drawing in three dimen-
sions in optimal O(n) volume that can be computed in O(n) time and with the
vertices of G drawn on the grid points of a prism.

The ability to do this projection can be used to give our next lemma.
Lemma 10 There exists a projection of a 3-dimensional outerplanar graph G on
a 3-sided regular prism onto the xy-plane that preserves the number of straight-
line edge crossings of G.
Proof Sketch: The embedding of [9] uses the shortest-path distance from some
arbitrary root vertex r to every other vertex in the outerplanar graph G. Let
dmod 3(v) denote the shortest-path distance from r modulo 3. Fig. 5 gives an
example of an outerplanar graph to be used in illustrating the embedding on
star-shaped levels. The 3-dimensional regular prism used for this embedding can
be visualized as standing vertically on a triangular base in the xy-plane in which
the vertical edges are numbered 0, 1, and 2 in clockwise order looking down from
the positive z-direction. Then G is “wrapped” around the prism such that each
vertex v is embedded along the edge dmod 3(v) of the prism; see Fig. 6.



Fig. 5. Outerplanar graph G used as an example for embedding on star-shaped levels.
The vertices in this figure and Fig. 6 are in three different shapes (diamonds, circles, and
squares) according to whether the vertex is at a shortest-path distance of 0, 1, or 2 modulo
3 from vertex 1, respectively. The edges are colored one of three colors in a similar fashion.

We will use the prism to construct the star-shaped levels. Assume that the
base of the prism is an equilateral triangle with side length ` and that the height
of the prism is 3`. Additionally, let r = `/2

√
3 be the radius of the circle that is

inscribed within the triangle; see Fig. 6(b). We need to shift all the vertices so
that they all lie along a fairly narrow band above the distance 2r from the base.
This is so that when we “unfold” each vertical side of the prism by laying it flat
on the xy-plane we do not introduce a crossing; compare Fig. 6(a) to (b).

We pick the side of the rectangular face that is in a 90◦ counter-clockwise
direction from the prism’s base onto which to map the vertices along the prism
edge. The positions of the vertices are then mapped directly to their correspond-
ing positions along this projected edge in the xy-plane so that the edges on a
prism face map directly to straight-line segments in the xy-plane.

(a) (b)

Fig. 6. Outerplanar graph G from Fig. 5 projected onto the xy-plane from its 3-dimensional
embedding. In (a) there are crossings since the vertices are not above the 2r threshold,
where r is radius of the circumscribed circle of the base of the prism. In (b) there are no
crossings since all the vertices achieve this threshold.



There is the possibility that extra crossings will be introduced between edges
incident to the same pair of prism edges in which one or both of the endpoints
lie within a distance of 2r from this base. Once all the endpoints lie above this
threshold, which is the point at which an extension of an adjacent prism edge at
an angle of 120◦ would intersect the edge in the xy-plane, then no crossings can
occur. This is illustrated by projecting the outerplanar graph G from Fig. 5 onto
the xy-plane in which all the vertices are not above this threshold in Fig. 6(a),
but achieve this 2r threshold in Fig. 6(b) eliminating all crossings. ut

4.2 Simultaneous Embedding using Star-Shaped Levels

In this section we show how to use the star-shaped levels generated by the
outerplanar graph G from the previous section to simultaneously embed a path
P with exactly 2 bends per edge giving our next lemma.

Lemma 11 There exists a 2-bend per path edge crossings-free drawing of a path
P using star-shaped levels for any vertex labeling.

Proof Sketch: Let ni be the number of vertices along the ith prism edge (for
i ∈ {0, 1, 2}, the shortest-path distance of the vertices from r modulo 3) where
nmax = max{n0, n1, n2} is then the total number of star-shaped levels required
for this simultaneous embedding. Next we need to perturb the ni vertices that
lie along edge i (after performing the above projection to the xy-plane) to lie
along one of nmax closely adjacent nested star-shaped levels. How close these
levels need to be is given by the subsequent lemma. Each star-shaped level has 6
sides and is a scaled-down version of the outermost level (w.r.t. the center of the
circle circumscribed within the triangular prism base). This includes the 3 prism
edges projected onto the xy-plane, and the 3 edges that each connect the top
of one projected prism edge to the bottom of the next in a clockwise direction,
termed connecting edges; see the dashed 3-pointed star in Fig. 7.

When perturbing the vertices, we are careful to move a vertex in a direction
perpendicular to the prism edge (as well as all of the adjacent edges of the nested
levels) on which it resided. The problem with perturbing the vertices too much
is the introduction of crossings in G. For example, the outerplanar graph G in
Fig. 5 is shown in Fig. 7 on a set of star-shaped levels in which the levels are not
spaced sufficiently close enough, resulting in several crossings.

The vertices are placed clockwise from outermost to innermost star-shaped
level by the order given by the path labeling. However, in order to be able to route
the path back and forth between vertices that alternate back and forth between
adjacent sides of the prism, an extra connecting edge needs to be inserted to lie
half-way between every pair of adjacent connecting edges. Since we need one for
each level, an extra connecting edge also needs to be added to lie just interior
to the nmax

th innermost connecting edge. In Fig. 7 these are shown as dashed
line segments. We denote the levels along which the vertices lie as regular levels,
which are depicted in Fig. 7 with solid gray edges, and the in-between levels as
half-levels consisting of dashed edges.

The rule then for going from one vertex u to the next vertex v is that if
going clockwise, then v’s connecting regular level’s edge is used, otherwise, its



Fig. 7. Outerplanar graph G from Fig. 5 embedded onto the star-shaped levels.

connecting half-level’s edge is used. Hence, if going clockwise, 2 bends are intro-
duced at each endpoint of the connecting regular level’s edge corresponding to
the destination vertex. Otherwise, 2 bends are introduced at each endpoint of
the connecting half-level’s edge of the destination vertex. ut

As was the case with circular arcs, making the star-shaped levels sufficiently
close for a given outerplanar graph G, as well as an additional technical condition
of placing the vertices of G in close proximity along the middle portion of the
prism edge, avoids crossings as given by our final lemma. The proof of this lemma
(along with a detailed description of the geometry of the star-shaped levels) is
included in the technical report [4].

Lemma 12 Let G be an n-vertex outerplanar graph. Let δ be the maximum sep-
aration between two vertices of G along the same prism edge before perturbing
vertices onto the other star-shaped levels, and let ∆ be the maximum separa-
tion between the nested star-shaped levels. Then G will be crossings-free when
embedded onto the star-shaped levels provided ∆ < `

10n and δ < `
(n−1)2 .



5 Conclusions and Open Problems

We presented results in simultaneous embeddings of path and outerplanar graphs
with circular arc edges or a small number of bends. Other open problems include:

1. Do all tree-path pairs have geometric simultaneous embedding?
2. What is the complexity of determining whether two planar graphs admit a

geometric simultaneous embedding?
3. What is the complexity of determining whether a pair of graphs can be

simultaneously embedded?
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