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Abstract—When aligning biological sequences, the choice of scoring scheme is critical. Even small changes in gap penalties, for

example, can yield radically different alignments. A rigorous way to learn parameter values that are appropriate for biological

sequences is through inverse parametric sequence alignment. Given a collection of examples of biologically correct reference
alignments, this is the problem of finding parameter values that make the scores of the reference alignments be as close as possible to

those of optimal alignments of their sequences. We extend prior work on inverse parametric alignment to partial examples, which
contain regions where the reference alignment is not specified, and to an improved formulation based on minimizing the average error

between the scores of the reference alignments and the scores of optimal alignments. Experiments on benchmark biological
alignments show we can learn scoring schemes that generalize across protein families, and that boost the accuracy of multiple

sequence alignment by as much as 25 percent.

Index Terms—Inverse parametric sequence alignment, substitution score matrices, affine gap penalties, linear programming, cutting

plane algorithms.
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1 INTRODUCTION

Afundamental question that arises whenever biological
sequences are aligned is to decide what parameter

values to use for the alignment scoring scheme. For
example, the standard scoring function for protein sequence
alignment requires determining values for 210 substitution
scores and two gap penalties. In practice, substitution scores
are usually set by convention to a matrix from the PAM [5] or
BLOSUM [17] families, while gap penalties are often set by
hand through trial and error. Despite this practice, choosing
appropriate values for these parameters is critical. Even
small changes in gap penalties can yield radically different
alignments, while aligning a specific family of sequences
may require substitution scores that differ substantially
from a conventional matrix.

A rigorous approach to determining these values is
through inverse parametric sequence alignment [16], [31], which
sets parameters using examples of biologically correct
reference alignments. Informally, inverse alignment seeks
parameter values for the alignment scoring function that
make the examples be optimal alignments of their sequences.
Put another way, it seeks a parameter choice at which the
examples are optimal solutions to the sequence alignment
problem. Note that if a parameter choice exists that makes
every example be the unique-optimal alignment of its
sequences, then any algorithm that computes optimal
sequence alignments will perfectly recover the examples,
given the example sequences and this parameter choice as
inputs. In general, inverse alignment belongs to the broad
area of inverse parametric optimization [9], where examples

of optimal solutions to a combinatorial optimization problem
are used to set parameter values in its objective function.

In practice, a biologically useful parameter choice rarely
exists that makes a collection of example reference align-
ments all be optimal [19] (let alone unique-optimal). Conse-
quently, the problem becomes one of finding parameter
values that make the examples score as close as possible to
optimal. An important issue in formulating the problem is
deciding what measure of error to minimize between the
scores of the examples and the scores of optimal alignments,
when assessing closeness to optimality.

Recently, Kececioglu and Kim [19] discovered a new
method for inverse alignment based on linear programming
that for the first time could quickly learn best possible values
for all 212 parameters in the standard model for global
protein sequence alignment from hundreds of examples of
complete reference alignments. Their approach minimized
the maximum relative error in scores across the examples. In
this paper, we extend this work in several directions:

. to partial examples, which contain regions where the
reference alignment is not specified,

. to an improved error model involving minimization
of the average absolute error across the examples,

. to a stronger approach for eliminating degenerate
solutions that are not biologically useful, and

. to an experimental study of the recovery rate of the
learned scoring schemes when used for multiple
sequence alignment.

The issue of partial versus complete examples is especially
important when the reference alignments are drawn from
suites of benchmark protein multiple alignments that have
been determined by aligning the three-dimensional struc-
tures of the protein molecules [24], [1], [2], [33]. While such
benchmarks provide the most accurate protein alignments
currently available, the regions where these reference
alignments are reliable usually consist of a series of aligned
conserved blocks that rarely cover the entire sequences;
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between these blocks, the alignment is often unreliable or
unspecified.

The improved approach to inverse alignment that results
from these extensions, which minimizes average absolute
error given partial examples, remains fast and achieves
better recovery. To briefly summarize the results, the
recovery of reference alignments by the learned scoring
schemes improves upon conventional amino acid substitu-
tion matrices by as much as 25 percent when used for
multiple alignment of specific sequence families. Learning a
scoring scheme from more than 200 partial examples,
whose reference alignments cover about 40 percent of each
sequence on average, takes around 4 hours on a laptop.

1.1 Related Work
Inverse parametric sequence alignment was introduced in
the seminal paper of Gusfield and Stelling [16]. They
considered the problem for the case of two parameters
and one example, and sought parameter values that made
the example be an optimal scoring alignment of its
sequences. For this form of inverse alignment, they
presented an indirect approach that attempted to avoid
computing the complete parametric decomposition [34],
[15], [27] of the parameter space. Sun et al. [31] gave the
first direct algorithm for inverse alignment for the case of
three parameters and one example. Their algorithm, which
is quite involved, finds values for the three parameters
that make the example alignment score optimal in
Oðn2 lognÞ time, for two strings of length n.

In a significant advance, Kececioglu and Kim [19], using a
completely different approach based on linear program-
ming, gave the first polynomial-time algorithm for arbitra-
rily many parameters and examples. Their approach is also
flexible, and solves the unique-optimal and near-optimal
variations of inverse alignment as well. For the near-optimal
variation, their algorithm finds a parameter choice that
makes the examples score as close as possible to optimal in
terms of minimizing the maximum relative error of the
examples. As they demonstrated, it is also fast in practice.

The approach to inverse alignment developed in [19]
actually solves the more general problem of inverse
parametric optimization. For a combinatorial optimization
problem P, inverse parametric optimization seeks para-
meter values for the objective function of P that make a
given example solution to an instance I of P be an optimal
solution to instance I . Their approach solves the inverse
parametric problem in polynomial time for any problem P
where: 1) the objective function for P is linear in its
parameters, and 2) problem P can be solved in polynomial
time for any fixed choice of its parameters. This solves
inverse parametric optimization for an extremely wide
range of problems P, including many classic combinatorial
problems such as sequence alignment, shortest paths,
spanning trees, network flow, and maximum matchings.
The authors recently learned that Eppstein [9] discovered a
similar approach to general inverse parametric optimiza-
tion. Eppstein applied it in the context of minimum
spanning trees to find edge weights that make an example
tree be the unique optimal spanning tree. In the context of
biological sequence alignment, this unique-optimal form of
the inverse problem rarely has a solution [19].

Alternative approaches for determining alignment
parameters have been recently proposed based on machine

learning. Do et al. [7] use discriminative training on
conditional random fields to find parameter values for a
hidden Markov model of sequence alignment. Their
approach requires solving a convex nonlinear numerical
optimization problem that becomes nonconvex in the
presence of examples that are partial alignments, and is
not guaranteed to run in polynomial time. Yu et al. [37]
describe a support vector machine approach for learning
parameters to align a protein sequence to a protein structure.
Their approach involves solving a quadratic numerical
optimization problem with linear constraints, and for the
first time incorporates a measure of alignment recovery
directly into the problem formulation. Both of these
approaches require considerable computational resources,
appearing to take days on large instances to compute an
approximate solution.

In contrast to these machine learning approaches, our
method for inverse alignment only involves linear pro-
gramming, for which an optimal solution can be computed
quickly, even for very large instances. We also rigorously
address for the first time the issue of input examples that
are partial alignments.

1.2 Overview
The next section presents several variations of inverse
alignment, with relative or absolute error, andwith complete
or partial examples. Section 3 reduces these variations to
linear programming, and develops an iterative approach to
partial examples. Finally, Section 4 presents results from
experiments on recovering benchmark protein alignments
when using learned parameters for both pairwise and
multiple sequence alignment.

2 INVERSE ALIGNMENT AND ITS VARIATIONS

The conventional sequence alignment problem is: given a
pair of sequences and a scoring function f on alignments,
find an alignment A of the sequences that has an optimal
score under f . The inverse alignment problem turns this
around: given an example alignment A of a pair of
sequences, find parameter values for scoring function f
that make A be an optimal alignment of its sequences. To
learn parameter values that are useful in practice for
biologists, this basic form of inverse alignment, which was
first studied in [16] and [31], must be generalized
considerably: to multiple examples, to suboptimal align-
ments, to partial examples, and to handle degeneracy, each
of which we consider in turn.

When function f has many parameters, many example
alignmentsA are needed to determine reliable values for the
parameters. Accordingly, we take the input to inverse
alignment to be a large collection of example alignments. In
practice, there are usually no biologically useful parameter
values that make all the example alignments have optimal
score. Consequently, we consider finding parameter values
that make the examples score as close as possible to optimal,
and we examine two optimization criteria for measuring the
error between the example scores and the optimal alignment
scores: minimizing relative error or absolute error. Finally,
the type of benchmark reference alignments that are
available in practice for learning parameters often consist
of regions where the alignment is specified, interspersed
with regions where no alignment is specified. We call such a
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reference alignment a partial example, since it is only a partial
alignment of its sequences. When the reference specifies a
complete alignment of its sequences, we call it a complete
example.

Our approach to inverse alignment from partial exam-
ples builds upon a solution to the problem with complete
examples, which we discuss first.

2.1 Complete Examples
Inverse alignment from complete examples with arbitrarily
many parameters was first considered by Kececioglu and
Kim [19]. They examined the relative error criterion, which
we review below.

Let f be the alignment scoring function, which gives
score fðAÞ to alignment A. Typically, f is a function of
several parameters p1; p2; . . . ; pt, which assign scores or
penalties to various alignment features such as substitu-
tions and gaps. (For example, the standard scoring model
for aligning protein sequences has 210 substitution scores
for all unordered pairs of amino acids, plus two gap
penalties for opening and extending a gap, for a total of
t ¼ 212 parameters.) We view the entire set of parameters
as a vector p ¼ ðp1; . . . ; ptÞ. When we want to emphasize
the dependence of f on its parameters p, we write fp.

The input consists of many example alignments Ai,
where each example aligns a corresponding set of
sequences Si. (Typically, the examples Ai are induced
pairwise alignments that come from a structural multiple
alignment; in this case, each Si contains two sequences.) For
scoring function f and parameters p, we write f$

p ðSiÞ for the
score of an optimal alignment of sequences Si under fp. We
assume that an optimal alignment minimizes f .

The following defines inverse alignment under the
relative error criterion assuming the input contains com-
plete examples.

Definition 1 (Inverse Alignment under Relative Error).
Inverse Alignment from complete examples under the relative
error criterion is the following problem. Let the alignment
scoring function be fp with parameter vector p ¼ ðp1; . . . ; ptÞ
drawn from domain D. The input is a collection of complete
alignments A1; . . . ;Ak that respectively align the sets of
sequences S1; . . . ;Sk. The output is parameter vector

x$ :¼ argmin
x2D

ErelðxÞ;

where

ErelðxÞ :¼ max
1%i%k

fxðAiÞ & f$xðSiÞ
f$
xðSiÞ

:

In other words, the output vector x$ minimizes the maximum
relative error of the alignment scores of the examples.

An underlying issue in this formulation of inverse
alignment is that the problem is degenerate. The trivial
parameter choice x ¼ ð0; ' ' ' ; 0Þmakes every alignment score
the same, thus making each example be an optimal
alignment. This undesirable solution must be ruled out,
though how this is done depends on the particular form of
alignment being considered. Section 3.3 presents a new
approach for eliminating a general family of degenerate
solutions that applies to global sequence alignment [14]. This
general family includes the trivial solution as a special case.

When scoring function fp is linear in its parameters p,
inverse alignment under relative error can be solved in
polynomial time [19] as long as an optimal alignment can be
computed in polynomial time for any fixed parameter
choice. We review the solution in Section 3, which uses a
reduction to linear programming. The above formulation
considers the maximum error of the examples, because as we
will see later in Section 3.1.1, minimizing the average
relative error would lead to an optimization problem with
nonlinear constraints.

We also consider here a new model: minimizing the
absolute error. This has the advantage that we can minimize
the average error of the examples and still have a formulation
that is efficiently solvable by linear programming.

The following defines inverse alignment under the
absolute error criterion again assuming complete examples.

Definition 2 (Inverse Alignment under Absolute Error).
Inverse Alignment from complete examples under the absolute
error criterion is the following problem. The input is a
collection of complete alignments Ai of sequences Si for
1 % i % k. The output is parameter vector

x$ :¼ argmin
x2D

EabsðxÞ;

where

EabsðxÞ :¼ 1

k

X

1%i%k

!
fxðAiÞ & f$

xðSiÞ
"
:

Output vector x$ minimizes the average absolute error of the
alignment scores of the examples.

Note that this formulation is also degenerate, which is
addressed in Section 3.3.

We next extend to input examples that are partial
alignments.

2.2 Partial Examples
For inverse alignment of protein sequences, the best
example alignments that are available come from multiple
alignments of protein families that are determined by
aligning the three-dimensional structures of family mem-
bers. Several suites of such benchmark alignments are
currently available [24], [1], [2], [33] and are widely used for
evaluating the accuracy of software for multiple alignment
of protein sequences. Most all these benchmarks, however,
are partial alignments. The benchmark alignment has
regions that are reliable and where the alignment is
specified, but between these regions, the alignment is
effectively left unspecified. These reliable regions are
usually the core blocks of the multiple alignment, which are
sections of the alignment where structure is conserved
across the family. Core blocks are typically gap free, though
they can sometimes contain gaps.

For our purposes, a partial example is an alignment A of
sequences S where each column of A is labeled as being
either reliable or unreliable. A complete example is a partial
example whose columns are all labeled reliable.

Note that in this definition, a partial example may label a
gap column as reliable. Consequently, partial examples do
not simply specify which pairs of positions to align by
substitutions, but may also specify which positions should
be in gaps.
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When learning parameters by inverse alignment from
partial examples, we treat the unreliable columns as
missing information: such columns do not specify the
alignment of the example sequences. Given a partial
example A for sequences S, a completion A is a complete
example for S that agrees with the reliable columns of A. In
other words, a completion A can change A on the
substrings that are in unreliable columns, but must not
alter A in reliable columns. Note that in general, a partial
example A does not have a unique completion A.

We define inverse alignment from partial examples as
the problem of finding the optimal parameter choice over
all possible completions of the examples.

Definition 3 (Inverse Alignment from Partial Examples).
Inverse Alignment from partial examples is the following
problem. The input is a collection of partial alignments Ai of
sequences Si for 1 % i % k. The output is parameter vector

x$ :¼ argmin
x2D

min
A1;...;Ak

EðxÞ;

where error function E is either Eabs or Erel, and symbol Ai

varies over all possible completions of Ai. In other words,
vector x$ minimizes the error of the example scores over all
possible completions of the partial examples.

We make a few remarks on this definition. First, this
formulation finds parameter values for which optimally
aligning the unreliable regions yields a completion that
scores as close as possible to an optimal unconstrained
alignment of the example sequences. Second, even when the
reliable regions are all gap free (which is common when
partial examples are obtained from the standard suites of
benchmark protein alignments), this formulation still learns
useful values for gap penalties, as appropriate values for
gaps in the unreliable regions are necessary for the reliable
regions to be part of alignments that have a close-to-optimal
score. Third, note that this formulation for partial examples
contains the prior formulations on complete examples as
special cases.

In the next section, we reduce inverse alignment from
complete examples to linear programming, and tackle
partial examples by solving a series of problems on
complete examples.

3 SOLUTION BY LINEAR PROGRAMMING

When the alignment scoring function fp is linear in its
parameters p, inverse alignment from complete examples
under relative error can be reduced to linear programming
[19], and a similar reduction applies to absolute error. We
define a linear scoring function as follows: Suppose f scores
an alignment A by measuring tþ 1 features of A through
functions g0; g1; . . . ; gt and combines these measures into
one score through a weighted sum involving parameter
vector p ¼ ðp1; . . . ; ptÞ by

fpðAÞ :¼ g0ðAÞ þ
X

1%i%t

pi giðAÞ:

Then, we say f is linear in parameters p1; . . . ; pt. (The initial
term given by function g0 usually arises when some
parameters in the scoring function are fixed, such as when
learning gap penalties for a known substitution scoring

matrix [16], [31], [19], in which case g0ðAÞmeasures the total
substitution score of alignment A. When all parameters are
varying, the term for g0 is typically zero.)

For example, in the standard scoring model for global
alignment of protein sequences, there is a substitution
score !ab for every unordered pair a, b of amino acids, a
penalty " for opening a gap, and a penalty # for extending a
gap. (A gap in an alignment is a maximal run of either
insertion or deletion columns. A gap of ‘ columns has cost
" þ #‘, which is often called an affine gap cost.) This gives a
scoring function with 212 parameters !ab, ", and # for the
alphabet of 20 amino acids. For this scoring model, the
functions g!;a;b count the number of substitutions of each
type a; b in A, and functions g" and g# respectively count the
number of gaps and the total length of all gaps in A.

We first describe the linear programming approach for
complete examples, and then discuss its extension to partial
examples.

3.1 Complete Examples
As described in detail in [19], inverse alignment from
complete examples with relative error can be reduced to
solving a series of linear programs. We briefly review this
solution for relative error, and then show how to modify it
for absolute error.

For the standard model of protein sequence alignment,
the linear programs have the following form. There is a
variable for each parameter !ab, ", and # in the alignment
scoring function f . The domain D of these parameters is
described by the following domain inequalities.

When the alignment problem is to minimize the score f
of a global alignment, parameter values can always be
shifted so they are nonnegative and then scaled so the
largest magnitude is 1, without changing the problem.
Thus, domain D has inequalities

ð0; 0; 0Þ % ð!ab; ";#Þ % ð1; 1; 1Þ: ð1Þ

The description of D also has the inequalities

!aa % !ab; ð2Þ

since an identity should cost no more than a substitution
involving that letter. (As an aside, inequality (2) holds for
PAM [5] and BLOSUM [17] similarity scores when they are
transformed into substitution costs.)

The remaining inequalities, which ensure that the
examples score as close as possible to optimal alignments,
differ for the relative and absolute error criteria.

3.1.1 Relative Error
For the relative error criterion, we first consider the problem
assuming a fixed upper bound $ on the relative error. For a
given bound $, we test whether there is a feasible solution x
with relative error at most $ by solving a linear program. We
then find the smallest $$, to within a specified precision, for
which there is a feasible solution, using binary search on $.
With precision %, this binary search for $$ involves solving
Oðlogð$$=%ÞÞ linear programs. The feasible solution x$ found
at bound $$ is then an optimal solution to inverse alignment
under relative error.

Beyond the domain inequalities, the remaining inequal-
ities in each linear program enforce that the relative error of
all examples is at most $. For each example Ai, and every
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alignment Bi of sequences Si, the linear program for $ has
an inequality

fxðAiÞ % ð1þ $Þ fxðBiÞ: ð3Þ

Notice that for a fixed value of $, this is a linear inequality in
parameters x, since function fx is linear in x. Example Ai

satisfies all these inequalities iff the inequalitywithBi ¼ B$ is
satisfied, where B$ is an optimal-scoring alignment of Si

under parameters x. In other words, the inequalities are all
satisfied iff the score of Ai has relative error at most $ under
fx. Finding the minimum $ for which this system of
inequalities has a feasible solution x corresponds to mini-
mizing the maximum relative error of the example scores.

As an aside, one could attempt to minimize the average
relative error across the examples by modifying this
approach as follows: Each example Ai would have a
corresponding error variable $i, and inequality (3) would
be modified by replacing the global constant $ with the
variable $i. The objective function would be to minimize
1
k

P
1%i%k $i. Unfortunately, inequality (3) then becomes

quadratic in variable $i and the vector of variables x, which
is no longer solvable by linear programming.

The above linear program given by inequalities (1), (2),
and (3) has an exponential number of inequalities of type (3),
since for an exampleAi, the number of alignments Bi of Si is
exponential in the lengths of the sequences [11]. Never-
theless, this program can be solved in polynomial time [19]
using a far-reaching result from linear programming theory
known as the equivalence of optimization and separation
[13]. This equivalence result states that one can solve a linear
program in polynomial time iff one can solve the separation
problem for the linear program in polynomial time [12], [28],
[18]. The separation problem is, given a possibly infeasible
vector ex of parameter values, to report an inequality from
the linear program that is violated by ex, or to report that ex
satisfies the linear program if there is no violated inequality.

We can solve the separation problem in polynomial time
for the above linear program by the following algorithm.
Given a vector ex of parameter values, for each example Ai

we compute an optimal-scoring alignment B$ of Si under f
using ex. If inequality (3) is satisfied when Bi ¼ B$, then the
inequalities are satisfied for all Bi; on the other hand, if
inequality (3) is not satisfied for B$, this gives the requisite
violated inequality. For a problem with k examples, solving
the separation problem involves computing at most one
optimal alignment for each example, for a total of at most k
optimal alignments, which runs in polynomial time.

As a consequence, the equivalence of separation and
optimization implies that the full linear program can be
solved in polynomial time. This should mainly be viewed,
however, as an existence proof for a polynomial-time
algorithm for inverse alignment. The equivalence theorem
relies on the ellipsoid method for linear programming
(which is slow in practice), and does not provide a good
bound on the polynomial for the running time of the
resulting algorithm [13].

In practice, a polynomial-time solution to the separation
problem is typically leveraged in the following cutting
plane algorithm [4] for solving a linear program with
inequalities L.

1. Start with a small subset P of the inequalities in L.

2. Compute an optimal solution ex to the linear program
given by subset P. If no such solution exists, halt and
report that L is infeasible.

3. Call the separation algorithm for L on ex. If the
algorithm reports that ex satisfies L, output ex and
halt: ex is an optimal solution for L.

4. Otherwise, add to P the violated inequality returned
by the separation algorithm in step 3, and loop back
to step 2.

While such cutting plane algorithms are not guaranteed to
terminate in polynomial time, they can be fast in practice [19].

For inverse alignment, we start with subset P initialized
to the domain inequalities (1) and (2), together with the
nondegeneracy inequality (5) described later in Section 3.3.

3.1.2 Absolute Error
For the absolute error criterion,wemodify the linearprogram
as follows: For each exampleAi, we have an additional error
variable &i. Inequality (3) for each example Ai is replaced by

fxðAiÞ % fxðBiÞ þ &i: ð4Þ

The objective function for the linear program is to minimize

1

k

X

1%i%k

&i:

Notice that minimizing this objective function forces each &i
to have the value

&i ¼ fxðAiÞ & f$
xðSiÞ:

Thus, an optimal solution x$ to this linear program with
inequalities (1), (2), and (4) gives a parameter vector that
minimizes the average absolute error of the example scores.
Again the program has exponentially many inequalities of
type (4), but the same separation algorithm that computes
an optimal alignment B$ solves the separation problem in
polynomial time, so in principle the linear program can be
solved in polynomial time. In practice, we use a cutting
plane algorithm as described above.

3.2 Partial Examples
Inverse alignment from partial examples involves optimiz-
ing over all possible completions of the examples. While for
partial examples we do not know how to efficiently find an
optimal solution, we present a practical iterative approach
which as demonstrated in Section 4 finds a good solution.

We start with an initial completion Að0Þ
i for each partial

example Ai. This initial completion may be formed by
optimally aligning each unreliable region of Ai using a
default parameter choice xð0Þ; we call this the default initial
completion. (In practice, for xð0Þ we use a standard
substitution matrix [17] with appropriate gap penalties.)
Alternatively, an initial completion may be obtained by
simply using the complete alignment given by both the
unreliable and reliable columns of the partial example; we
call this the trivial initial completion.

We then iterate the following process for j ¼ 0; 1; 2; . . . .

Compute an optimal parameter choice xðjþ1Þ by solving

the inverse alignment problem on the complete examples
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AðjÞ
i . Given xðjþ1Þ, form a new completion Aðjþ1Þ

i of each

example Ai by:

1. computing an alignment of each unreliable region
that is optimal with respect to parameters xðjþ1Þ, and

2. concatenating these alignments of the unreliable
regions, alternating with the alignments given by the
reliable regions, to form a new complete example
Aðjþ1Þ

i .

Such a completion optimally stitches together the reliable
regions of the partial example, using the current estimate
for parameter values.

This iterative scheme alternates a step of finding optimal
parameters with a step of finding optimal completions,
yielding a sequence of parameters and completions:

Að0Þ 7! xð1Þ 7! Að1Þ 7! xð2Þ 7! ' ' ' :

As the following shows, the error of successive parameter
estimates decreases monotonically.

Theorem 1 (Error Convergence for Partial Examples). For
the iterative scheme for inverse alignment from partial
examples, denote the error in score for iteration j ) 1 by

ej :¼ E xðjÞ; Aðj&1Þ! "
;

where the right-hand side measures error criterion Eabs or
Erel for the given parameters on the given completions. Then,

e1 ) e2 ) e3 ) ' ' ' ) e$;

where e$ is the optimum error for inverse alignment from
partial examples Ai under criterion E.

Proof. Since AðjÞ
i is an optimal-scoring completion of Ai

with respect to parameters xðjÞ,

fxðjÞ AðjÞ
i

! "
% fxðjÞ Aðj&1Þ

i

! "
:

In other words, under parameters xðjÞ, the new

completions AðjÞ
score just as close to optimal as the

old completions Aðj&1Þ
. This implies that with respect

to error,

E xðjÞ; AðjÞ! "
% E xðjÞ; Aðj&1Þ! "

;

whether we consider relative or absolute error. So for the

new completions AðjÞ
, error ej is achievable, as witnessed

by xðjÞ. Since the optimum error forAðjÞ
, given by the new

parameters xðjþ1Þ, cannot be worse,

ejþ1 % ej:

Furthermore, e$ lower bounds the error for all
completions. tu
Theorem 1 implies that the error of this iterative scheme

converges, as the error across iterations forms a nonincreas-
ing sequence that is bounded from below. (The error may
converge, however, to a value larger than the optimum
error e$.) As shown in Section 4, choosing a good initial
completion can reduce the final error. In practice, we iterate

this scheme until the improvement in error becomes too
small or a bound on the number of iterations is reached. As
error improves across the iterations, recovery of the
examples generally improves as well.

3.3 Eliminating Degeneracy
In general, the preceding formulations of inverse alignment,
for both relative and absolute error, when applied to global
sequence alignment have a family F of degenerate solutions:

ð!ab; ";#Þ 2 F :¼
#
ð2c; 0; cÞ : c ) 0

$
:

Every parameter choice x 2 F from this family makes all
global alignments of an example’s sequences have the same
score, namely, cðmþ nÞ for two sequences of lengths m
and n. Such an x makes each example be an optimal
scoring alignment, hence such an x is an optimal solution
for every instance of inverse alignment. Of course, these
degenerate solutions are not of biological interest. To
eliminate them, we use the following approach.

Let nondegeneracy threshold ' be the difference between
the expected cost of a random substitution (of different
letters) and the expected cost of a random identity,
measured for a default substitution scoring matrix. For a
sound scoring scheme that distinguishes between substitu-
tions and identities, this difference should be positive. The
value of ' for the commonly used BLOSUM [17] and PAM [5]
matrices for standard amino acid frequencies is around 0.4
when substitution scores are translated and scaled to costs
in the range [0, 1]. Values of ' for a wide range of BLOSUM
matrices are shown in the next section in Fig. 2.

Given a value for threshold ' , we add to the linear
program the nondegeneracy inequality

P
a<b papb !abP

a<b papb
&

P
a p2a !aaP

a p2a
) ' ; ð5Þ

where in the summations a and b range over all amino
acids, and pa is the probability of amino acid a appearing in
a random protein sequence. Note that this is a linear
inequality in parameters !ab and !aa.

Inequality (5) is equivalent to requiring that for the
learned parameters, the difference between the expected
score of a random substitution and the expected score of a
random identity is at least ' . When ' is positive, which
holds for standard scoring schemes, this inequality cuts off
the degenerate solution ð!ab; ";#Þ ¼ ð2c; 0; cÞ, as the follow-
ing theorem states. Furthermore, desirable solutions (such
as the scoring scheme from which ' was measured) are not
eliminated.

Theorem 2 (Eliminating Degeneracy). When threshold ' > 0,
inequality (5) eliminates all degenerate solutions x 2 F .

Proof. The degenerate solutions have !ab ¼ !aa ¼ 2c, so
their expected substitution and identity scores are equal.
The nondegeneracy inequality then reduces to ' % 0,
contradicting ' > 0. In other words, every solution from
F violates inequality (5). tu
In essence, the nondegeneracy inequality forces the

substitution and identity scores in the optimal solution x$

to the linear program to be at least as nondegenerate as the
default matrix from which ' was measured. In the
experiments described in the next section, we use the value
of ' corresponding to BLOSUM62, namely, ' ¼ 0:4.
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We emphasize that the nondegeneracy inequality is
crucial. Without it, the inverse alignment algorithm for
absolute error immediately outputs the optimal but trivial
solution x ¼ ð0; . . . ; 0Þ.

4 EXPERIMENTAL RESULTS

To evaluate the performance of this approach to inverse
alignment, we ran several types of experiments on biological
data. Our main interest is in comparing the new absolute
error formulation to the prior relative error formulation, and
in investigating whether parameters learned from pairwise
alignment examples can improve the recovery of bench-
marks when used for multiple sequence alignment. We also
examine how the initial completion and the nondegeneracy
threshold affect the final recovery.1

To obtain the examples for our experiments, we used
benchmarks from the PALI [2], [10] suite of structural
multiple alignments of proteins. PALI contains a benchmark
multiple alignment for every family from the SCOP [25], [26]
classification of proteins, computed by structural alignment
without hand curation. In total, PALI has 1,655 benchmark
alignments, from which we selected a subset U consisting of
all PALI alignments on at least seven sequences with
nontrivial gap structure. (If an alignment had essentially
no gaps other than at the terminal ends of its sequences, it
wasdeemedtohave trivialgapstructureandwasnot included
in set U .) Set U was further partitioned into two equal-size

subsets P and Q for the purpose of conducting training-set/
test-set cross-validation experiments. We also performed a
detailed study of a smaller subset S * U containing the
25 benchmarks from U with the most sequences. For each
benchmark in the smaller set S, where the benchmark is a
multiple alignment on n sequences, we took for the examples
the n

2

% &
pairwise alignments inducedonall pairs of rowsof the

multiplealignment.For thebenchmarks inthe largersetsU ,P ,
andQ, we took as the examples amuch sparser set of induced
pairwise alignments, as described later.

Table 1 summarizes the characteristics of these data sets.
Each of the PALI benchmarks in these data sets consists of
partial examples. The reliable regions in the partial
examples are given by the core blocks of the benchmark.
(PALI explicitly identifies the core blocks in each bench-
mark, which consist of those columns of the multiple
alignment in which all pairs of residues are within 3 !A on
their C( atoms in the structural multiple alignment.) For
sets U , P , Q, and S, the table reports the number of
benchmarks in each set and, averaged across the bench-
marks in the set, their number of sequences, their sequence
length, and the percent identity of their induced pairwise
alignments. Also shown averaged over the core blocks of
the benchmarks are their percent coverage of the sequences
and their percent identity.

Fig. 1 illustrates the improvement in error for the iterative
approach to partial examples discussed in Section 3.2. The
plots show the average absolute error and the recovery rate
across the iterations, starting from a given initial comple-
tion. The recovery rate is the percentage of columns from
reliable regions that are present in an optimal alignment
computed using the estimated parameters. Results are
plotted for two initial completions: the default completion,
which optimally aligns the unreliable regions using default
parameters, and the trivial completion, which uses all
columns of the partial alignment including unreliable ones.
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TABLE 1
Data Set Characteristics

Fig. 1. Improvement in error and recovery for the iterative approach to partial examples. (a) Plot of the error at each successive iteration. (b) Plot of
the corresponding recovery for the parameters learned at that iteration. The curves in the plots start from two different initial completions: the trivial
completion and the default completion (defined in the text). The examples are all induced pairwise alignments from PALI benchmark b.1.8.1.

1. Our experiments do not compare the linear programming approach
for inverse alignment to alternative machine learning approaches [7], [37].
The CONTRAlign [6] tool that implements the work of Do et al. [7] does not
directly produce a substitution matrix and pair of affine gap penalties for
the standard protein alignment scoring model, and reimplementing their
approach to facilitate a direct comparison requires nonconvex numerical
optimization. The work of Yu et al. [37] is on sequence-to-structure protein
alignment, and reimplementing their approach to apply it to standard
sequence-to-sequence alignment requires quadratic programming.



(The default parameters are those used by the multiple
alignment tool Opal [35], [36], which are the BLOSUM62

substitution matrix with carefully chosen gap penalties.)
The examples for the plot are all induced pairwise
alignments of PALI benchmark b.1.8.1, and the error
criterion is the average absolute error. As the figure shows,
the error in alignment scores decreases across the iterations,
and the corresponding recovery of the example alignments
tends to improve as well. (Also note that starting from the
default completion has better recovery and less error than
starting from the trivial completion.) Generally, smaller
error correlates with higher recovery.

Fig. 2 shows that across a very wide range of
conventional substitution matrices, using the correspond-
ing value of threshold ' in nondegeneracy inequality (5)
does not adversely affect recovery. In other words, the
choice of which substitution matrix is used to establish ' is
not critical. (Nevertheless, enforcing the nondegeneracy
inequality is crucial: without it, the inverse alignment
algorithm immediately outputs an optimal degenerate
solution.) In the plot, the value i along the horizontal axis
specifies the index of a BLOSUM substitution matrix. The
BLOSUM matrices we consider have been transformed into
cost matrices with extreme values of 0 and 1. The bottom
curve plots the value of ' measured on matrix BLOSUMi.
(Note that BLOSUMi matrices that correspond to a higher
percent identity generally have greater discrimination
between substitutions and identities, as evidenced by the
bottom curve for ' tending to be increasing in i.) The top
curve plots recovery rates when the corresponding value
of ' is used in the nondegeneracy inequality. At every
point on this curve, parameters are learned using the same
collection of pairwise alignment examples (set eU , which is
described later), and the average recovery rate on these
examples is plotted.2 Across the range of BLOSUM matrices,
' varies up to 40 percent, while there is little variation in
recovery. In short, recovery is robust to the particular
value ' used in the nondegeneracy inequality.

Table 2 shows a detailed comparison of recovery rates
across several different scenarios for inverse alignment. The

rows of the table correspond to the PALI benchmarks in
set S, which are named by their SCOP identifier. (The rows
are sorted in increasing order on column “default (c),”
which is described in more detail later.) For each bench-
mark, the table reports the average recovery rate across its
examples, which consist of all induced pairwise alignments
of the benchmark, for various scenarios. In these scenarios,
parameters learned from the examples for a given bench-
mark are applied to the sequences in this benchmark, either
to compute an optimal global pairwise alignment of the
example sequences (corresponding to the first group of
columns), or to compute a global multiple alignment of the
benchmark sequences using the tool Opal [35], [36]
(corresponding to the second group of columns). Opal is
a multiple sequence alignment tool, based on optimally
aligning alignments [20], [30], that seeks to optimize the
sum-of-pairs objective [3]. In the first group of five columns,
the table reports the recovery rates on the examples for
optimal pairwise alignments computed using:

1. the default parameters in Opal, namely, the
BLOSUM62 matrix [17] with carefully chosen affine
gap penalties [35],

2. the BLOSUM62 matrix with affine gap penalties
learned using the absolute error criterion,

3. the substitution matrix and gap penalties learned
using the relative error criterion,

4. the substitution matrix and gap penalties learned
using absolute error, and

5. the difference between the recovery rates of the
absolute error and default parameters.

In the second group of columns, the table reports the
recovery rates of a multiple sequence alignment of the
benchmark sequences computed by Opal using:

6. the default parameters of Opal,
7. the substitution matrix and penalties learned under

absolute error, and
8. the difference between these two.

In these experiments, the precision of the binary search in
the relative error criterion is 0.01 percent. Parameters for
alignment are rounded to integers using a scale of 100.

A key conclusion from examining Table 2 is that the
absolute error criterion substantially outperforms the relative
error criterion with respect to recovery of example align-
ments (seen by comparing the table columns labeled
absolute and relative in the pairwise alignment group). In
addition, from inspecting the two difference columns in the
table (whose maximum entries are marked by a left arrow),
parameters learned under absolute error when used for
both global pairwise and multiple alignment outperform
the default parameters of Opal, which uses the standard
BLOSUM62 matrix, by as much as 25 percent in recovery.
(This particular matrix had the best recovery among the
BLOSUM family.) Also note that the recovery rates of
parameters when used for multiple alignment are generally
much higher than when used for pairwise alignment. To
summarize, by performing inverse alignment from partial
examples one can learn parameters for global pairwise or
multiple sequence alignment that are tailored to a given
protein family and that yield very high recovery.
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Fig. 2. Robustness of the recovery rate to nondegeneracy threshold ' .
The bottom curve plots threshold ' measured on substitution matrix
BLOSUMi at each i. The top curve plots the corresponding recovery rate
when the value of ' from BLOSUMi is used in the nondegeneracy
inequality. Parameters are learned and recovery is measured using the
examples in set eU (defined in the text). As shown, recovery is robust to
the particular matrix used to establish ' .

2. The recovery rate in this plot is for computing pairwise alignments of
the example sequences. Later, Table 3 gives the recovery rate when
computing multiple alignments of benchmark sequences, which is
substantially higher.



Finally, Table 3 presents recovery results from cross-
validation experiments. Parameters learned on sparse
training sets using the absolute error criterion are applied
to complete test sets. The recovery rate for these parameters
is measured on multiple alignments of the benchmarks
computed by Opal. In the table, parameters learned on
training sets eU , eP , and eQ using the absolute error criterion
are applied to test sets U , P , and Q. For a generic set X of
PALI benchmarks, the examples in training set eX are a
subset of the induced pairwise alignments of the bench-
marks in X. Set eX contains pairwise alignments selected
according to their recovery rate in an initial multiple
alignment of the benchmark computed by Opal using
its default parameters. For eP and eQ, the subset contains the
induced pairwise alignments from each benchmark whose
initial recovery rates rank at the 25th, 50th, and
75th percentiles; for eU , the examples rank at the 33rd and
66th percentiles. Parameters from a given training set were
used in Opal to compute multiple alignments of the
benchmarks in the test set, and the table reports the average
recovery.

Note that there is only a small difference in recoverywhen
parameters are applied for multiple sequence alignment to

disjoint test sets, compared to their recovery on their training
set. This suggests that the absolute error method is not
overfitting the parameters to the training data.

To give a sense of running time, performing inverse
alignment on training set eU of more than 200 examples
involved around 6 iterations for completing partial exam-
ples and took about 4 hours total on a 3.2 GHz Pentium 4
processor with 1 Gbyte of RAM, using GLPK [23] to solve
the linear programs. An iteration took roughly 40 minutes
and required around 4,000 cutting planes.

5 CONCLUSION

We have explored a new approach to inverse parametric
sequence alignment that for the first time carefully treats
partial examples. This new approach minimizes the average
absolute error of alignment scores, and iterates over
completions of partial examples. We also studied for the
first time the performance of the resulting scoring schemes
when used for multiple sequence alignment. A key
conclusion from this study is that the new absolute error
criterion outperforms the prior relative error criterion in
terms of recovery rate. Our results also indicate that a
substantial improvement in alignment accuracy can be
achieved on individual protein families, and that scoring
schemes learned from a sample of families generalize well
to other protein families.

5.1 Further Research
There are many directions for further research. Given that
we can solve instances of inverse alignment with hundreds
of parameters, is it possible to significantly increase the
accuracy of protein sequence alignment through a more
sophisticated scoring model with additional parameters
that incorporate features such as amino acid hydrophobicity
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TABLE 2
Recovery Rates on Data Set S for Variations of Inverse Alignment

TABLE 3
Recovery Rates for Cross-Validation Experiments



[7], [32], [8] and predicted secondary structure [38], [29],

[22]? Can accuracy be boosted by modifying inverse

alignment to directly incorporate example recovery [37] into

the formulation? Is parameter generalization benefited by

including a regularization term in the objective function [7],

[37], for instance by penalizing parameter overfitting

through the L1 norm to retain a linear programming

formulation? There remains much to investigate.
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