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Abstract. We present a linear-time algorithm for solving the simulta-
neous embedding problem with fixed edges (SEFE) for a planar graph
and a pseudoforest (a graph with at most one cycle) by reducing it to
the following embedding problem: Given a planar graph G, a cycle C of
G, and a partitioning of the remaining vertices of G, does there exist a
planar embedding in which the induced subgraph on each vertex partite
of G \ C is contained entirely inside or outside C? For the latter prob-
lem, we present an algorithm that is based on SPQR-trees and has linear
running time. We also show how we can employ SPQR-trees to decide
SEFE for two planar graphs where one graph has at most two cycles
and the intersection is a pseudoforest in linear time. These results give
rise to our hope that our SPQR-tree approach might eventually lead to
a polynomial-time algorithm for deciding the general SEFE problem for
two planar graphs.

1 Introduction

Many practical graph drawing applications demand planar embeddings of a
graph that yield additional constraints. One natural application is in obtain-
ing simultaneous drawings of a set of related planar graphs. This is useful in
the areas of bioinformatics, social sciences and software engineering. A single
drawing can be insufficient in depicting complex interrelationships of different
models of a system. Instead, multiple drawings may be required, each from a
different perspective. The challenge is to preserve the “mental map” of the com-
mon structures in each layout so that the scientist can easily navigate between
the different diagrams. To do this, common vertices and edges are placed and
drawn equally in each drawing. This can be modeled via embedding constraints.

Various embedding constraints have already been studied in [2, 5, 6]; Gutweng-
er et al. [12] apply SPQR-trees to efficiently decide if a graph has a combinatorial
embedding with respect to a set of hierarchical constraints modeling grouping
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and fixed orders of edges around a vertex. We instead address a problem that
cannot be modeled by any of the previous approaches. Given a planar graph
G, a cycle C ⊂ G, and a partition P of all vertices of G \ C, we ask whether
there is a planar embedding of G where all vertices v ∈ p for some part p ∈ P

lie completely inside or outside C. We give an efficient decision algorithm using
SPQR-trees that can be used to solve a simultaneous embedding problem.

Given a set of planar graphs {G1, G2, . . . , Gn} on the same vertex set, a
simultaneous embedding with fixed edges (SEFE) of {Gi} are planar drawings Γi

of Gi, i ∈ [1..n], such that all vertices and all edges belonging to two graphs Gi

and Gj are drawn identically in the corresponding drawings Γi and Γj . SEFE and
its variant of simultaneous geometric embedding (SGE) with planar straight-line
drawings as well as the other variations of simultaneous embedding have become
an important branch within the field of graph drawing. It is known that deciding
SEFE is NP-complete for three graphs [11] while deciding SGE is NP-hard for
two graphs [8]. The complexity of deciding SEFE for two graphs is still open.

Many approaches have been made to decide the problem for some classes of
graph pairs [4, 7, 9, 10]. Frati [10] showed that trees and planar graphs always
have a SEFE. Fowler et al. [9] improved this result to show that forests, circular
caterpillars (removal of all degree-1 vertices yields a cycle), K4, and subgraphs
of K3-multiedges (an edge (x, y) with any number of edges with x or y as end-
points) are the only graphs to always have a SEFE with any planar graph. Their
drawing algorithms are based upon using an optimal Euclidean shortest path
algorithm [13]. We also apply this technique in our algorithms.

In this paper we examine the pairs of a planar graph G1 with a pseudofor-
est G2. A SEFE is not always guaranteed unless all non-cycle edges of G2 are
incident to the cycle, i.e., the pseudoforest happens to be a circular caterpillar.
However, we show that SEFE for such pairs can be decided in polynomial time
by presenting an efficient decision algorithm. We further discuss efficient decision
algorithms for the case that G2 contains two cycles and G1 ∩G2 is a pseudofor-
est. We think that our approach is promising in that it may eventually lead to
a general polynomial time decision algorithm for testing SEFE of two graphs.

2 Preliminaries

Given some planar drawing Γ of a planar graph G, a cycle C in G forms a Jordan
curve that splits the plane into two connected components. One is bounded by
C and the other is unbounded as given by the Jordan curve theorem [14]. We
say that some vertex v ∈ G\C lies in the interior (exterior) of C if it is mapped
to a position in the bounded (unbounded) component.

A combinatorial embedding of a planar graph G is defined as a clockwise
ordering of the incident edges for each vertex with respect to a crossing-free
drawing of G in the Euclidean plane. A planar embedding is a combinatorial
embedding together with a fixed external face.

A block is a maximal 2-connected subgraph of a graph G. If G is 2-connected,
the SPQR-tree T of G represents its decomposition into 3-connected components



comprising serial, parallel, and 3-connected structures [3]. The respective struc-
ture is given by a skeleton graph associated with each tree node which is either
a cycle (S-node), a bundle of parallel edges (P-node), or a 3-connected simple
graph (R-node); Q-nodes serve as representatives for the edges of G.

If G is 2-connected and planar, its SPQR-tree T represents all combinatorial
embeddings of G. In particular, a combinatorial embedding of G uniquely defines
a combinatorial embedding of each skeleton in T , and fixing the combinatorial
embedding of each skeleton uniquely defines a combinatorial embedding of G.

Given two planar graphs G1 = (V, E1) and G2 = (V, E2) on the same ver-
tex set V , a simultaneous embedding with fixed edges (SEFE) consists of planar
drawings Γi of Gi, i ∈ [1, 2], such that each vertex is mapped to the same point
in the plane for Γ1 and Γ2 and each edge in G1 ∩G2 is represented by the same
simple curve in the plane for both drawings.

3 A Planar Graph, a Cycle, and a Partition

In this section, we consider the following graph embedding problem. Given a
planar graph G = (V, E), a cycle C = (VC , EC) ⊂ G, and a partition P of
V \ VC , decide whether G has a planar drawing such that all vertices of each
part in P either lie completely inside or outside of C; see Algorithm 1.

The input partition P or the planar embeddings of the graph may force two
vertices to be on the same side of the cycle (either both inside or both outside).
We call this situation a same-side constraint. On the other hand, by examining
all embeddings of the graph we may reveal that two vertices must be positioned
on opposite sides of the cycle (one inside and one outside). We refer to this
situation as an opposite-side constraint. The idea of the algorithm is to find all
such constraints and then check whether all these constraints can be satisfied at
once, i.e., whether a planar embedding with the required property exists.

The following algorithm uses an SPQR-tree T to examine all embeddings
of the block of graph G containing the given cycle C. Each skeleton of a node
of T may lead to constraints prohibiting some of the possible embeddings as
discussed above. We use an auxiliary graph H containing all of the vertices of
the original graph to maintain the occuring constraints. Same-side constraints
are represented by green edges and opposite-side constraints by red edges.

We say that H is 2-colorable if its vertices can be colored with two colors,
say red and green, in such a way that both endpoints of a green edge have the
same color and both endpoints of a red edge have different color.

As cycles are 2-connected, the given cycle C is contained in a single block B

of graph G. All other blocks are either completely inside or outside of C in all
planar drawings of G. Hence, we get one same-side constraint for all vertices of
each block B′ 6= B. We can now assume to deal with a 2-connected graph G and
its SPQR-tree T that represents all planar embeddings of G together with some
cycle C ⊆ G. Let ν ∈ T be some node of the SPQR-tree, S be its skeleton and
e ∈ S be any skeleton edge. If the expansion graph of e includes any edge of C,
we call e a cycle edge. We consider the different possibilities for ν in turn.



Algorithm 1: Deciding the embeddability of parts respecting a cycle

Input: Planar graph G = (V, E), cycle C = (VC , EC) ⊆ G, partition P of V \VC

Output: Returns yes if and only if G has a planar embedding such that all
induced subgraphs of each p ∈ P lie on one side of C

Let H = (V, ∅)
for all parts p ∈ P do

Construct path in H with green edges of all vertices in p

Block B := Biconnected component of G containing C

for all blocks B′ 6= B do

Construct path in H with green edges of all vertices in B′

Tree T := SPQR-tree of B

for all nodes µ ∈ T do

if skeleton S of µ has at least two cycle edges then

Cycle C′ := cycle consisting of all cycle edges in S

if µ is R-node then
Expand all non-cycle edges in S

Construct path in H with green edges of all vertices inside C′

Construct path in H with green edges of all vertices outside C′

if there exist vertex v in the interior of C′ and vertex w in the

exterior of C′ then
Add red edge to H between v and w

if µ is P-node then

for all edges e in S \ C′ do
Construct path in H with green edges of all vertices in the
expansion graph of e

if H is 2-colorable then
return yes

else
return no

If S contains exactly one cycle edge e, then the edges belonging to the skeleton
of all the other vertices must lie on the same side of C. When regarding the node
of T belonging to e, all these vertices are contained in the expansion graph of
a single edge that is not a cycle edge. Repeating this process, if necessary, we
get a T -node that has more than one cycle edge but also has a single non-cycle
edge containing all of the vertices from above. When dealing with this T -node,
the necessary auxiliary graph augmentation to handle this same-side constraint
is performed.

If S contains two or more cycle edges, then these cycle edges comprise a cycle
in S. If S also contains non-cycle edges, ν is a P-node or an R-node.

1. In an S-node this can only occur if all edges of the skeleton are cycle edges.
In this situation there is nothing to be done as this does not lead to any
same-side constraints or opposite-side constraints.



cycle edges

other edge e

Fig. 1. Cycle edges in the skeleton of a P-node lead to same-side constraints: all vertices
in the expansion graph of a non-cycle edge e are on the same side of the cycle.

2. Let ν be a P-node (see Fig. 1). All the vertices occurring in an expansion
graph of any other edge in S are forced to be on one side of the cycle C.

3. Having ν as an R-node (see Fig. 2) is the most involved. The skeleton S

of ν is a 3-connected graph and has hence a unique embedding (besides
mirroring and choosing the outer face). The cycle edges split S into two
halves: the interior and the exterior components of S. All vertices belonging
to all expansion graphs of edges of one side must be on one side of the cycle
in the final embedding. Neither pair of vertices w1 and w2 being the interior
and the exterior components, respectively, may end up on the same side
of the cycle. Hence, we get two same-side constraints (between all vertices
in the interior and exterior components, respectively) and one opposite-side
constraint (the edges from the interior and the exterior components must be
separated).

cycle edges

interior edges

exterior edges

Fig. 2. Cycle edges in the skeleton of an R-node yield two same-side and one opposite-
side constraints: All vertices in the expansion graphs of the interior component are on
one side of the cycle while all vertices of the exterior component are on the other side.

Theorem 1. Algorithm 1 has a runtime of O(|V |) and works correctly, i.e., it
returns yes if and only if the input graph G has a planar embedding E such that
for each p ∈ P all vertices in p lie on one side of C in E.



Proof. Obviously, the first two for-loops including the construction of T require
only O(|V |) time, thus add only O(|V |) green edges to H . The third loop iterates
over all nodes µ ∈ T and expands some non-cycle edges. Observe that—for all
nodes µ—the expansion graphs of these non-cycle edges do not share any edge,
and thus no vertex except for vertices on the cycle C. Therefore, the whole for-
loop takes O(|V |) time, and we add only O(|V |) green and red edges to H . Since
the size of H is linear in |V |, we can check if H is 2-colorable using breadth-
first-search in O(|V |) time.

We next show that the algorithm works correctly. First, assume that the
algorithm returns no. Then the constructed auxiliary graph H is not 2-colorable.
This means that two vertices v and w in H are connected by two paths: one
containing an odd number of red edges and one containing an even number.
This implies that v and w must lie on the same side of C (due to the path with
even number of red edges), as well as on opposite sides (path with odd number
of red edges). Hence, G has no such embedding.

Next assume that the algorithm returns yes in which H is 2-colorable. We
pick one of the two colors to lie in the interior of C and one to lie on the
outside. The choice of embeddings for every P-node and every R-node implies
an embedding E for G. For each such node in T , we can choose an embedding
that satisfies the given choice of interior and exterior of C. In each P-node,
the vertices that belong to the expansion graph of one of the parallel edges are
connected by green edges in H , thus, they lie on the same side in E . In each
R-node, the vertices on both sides of the cycle are connected by green edges,
respectively, while a single edge between these sets forbids both parts to lie on
the same side. Finally, green edges between the vertices of the input partition
yield that these vertices lie on the same side of C. ⊓⊔

4 A Planar Graph, a Pseudoforest, and a Decision

In this section, we apply Algorithm 1 to solve the following open problem in
simultaneous embedding: Given a planar graph G1 and a pseudoforest G2, find
an efficient algorithm to decide whether the pair {G1, G2} has an SEFE; see
Algorithm 2. For a few special cases of G2 the situation becomes trivial as
described by the next theorem.

Theorem 2 (Fowler et al. [9]). Let G1 be a planar graph and G2 be a forest
or a circular caterpillar. Then G1 and G2 have a SEFE.

Next, we consider the more general case of a pseudoforest containing a cycle
C in which not all non-cycle edges are incident to C. We see by the next theorem
that the case is also trivial if C is not in the intersection of G1 and G2.

Theorem 3. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a pseudo-
forest with a cycle C. If C is not in G1 ∩ G2, then the pair has a SEFE.



Proof. Let edge e ∈ C \ G1. Create a planar drawing of Γ1 of G1 in the plane
using any suitable graph drawing algorithm (e.g. [1]). We construct a planar
drawing Γ2 of G2 that, together with Γ1, creates a SEFE of G1 and G2.

Draw all vertices and all edges of G1 ∩ G2 in Γ2 in the same way as in Γ1

guaranteeing a simultaneous drawing. We still must draw all edges of G2 \ G1

without introducing any crossings in Γ2. As e is not part of G1, it has not been
drawn in Γ2 yet. We draw all edges of G2 \G1 in Γ2 one after another with e as
the last edge. The order of the other edges can be chosen arbitrarily.

To do this we use an optimal Euclidean shortest path algorithm [13]. We
apply the modification as done by Fowler et al. [9] in their drawing algorithms.
A distance ε is always maintained between the shortest path and any line segment
corresponding to previous part of Γ2. This allows subsequent edges to be routed
as need be in between any pair of non-incident edges that would otherwise be
touching. Applying this algorithm adds at most O(|V |) edge bends for each new
edge (as new bends hide old bends as argued in [9]) so that the final complexity
of the drawing is O(|V |2) giving an overall running time of O(|V |2 log |V |).

As G2 has only one cycle C and e is part of C, G2 \ {e} is a forest. Any
drawing of any subgraph of G2 \ {e} has exactly one face. Hence, starting with
the partial drawing of Γ2 it is always possible to insert a route for the edges not
yet drawn maintaining planarity. Even, in the last step, when edge e is inserted,
the partial drawing of Γ2 has exactly one face and thus, e can be safely inserted
into Γ2. Then Γ2 is completed and {Γ1, Γ2} is a SEFE of {G1, G2}. ⊓⊔

Due to Theorems 2 and 3 we assume G2 to have exactly one cycle C in the
intersection G1∩G2. By construction G1 is planar. However, to ensure a SEFE of
G1 and G2 we must embed G1 in such a way that the cycle C does not separate
any pair of vertices that are adjacent in G2. On the other hand, as G2 \ C is a
forest, this condition suffices to guarantee a SEFE of the pair {G1, G2}.

Theorem 4. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a pseudo-
forest each on n vertices with a cycle C ⊆ G1 ∩ G2. G1 and G2 have a SEFE

if and only if there exists a planar drawing of G1 such that for all edges e =
{v, w} ∈ G2 \ G1 either both v and w lie inside or both lie outside of C.

Proof. Assume first that G1 has a planar drawing Γ1 with the described property.
We create a planar drawing Γ2 of G2 that, together with Γ1, yields a SEFE of
G1 and G2. Draw all vertices and all edges of G1 ∩G2 in Γ2 in the same way as
in Γ1. As C ⊆ G1 ∩ G2, the cycle is now present in Γ2. We draw all remaining
edges of G2 \ G1 next by using the same approach of the proof of Theorem 3.

We start with the edges e that have one endpoint in the exterior of C in
Γ1. Due to the condition on Γ1, both endpoints of e are in the exterior of C

or one endpoint is on C. As we have just drawn C and all vertices in the same
way as in Γ1, this condition also holds for the partial drawing of Γ2. As G2 \G1

is a forest there is a way to route e without introducing crossings: Imagine C

and its interior as one big vertex. The partial drawing Γ2 then has exactly one
face. This also holds for edges connecting the exterior of C with C itself. The
same argument holds for all the edges in the interior of C as well as the edges



Algorithm 2: Deciding SEFE for planar graph and pseudoforest pair

Input: Planar graph G1 and pseudoforest G2.
Output: yes if and only if {G1, G2} has a SEFE.

if G2 contains no cycle then
Return yes.

Cycle C := the only cycle of G2

if C * G1 then
Return yes.

Partition P = {Pv | v ∈ G1 \ C} := trivial partition of G1 \ C

for all edges {v, w} of G2 \ C do
UNION Pv and Pw.

Run Algorithm 1 with input (G1, C, P ).
Return output of Algorithm 1.

connecting the interior with C. Hence, by construction we have a planar drawing
Γ2 of G2 that, together with Γ1, yields a SEFE of G1 and G2.

Now let G1 be without a planar drawing with the described property. Assume
G1 and G2 have a SEFE. By definition there exist planar drawings Γi of Gi,
i ∈ [1, 2], such that the intersection G1∩G2 is drawn in the same way in both Γ1

and Γ2. As G1 has no planar drawing with the described property, there exists
an edge e = {v, w} ∈ G2 \ C such that v lies in the interior of C and w lies in
the exterior of C in Γ1. As vertices v and w and cycle C are part of G1 ∩ G2,
the same condition holds for Γ2. But this means that e cannot be routed in Γ2

without introducing a crossing in Γ2, which is a contradiction to our assumption.
Hence, G1 and G2 have no SEFE. ⊓⊔

We use the previously discussed results to create an efficient algorithm de-
ciding the problem mentioned in the beginning of this section.

Theorem 5. Algorithm 2 works correctly, i.e., it returns yes if and only if
{G1, G2} has a SEFE. Moreover, it has a linear runtime.

Proof. Assume first that the algorithm returns yes, which is by one of three
statements. The first returns yes if G2 contains no cycle. But then Theorem 2
states that {G1, G2} has a SEFE. The second statement returns yes if cycle C is
not completely part of G1. Theorem 3 guarantees that G1 and G2 have a SEFE

in this situation. The last instruction is that the run of Algorithm 1 returns yes.
Algorithm 1 checks whether graph G1 can be embedded in the plane such that
all partition sets of P lie completely inside or outside C. By the construction of
P , this is equivalent to saying that both endpoints of every edge of G2 \ C lie
both inside or both outside C. Then Theorem 4 yields a SEFE of G1 and G2.

Assume next, that the algorithm returns no, which implies Algorithm 1
returned no. Hence, G1 has no planar drawing with the property of Theorem 4,
which implies that G1 and G2 are without a SEFE.

The proposed runtime O(|V |) follows directly from the complexity analysis
of Algorithm 1. ⊓⊔



5 A Planar Graph, a Path, and a Cyclic Edge Order

In this section, we consider two embedding problems with requirements on the
cyclic order of some of the edges around a vertex x or two vertices x and y that
can be used to decide some special SEFE problems in Section 6.

In the first problem, x and y are two distinct vertices connected by a path p.
Let ep and e′p be the first and last edges on p incident to x and y, respectively,
where {ea, eb} and {e′a, e

′

b} are distinct edges also incident to x and y. We want
to ensure that the order of these edges around x and y (amongst other possible
incident edges) in a combinatorial embedding Γ of G is consistent with an em-
bedding of a graph in which x and y are connected by the three edge-disjoint
paths p, pa = ea, . . . , e′a, and pb = eb, . . . , e

′

b. This implies that either the cyclic
order around x is ep, ea, eb and around y is e′p, e

′

b, e
′

a or both orders are reversed.
It suffices to test only one possibility, since we can generate a combinatorial
embedding with the reversed orders simply by mirroring the embedding.

Let Ex = {ep, ea, eb} and Ey = {e′p, e
′

a, e′b}. We observe that—if not all edges
in Ex ∪ Ey are in the same block—such a required combinatorial embedding
always exists; in this case, x or y is a cut vertex. We can insert the embedding
of one block B′ into a face of an embedding of the other block B (mirroring the
embedding of B′ if necessary) so that the requirements on the embedding are
met. On the other hand, if all the edges in Ex ∪ Ey are contained in a single
block B, it is sufficient to test a few simple conditions in the SPQR-tree T of
B. The necessary and sufficient conditions are given in the lemma below.

Lemma 1. G has a combinatorial embedding Γ such that the cyclic order in-
duced by Γ on Ex is ep, ea, eb and the cyclic order induced on Ey is e′p, e

′

b, e
′

a if
and only if

1. there is no block B of G containing all edges in Ex ∪ Ey; or
2. there is a block B containing Ex ∪ Ey, and its SPQR-tree T has neither

(a) a P-node whose skeleton contains three distinct edges e1, e2, e3 such that
ep and e′p are contained in the expansion graph of e1, ea and e′b in the
expansion graph of e2, and eb and e′a in the expansion graph of e3; nor

(b) an R-node whose skeleton has a combinatorial embedding such that ep, ea,

eb are in the expansion graphs of three distinct skeleton edges ẽp, ẽa, ẽb

in this cyclic order, and e′p, e
′

a, e′b are in the expansion graphs of three
distinct skeleton edges ẽ′p, ẽ

′

a, ẽ′b in this cyclic order.

These conditions can be checked in linear time, since constructing an SQPR-tree
and determining for each edge e ∈ Ex ∪ Ey in the expansion graphs of which
skeleton edges it is contained, requires only linear time, and there are only two
combinatorial embeddings of each R-node’s skeleton.

In the second embedding problem, we consider a planar graph G with a
vertex x and four distinct edges ea, e

′

a, eb, e
′

b incident to x. We want to decide if
there exists an embedding Γ of G that induces a cyclic order on these four edges
in which ea and e′a (and thus also eb and e′b) are consecutive. The motivation
for this problem is similar as for the first problem, where p is an empty path



and thus x and y are identical. In this case, deciding if a feasible combinatorial
embedding of G exists is even easier. We only need to consider only R-node
skeletons containing x in which x is incident to at least four skeleton edges. This
gives the following lemma whose conditions can be verified in linear time:

Lemma 2. G has a combinatorial embedding Γ such that the cyclic order in-
duced by Γ on Ex = {ea, e

′

a, eb, e
′

b} is such that ea and e′a are consecutive, if and
only if either

1. no block of G contains all edges in Ex; or
2. there is a block B containing all edges in Ex, and its SPQR-tree contains no

R-node whose skeleton S contains x and the edges in Ex are in the expansion
graphs of four distinct skeleton edges Ẽx = ẽa, ẽ′a, ẽb, ẽ

′

b such that there exists
a combinatorial embedding of S that induces a cyclic order on the edges in
Ẽx in which ẽa and ẽ′a are not consecutive.

6 Two Planar Graphs with Restrictions and a Decision

We now consider how this approach of using SPQR-trees might be extended to
address more general decision problems for deciding whether a pair of graphs
has a SEFE. We examine pairs of planar graphs G1 and G2 where we restrict
both the number and the arrangement of cycles in G2 and in G1 ∩ G2.

G1 ∩G2 is a forest: We start with a more general version of Theorem 3 where
we have a larger number of cycles in G2 but still the intersection is a forest.

Theorem 6. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a planar
graph where all cycles Ci ⊆ G2, i ∈ [1..k], are pairwise disjoint. If no Ci is
contained in G1 ∩ G2, then the pair {G1, G2} has a SEFE.

Proof (sketch). We adapt the proof of Theorem 3. When drawing G2, remove
one edge ei from each Ci \ G1 and draw the rest of G2, which is a forest. Then
insert one edge ei after another in the same way as done with edge e in the proof
of Theorem 3. As all cycles are disjoint and no further cycles exist, this method
can be applied without introducing any crossings in the drawing of G2. ⊓⊔

(a)

y

C2 \ C1

C1 ∩ C2

C1 \ C2

x

C1 ∩ C2

C1 \ C2

C2 \ C1

(b)

y

x

Fig. 3. The two cycles C1 and C2 drawn without and with crossings. The respective
clockwise ordering of the edges incident to x and y differ.



Algorithm 3: Deciding SEFE for restricted planar graph pair

Input: Planar graphs G1 and G2 where G2 contains exactly two cycles and
G1 ∩ G2 is a pseudoforest but not a forest.

Output: yes if and only if {G1, G2} has a SEFE.

Cycle C := the only cycle of G1 ∩ G2

Partition P = {Pv | v ∈ G1 \ C} := trivial partition of G1 \ C

for all edges {v, w} of G2 \ C do
UNION Pv and Pw.

Run Algorithm 1 with input (G1, C, P ).
Return output of Algorithm 1.

Next, we discuss the case where G2 contains exactly two cycles that either
touch in exactly one point or share a common path. With the ideas developed
in Section 5 we can handle this situation efficiently.

Theorem 7. The SEFE decision problem for two planar graphs G1 and G2

where G2 contains exactly two cycles and G1 ∩ G2 is a forest can be decided
in linear time.

Proof (sketch). Let C1 and C2 be the two cycles of G2. If C1 ∩C2 = ∅, the case
is trivial as given by Theorem 6. As G2 contains no more cycles, C1 ∩ C2 is a
path p with endpoints x and y; see Fig. 3. A planar embedding of G1 can force
the outgoing edges of x and y to have a specific order leading to the situation
in Fig. 3(b) in G2 that prevents a SEFE of G1 and G2. However, if G1 has an
embedding that allows the right cyclic order for both x and y as in Fig. 3(a), then
a SEFE can be achieved. All other edges of G2 can be drawn without introducing
crossings as in the proof of Theorem 4. Lemma 1 gives a linear time check to
determine whether G1 has an embedding such that the cyclic order for the three
outgoing edges corresponds to the paths shown in Fig. 3. Lemma 2 handles the
degenerate case for x = y, also determinable in linear time. ⊓⊔

G1 ∩ G2 is a pseudoforest: Assume now that both G1 and G2 are planar
graphs in which G2 contains exactly two cycles C1 and C2 of which only one,
say C1, is contained in G1∩G2. When removing one edge of C2\G1 we are in the
situation described in Section 4. This correlation allows us to construct a new
decision algorithm based on Algorithm 2. We start by generalizing Theorem 4,
which we use as the key ingredient to Algorithm 3.

Theorem 8. Let G1 = (V, E1) be a planar graph and G2 = (V, E2) be a planar
graph with exactly two cycles C1 and C2 where C1 ⊆ G1∩G2 and C2 6⊆ G1∩G2.
G1 and G2 have a SEFE if and only if there exists a planar drawing of G1 such
that for all edges e = {v, w} ∈ G2 \ G1 either both v and w lie inside or both lie
outside of C1.



Theorem 8 can be proved by using Theorem 4 to determine whether {G1, G2\
{e}} has a SEFE. In an SEFE of this smaller pair, edge e = {v, w} can be inserted
if and only if both endpoints v and w lie on the same side of C1.

It is easy to see that Algorithm 3 works correctly. We can imitate the proof
of correctness of Algorithm 2 (see Theorem 5) where this time Theorem 8 plays
the role of Theorem 4.

7 Concluding Remarks and Future Applications

We have shown how to use SPQR-trees in the context of simultaneous embedding
with fixed edges by presenting several new decision algorithms for some classes
of graph pairs. Clearly, much future works remains, but overall this approach
of using SPQR-trees seems promising in potentially yielding a polynomial-time
decision algorithm for deciding whether two graphs have a SEFE, if one exists.
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