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ABSTRACT
A basic computational problem that arises in both the con-
struction and local-search phases of the best heuristics for
multiple sequence alignment is that of aligning the columns
of two multiple alignments. When the scoring function is
the sum-of-pairs objective and induced pairwise alignments
are evaluated using linear gap-costs, we call this problem
Aligning Alignments. While seemingly a straightforward ex-
tension of two-sequence alignment, we prove it is actually
NP-complete. As explained in the paper, this provides the
first demonstration that minimizing linear gap-costs, in the
context of multiple sequence alignment, is inherently hard.

We also develop an exact algorithm for Aligning Align-
ments that is remarkably efficient in practice, both in time
and space. Even though the problem is NP-complete, com-
putational experiments on both biological and simulated
data show we can compute optimal alignments for all bench-
mark instances in two standard datasets, and solve very-
large random instances with highly-gapped sequences.

Keywords: Multiple sequence alignment, sum of pairs, lin-
ear gap costs, exact algorithms

General Terms: Algorithms

Categories and Subject Descriptors: F.2.2 [Analysis

of Algorithms and Problem Complexity]: Computa-
tions on discrete structures, pattern matching

1. INTRODUCTION
While it is widely recognized in computational biology

that linear gap-costs are necessary to get biologically-correct
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alignments of two sequences [7], in alignment of multiple

sequences almost without exception the known exact algo-
rithms [37, 5, 22, 23] and approximation algorithms [18, 33,
3, 21, 41, 35] have not considered linear gap-costs. The
only exception we know (other than studies of three se-
quences [8, 13, 34]) is the algorithm behind the software
MSA [26, 17], which uses linear gap-costs and can potentially
compute optimal multiple alignments. Even here, however,
the algorithm does not compute exact gap-costs: MSA uses a
heuristic suggested by Altschul [1] that overcounts the true
number of gap-initiation events. We believe this inaccuracy
in gap-initiation costs is one of the reasons the best heuris-
tics for multiple alignment [45, 6, 4, 38, 17, 2, 36] place gaps
poorly on tough instances [29].

Computing correct gap-counts in exact algorithms for
multiple alignment seems to unavoidably add exponential-
overhead to algorithms that are already exponential in the
worst case. (In MSA, for example, the design decision to just
include heuristic gap-counts increased the time complexity
for k sequences by a factor of 2k in the worst case [17].)
Nevertheless, the fact that researchers have been unable to
compute exact gap-counts efficiently, or even that multiple
alignments can end in an exponential number of gap con-
figurations [1], does not prove it cannot be done. How to
determine the inherent complexity of handling exact gap-
counts has been a mystery though, since the standard for-
mulations of multiple sequence alignment are already NP-
complete without linear gap-costs [28, 22, 42, 43].

In this paper, along with several other results, we resolve
this dilemma. We show for the first time that there is a form
of multiple alignment which we call Aligning Alignments

that is:

(1) NP-complete with gap counts,
(2) polynomial-time solvable without them, yet
(3) can be exactly solved with gap counts in practice.

Together (1) and (2) establish that exact gap-counts are in-
herently hard in the worst case (independent of the complex-
ity of multiple alignment) while (3) shows they are tractable
in practice.

Aligning Alignments is the problem of finding an optimal
alignment of the columns of two multiple sequence align-
ments under the sum-of-pairs objective with linear gap-costs.
The sum-of-pairs objective [5] scores a multiple alignment
by the sum of the scores of the two-sequence alignments in-
duced on all pairs of sequences. With linear gap-costs a run
of either x insertions or deletions costs γ+λx, where γ is the
gap-initiation cost and λ is the gap-extension cost. For γ = 0



(when gap counts are irrelevant) the problem can be solved
in polynomial time, since it is then equivalent to aligning
two sequences where we treat the columns of the alignments
as generalized letters. Our negative result is that for γ > 0
(when gap counts matter) the problem is NP-complete.

Our positive result is an exact algorithm for Aligning
Alignments that is fast in practice. Suppose the input is
a k×m alignment A versus an `×n alignment B. The al-
gorithm uses dynamic programming over the columns of A
and B, where at each entry (i, j) in the table we keep a list
of shapes. A shape is an ordered partition of the k+` se-
quences that represents the final gap-configuration of a mul-
tiple alignment on the columns in prefixes A[1 : i] and B[1 :j].
In the worst case, the number of shapes at an entry is expo-
nential in k and `. We develop two techniques to prune the
list of shapes, one based on a cost lower-bound and the other
based on the gap configuration, which keep the shape-lists
surprisingly small in practice. Computational experiments
show we can solve all instances of Aligning Alignments ob-
tained from the benchmark alignments in the datasets of
McClure, Vasi and Fitch [29] and Thompson, Plewniak and
Poch [40], as well as highly-gapped random instances with
250 sequences and 500 columns in each alignment.

Related work Gotoh, in two pioneering papers [14, 15],
first considered an approach of this type, though his descrip-
tion is not easy to follow. By comparison our algorithm
is simple, provably correct, and considers fewer shapes as
shown in Section 5.3. While Gotoh does not analyze the
running time of his procedure, our NP-completeness result
shows that unless P = NP, it cannot run in polynomial time.

Kececioglu and Zhang [25] developed algorithms that solve
a relaxed version of Aligning Alignments with approximate
gap counts (that they termed optimistic or pessimistic) for
several variations of the problem where either of the input
alignments are a single sequence, a multiple alignment, or
a weighted profile. They also developed an efficient algo-
rithm that solves the special case of Aligning Alignments
where one of the inputs is a string and the other is a mul-
tiple alignment, while conjecturing that in general Aligning
Alignments is NP-complete.

During the preparation of this paper we learned that Ma,
Wang and Zhang [27] have also recently and independently
resolved the conjecture of Kececioglu and Zhang and proved
that Aligning Alignments is NP-complete. Our reduction
and proof are significantly simpler, and also yield a stronger
result: that the problem remains NP-complete even when
all strings have at most five letters, at most one internal
gap, and edit operations have unit cost.

Plan of the paper In the next section we prove Align-
ing Alignments is NP-complete. Section 3 then develops an
exact algorithm that computes an optimal alignment. Sec-
tion 4 analyzes the worst-case time and space for this algo-
rithm. Section 5 presents two techniques for reducing the
time, which are remarkably effective in practice. Section 6
shows that one of these techniques, dominance pruning, can
be implemented to run in space linear in the number of
columns in the input. Section 7 then presents results from
extensive experiments on both biological and simulated data
that show we can compute optimal alignments for all in-
stances in two standard benchmark datasets, as well as for
very-large random instances with highly-gapped sequences.

This paper is an extended abstract of [24].

2. COMPUTATIONAL COMPLEXITY
We now formally define our problem. Let S be a collection

of strings S1, . . . , Sk over alphabet Σ. Characters in Σ are
called letters. Let ‘-’ be a character not in Σ called a spacer.
An alignment of S is a matrix A with k rows where (i) each
entry is either a letter or a spacer, (ii) no column is all
spacers, and (iii) reading across row i and removing spacers
spells string Si. We call A a multiple alignment when we
want to emphasize that S may have more than two strings.

With linear gap costs, we score a two-string alignment as
follows. A gap is a maximal run of columns of the form a

-

or -
a (but not both). The length of a gap is its number of

columns. The gap cost for a gap of length x is γ +λx, where
constant γ ≥ 0 is the gap initiation cost and constant λ ≥ 0
is the gap extension cost. A substitution cost function δ
assigns each pair of letters a, b the cost δ(a, b) = δ(b, a). The
alignment cost is the sum of the substitution costs δ(a, b)
over all nongap columns a

b, plus the sum of the gap costs.
Alternately we can extend the substitution cost function by
defining δ(a, -) = δ(-, a) = λ for all letters a. The alignment
cost is then equal to the sum of δ over all columns, plus a
term γy where y is the total gap count for the alignment.
The triple (δ, γ, λ) specifies the cost function f for two-string
alignments.

Given a cost function f on two-string alignments, the
sum-of-pairs objective [5] scores a multiple alignment A as
follows. Each pair of rows i, j of A induces a two-string
alignment Aij of Si, Sj . (Columns of Aij where both rows
have spacers are ignored.) A weight function ω assigns each
pair of strings Si, Sj the weight ω(i, j) = ω(j, i). The sum-

of-pairs cost of A is the weighted sum of the costs under f
of the two-string alignments induced by all unordered pairs
of rows, where the cost of Aij is weighted by ω(i, j). The
pair (ω, f) specifies the sum-of-pairs objective function.

Definition 1 (Aligning Alignments). The Aligning

Alignments Problem is the following. The input is multiple

alignments A and B, weight function ω on pairs of strings

from A and B, substitution cost function δ, gap initiation

cost γ, and gap extension cost λ. The output is an alignment

of the columns of A versus the columns of B that minimizes

the sum-of-pairs objective with linear gap costs.

In other words, the alignments A and B are viewed as
two sequences. The problem is to align these two sequences
by inserting, deleting, and substituting columns. A solution
yields a multiple alignment C of the strings in A and B,
where the subalignment of C induced by the strings in ei-
ther A or B is fixed. The problem evaluates C using the
sum-of-pairs objective, scoring the induced two-string align-
ments with linear gap costs.

When γ = 0 (so gap counts have no effect) the problem is
solvable in polynomial time. In this case we can reduce the
problem to standard alignment of two strings, by treating
the columns of A and B as generalized letters and defining
generalized insertion, deletion, and substitution costs.

Surprisingly when γ > 0 (so gap counts matter) the prob-
lem is provably hard, as we now show. The decision version

of Aligning Alignments has an extra input parameter: a cost
bound d. The problem is to decide whether A and B have
an alignment of cost at most d.

Theorem 1 (Complexity). The decision version of

Aligning Alignments is NP-complete.



Proof sketch. To show the problem is NP-hard, we
use a reduction from the Maximum Cut Problem [9]. Re-
call that an instance of Maximum Cut is an undirected
edge-weighted graph G = (V, E) (without self-loops or par-
allel edges) and an integer c. The problem is to deter-
mine whether there is a bipartition of vertices V into two
nonempty subsets L and R, called a cut, such that the sum
of the weights of the edges in E that cross the cut (by having
one end in L and the other in R) is at least c. Maximum Cut
remains NP-complete when all edges have unit weight [10],
so we use this simplified form of the problem. In this case c
is a lower bound on the number of edges that cross the cut,
which we call the cardinality of the cut.

Given an instance (V, E, c) of Maximum Cut, we construct
an instance (A,B, ω, δ, γ, λ, d) of Aligning Alignments as fol-
lows. Let V = {v1, . . . , vn} and E = {e1, . . . , em}. Align-
ments A and B are over the binary alphabet Σ = {0, 1}.
They have two types of rows (edge rows and dummy rows),
and two types of columns (vertex columns and dummy

columns). Both alignments consist of m edge rows followed
by k dummy rows, where k = Θ(m) is a parameter we deter-
mine later. Columns in A and B are in n consecutive groups

corresponding to the n vertices. Groups start with a dummy
column, followed by one vertex column in A and two vertex
columns in B. The two vertex columns in the group corre-
sponding to vertex v in B represent the two sides of a cut
where v may fall. Intuitively, dummy columns confine the
alignment so a vertex column in A is aligned to one of the
two corresponding vertex columns in B; dummy rows ensure
dummy columns for corresponding groups are aligned.

The entries in a row are as follows. The row in A for
edge ei = (vj , vj′ ) has 1’s in the vertex columns for vj

and vj′ and spacers everywhere else. Assuming j < j′, the
corresponding edge row in B has substring 010 at the group
for vj , substring -10 at the group for vj′ , and spacers every-
where else. Dummy rows are (0-)n in A and (0--)n in B.

Weight function ω gives all pairs of rows unit weight.
The substitution cost function δ has two values: δ(0, 0) =
δ(1, 1) = 0, and δ(0, 1) = δ(1, 0) = σ. Thus the alignment
cost function is given by three constants: γ, λ, and σ. Fix-
ing γ, λ, σ, k, and d specifies the constructed instance of
Aligning Alignments.

We say an alignment of A and B is in normal form if every
dummy column of A is aligned to its corresponding dummy
column in B, and every vertex column of A is aligned to one
of its two corresponding vertex columns in B. We denote the
vertex columns of A and B associated with vertex v by Av,

BvL

, and BvR

.
With a cut (L, R) of G we associate a normal-form align-

ment C of A and B as follows. For each vertex v, align col-

umn Av with column BvL

in C if v ∈ L; otherwise align Av

with BvR

. In the full proof [24] we show that G has a cut of
cardinality at least c if and only if A and B have an align-
ment in normal form of cost at most d, when we fix γ = 2,
λ = 1, σ = 1, and d = χ − c where χ is a constant that
depends only on G. We then show that choosing k = 5m
ensures every alignment of A and B of cost at most d is in
normal form, which completes the proof. 2

The proof yields a strong result: Aligning Alignments re-
mains NP-complete for unweighted sum-of-pairs (where all
pairs of rows have the same weight), for input strings over a
binary alphabet (hence for DNA and protein sequences), and

for the unit-cost metric (the simplest cost function, where
insertion, deletion, and substitution cost 1 and an identity
costs 0).

To understand what makes the problem hard, it is worth
asking how much more we can constrain Aligning Align-
ments and still have an NP-complete problem. Given that
both alignments are riddled with gaps in the reduction, it
might appear that multiple gaps makes the problem hard.
Notice however that by spreading the 0’s of each dummy
row across n rows, we can eliminate interior gaps in dummy
rows and break up their length. The proof still goes through,
but now every row contains a string of constant length with
a constant number of gaps. Thus Aligning Alignments re-
mains NP-complete when the alignments are over strings of
length at most 5 and every row has at most 3 gaps, with at
most 1 gap in the interior of each string.

Interestingly if one of A or B has no gaps, Aligning Align-
ments is solvable in polynomial time. One way to see this
is to reduce the problem to aligning a string against an
alignment, by treating the gapless alignment as a string of
columns, which Kececioglu and Zhang [25] solve in O(km2 +
mn log m) time for a k × m alignment versus an n-length
string, assuming a constant-size alphabet. Our general ex-
act algorithm of the next section also runs in polynomial
time in this special case, but with a larger time bound.

3. EXACT ALGORITHM
We now develop an exact algorithm for Aligning Align-

ments that finds an optimal solution by dynamic program-
ming. Our presentation ignores the weights ω on pairs of
sequences, or equivalently assumes uniform weights. All our
results apply to nonuniform weights, and incorporating them
by scaling the pairwise alignment costs is straightforward.

The algorithm is conceptually simple, though presenting
it requires a fair amount of formalism. Essentially the al-
gorithm follows a standard dynamic programming approach
by viewing the alignments as sequences of columns where a
subproblem, which usually corresponds to a prefix of both
sequences, now has an additional parameter that specifies
the shape of the gaps in which an optimal alignment ends.

Deriving a recurrence based on shapes To evaluate
the cost of an alignment with linear gap-costs we need to de-
termine the number of gaps initiated by a column. Whether
a column starts a gap in a pair of rows depends on the rel-
ative order of the rightmost letter in each row. We capture
this relative order in what we call the shape of an align-
ment. Formally, a shape s for an alignment with k rows is
an ordered partition

s = (s1, s2, . . . , sp),

where 1 ≤ p ≤ k. The si form a partition of the row
set {1, . . . , k}, or in other words they are disjoint subsets
whose union is all rows. Furthermore the si, which we call
the blocks of the partition, are ordered : si precedes si+1.
The interpretation of a shape is that each block represents
a set of rows whose rightmost letters occur in the same col-
umn, and that these columns occur across the alignment in
the same order as the blocks in the shape. So for a pair of
rows i and j, the relative order of their last letters is given
by the relative order of the blocks that contain i and j.

We say an alignment ends with rows i and j flush if the
rightmost letter in each row occurs in the same column, or



both rows have no letters. Otherwise the rightmost letter in
row i is to the right or left of the rightmost letter in row j,
in which case we say i overhangs or underhangs j.

For example, shape ({1, 3}, {2, 4}) means the associated
alignment has 4 rows. The alignment ends with rows 2 and 4
flush; rows 1 and 3 end earlier and are also flush. In the
induced pairwise alignments, row 2 overhangs row 3, and
row 1 underhangs row 2.

Suppose the input to our problem is a k × m multiple
alignment A and an ` × n multiple alignment B. We de-
note the entry in A at row i and column j by A[i, j]. We
write A[j] to denote column j of A, and A[j : j′] to denote
the subalignment of A consisting of columns j through j ′

when j ≤ j′, and the empty alignment otherwise.
To find an optimal alignment of A and B, the subproblem

we solve is to determine for a given shape s and indices
0 ≤ i ≤ m and 0 ≤ j ≤ n, the cost of an optimal alignment
of the prefixes A[1 : i] and B[1 : j] that ends in shape s.
We call the solution cost for this subproblem C(i, j, s). In
general not every shape s can be realized by alignments of
given prefixes. We denote the set of shapes of all aligments
of these prefixes by S(i, j). The cost of an optimal alignment
of A and B is then

min
s∈S(m,n)

�
C(m, n, s) � .

To count gaps we use the following predicates. For a pair
of rows p and q in an alignment with shape s,

• qs
p if and only if p overhangs q in the alignment, and

• psq if and only if p underhangs q.

For rows p and q and column c,

• qc
p if and only if p has a letter and q has a spacer in

column c, and
• pcq if and only if q has a letter and p has a spacer.

For alignment columns a and b, let (a, b) be the new column
obtained by placing a on top of b. When using this notation,
a and b will be either columns from A or B or the column
of all spacers, which we denote by -. In terms of the above
predicates, the total number of gaps initiated by appending
column (a, b) onto an alignment that ends in shape s is

g(a, b, s) := �
p∈A
q∈B

���
q(a, b)p and qsp � or

�
p(a, b)q and psq

��� .

(In evaluating the sum, true maps to 1 and false maps
to 0, while x denotes the logical negation of x.)

We now give a recurrence for S(i, j), the set of shapes
of all alignments of a prefix of the input. For shape s and
column c, the shape obtained by concatenating c onto any
alignment ending in s is denoted s◦ c. For a set S of shapes,
S ◦c denotes {s◦c : s ∈ S}. We denote the flat shape, in
which all rows are flush (so the associated alignment ends
with a column of all letters, or the alignment is empty), by

ϕ :=
�
{1, . . . , k+`} � .

In this notation, for i ≤ m and j ≤ n,

S(i, j) =

	




� 




�
{}, i < 0 or j < 0;

{ϕ}, i = 0 and j = 0;

S(i−1, j) ◦ (A[i], -) S(i, j−1) ◦ (-, B[j])
S(i−1, j−1) ◦ (A[i], B[j]), otherwise.

To derive a recurrence for C(i, j, s), the key observation
is that an optimal alignment of this prefix of the input that
ends in shape s must have some final column c, and remov-
ing c must yield an optimal alignment ending in shape �s
where �s◦c = s. By this observation, for 0 ≤ i ≤ m, 0 ≤ j ≤ n,
t ∈ S(i, j), and (i, j) 6= (0, 0),

C(i, j, t) = min

	






















� 






















�

min
s ∈S(i−1,j)

s ◦ (A[i],-)= t

	
� 
� C(i−1, j, s)

+ γ g
�
A[i], -, s �

+ λ` ��A[i] ��
� 
�

� ,

min
s ∈S(i,j−1)

s ◦ (-,B[j]) = t

	
� 
� C(i, j−1, s)

+ γ g
�
-, B[j], s �

+ λk ��B[j] ��
� 
�

� ,

min
s ∈S(i−1,j−1)

s ◦ (A[i],B[j])= t

	



� 



�
C(i−1, j−1, s)

+ γ g
�
A[i], B[j], s �

+ �
p∈A
q∈B

δ
�
A[p, i], B[q, j] �

� 



�




� ,

where |c| denotes the number of letters in column c. For
(i, j) = (0, 0),

C(0, 0, ϕ) := 0.

Solving the corresponding shortest-paths problem

As is standard, we view the process of evaluating the re-
currence as an equivalent shortest-paths problem in a grid-
structured graph G. Graph G has a vertex for every sub-
problem (i, j, s) where s is in S(i, j), and an edge directed
from vertex (�ı, �, s) to (i, j, t) if C(�ı, �, s) appears in the above
recurrence for C(i, j, t). Every edge then corresponds to a
column c where s◦c = t, and is weighted by the alignment
cost of column c including gap initiation costs. In general a
vertex (i, j, s) has three out-edges, corresponding to append-
ing an insertion, deletion, or substitution column. Finding
a shortest path in G from source vertex (0, 0, ϕ) to the sink
vertices (m,n, t) for t in S(m,n) finds an optimal alignment
of A and B.

It is advantageous when computing shortest paths to pro-
cess all the vertices at coordinate (i, j) as a group, as shown
in Section 5. Since G is acyclic, we can find shortest paths by
considering vertices in any topological order. We examine
groups in lexicographic order, which corresponds to evalu-
ating the recurrence in row-major order on entries (i, j). As
we encounter entries starting from the source (0, 0, ϕ), we ef-
fectively construct G on the fly, building at each entry (i, j)
a list of all shapes s in S(i, j), which we call the entry’s shape

list L(i, j). With each shape s on list L(i, j), we maintain
the cost of the shortest path known to vertex (i, j, s).

To process an entry (i, j), the algorithm examines each
shape on L(i, j). The entire shape list has already been
constructed by processing lexicographically earlier entries,



and the cost of a shortest path from the source to each s
on L(i, j) is known. The algorithm then considers the three
out-edges of vertex v = (i, j, s) to vertices w in the adjacent
entries (i, j+1), (i+1, j), and (i+1, j+1). If the shape t for w
is not already on the shape list for the adjacent entry, it is
created, and its associated cost is initialized to the length
of the shortest path to w through v. If t is present in the
shape list, its cost is updated.

To process entry (m,n), its list L(m, n) is scanned for the
shape t with minimum associated cost. On determining t,
the shortest path from the source to t is recovered, yielding
an optimal alignment of A and B. Interestingly, recovering
the shortest path does not require back pointers, since given
a shape t at entry (i, j), its last block uniquely identifies
the final column of its associated alignment, which in turn
specifies the preceding entry (�ı, �) on the path. Once this
entry is known, the shape s such that (�ı, �, s) is the preceding
vertex on the shortest path can be determined by examining
all s on the entry’s list and seeing which of these shapes
yields shape t and value C(i, j, t) in the recurrence.

This algorithm is equivalent to the standard breadth-first
search for single-source shortest paths in acyclic graphs,
which takes time linear in the size of the graph. Our graphs
have size linear in the number of vertices, which is just the
total number of shapes at all entries. The total number of
shapes, however, is highly dependent on the gap structure
of the inputs A and B, and is not easy to determine. We
next determine this quantity in the worst case.

4. TIME AND SPACE
The time and space for the exact algorithm depends on the

number of shapes at entries, which we now analyze. (This
section is technical and omits some proofs from [24].)

4.1 Number of shapes
We now determine the exact worst-case number of shapes

at each entry, which in essence yields the worst-case time and
space for the exact algorithm. The result, which is given in
Theorem 2, is surprising in that we are able to determine the
worst case precisely (not just its order of growth) and that
it is an unexpected function of the input size (not simply the
number of ordered partitions of the input sequences, as in
pure sum-of-pairs multiple alignment [1]).

Preliminaries We denote the worst-case number of shapes

at an entry by Sab(i, j). Formally when a > 0 and b > 0,
define Sab(i, j) to be the maximum number of shapes at en-
try (i, j) over all inputs A and B, where A has a sequences
and at least i columns and B has b sequences and at least
j columns. When a = 0 or b = 0, define Sab(i, j) = 1.

We denote the worst-case number of shapes contributed

to a table entry from its adjacent entries by the following
three quantities:

• Vab(i, j), the maximum number of shapes at entry (i, j)
whose alignments extend shapes from (i− 1, j), or
in other words follow a vertical edge from (i−1, j)
to (i, j), where the maximum is over all inputs with a
and b sequences,

• Hab(i, j), the maximum number of shapes at (i, j)
that follow a horizontal edge from (i, j−1), and

• Dab(i, j), the maximum number of shapes at (i, j)
that follow a diagonal edge from (i−1, j−1).

The following lemma bounds the number of shapes con-
tributed from a given direction in terms of the number of
shapes at the contributing entry with fewer sequences. This
reduction in the number of sequences is key for the inductive
step in the proof of our main result.

Lemma 1 (Contributed Shapes). For all i ≥ 0, j ≥ 0,
a ≥ 1, and b ≥ 1,

Vab(i+1, j) ≤ Sa−1,b(i, j), (1)

Hab(i, j+1) ≤ Sa,b−1(i, j), (2)

Dab(i+1, j+1) ≤ Sa−1,b−1(i, j). (3)

We denote the number of alignments of two strings of
lengths m and n by F (m,n). Equivalently, F (m, n) is the
number of paths in the standard edit grid-graph from ver-
tex (0, 0) to vertex (m, n). Function F satisfies the recur-
rence,

F (m,n) =

	


� 


�
1, m = 0 or n = 0;

F (m−1, n)

+ F (m,n−1)

+ F (m−1, n−1), m > 0 and n > 0.

Note that F is monotonic increasing in its arguments.

Results We now have the tools to prove the main re-
sult of this section: the number of shapes at an entry is
at most F (a, b), the number of alignments of two strings
whose lengths are the number of sequences in the input. We
actually prove the following tighter result, which as it turns
out is exact.

Lemma 2 (Upper Bound). For all i ≥ 0, j ≥ 0, a ≥ 1,
and b ≥ 1,

Sab(i, j) ≤ F
�
min{a, i}, min{b, j} � .

Proof. When i or j are zero the lemma holds, since
Sab(i, 0) = Sab(0, j) = F (m, 0) = F (0, n) = 1. So assume
nonzero i and j. We use induction on a + b.

In the basis, a+ b = 2, which implies A and B are strings.
Only three shapes are possible: either A overhangs, under-
hangs, or is flush with B. Thus S11(i, j) ≤ 3 = F (1, 1),
and the lemma holds.

In general for a + b > 2, assume the lemma holds for
all Sãb̃(i, j) where ã + b̃ < a + b. Let us write x 5 y
for min{x, y}. Since the set of shapes counted by Sab(i, j) is
the union of the contributions from the entries adjacent in
the vertical, horizontal, and diagonal directions,

Sab(i, j) ≤ Vab(i, j) + Hab(i, j) + Dab(i, j)

≤ Sa−1,b(i−1, j) + Sa,b−1(i, j−1)

+ Sa−1,b−1(i−1, j−1)

≤ F
�
(a5i)−1, b5j � + F

�
a5i, (b5j)−1 �

+ F
�
(a5i)−1, (b5j)−1 �

= F
�
min{a, i}, min{b, j} � ,

where the second inequality follows from Lemma 1, the third
from the induction hypothesis, and the fourth from the re-
currence for F .

The bound of Lemma 2 is tight, as the next result shows.



Lemma 3 (Lower Bound). For all i ≥ 0, j ≥ 0, a ≥ 1,
and b ≥ 1,

Sab(i, j) ≥ F
�
min{a, i}, min{b, j} � .

Moreover for every m ≥ 1 and n ≥ 1, there is an a×m and

b× n input that meets this lower bound at every entry of its

table.

Combining Lemmas 2 and 3 yields the exact worst-case
number of shapes.

Theorem 2 (Shapes at an Entry). The worst-case

number of shapes at entry (i, j) of the dynamic program-

ming table, for inputs with a and b sequences, is exactly

F
�
min{a, i}, min{b, j} � ,

where F (m,n) is the number of alignments of two strings of

lengths m and n. Furthermore there is a fixed input that, at

every entry of the table, attains the worst case.

The last part of Theorem 2 implies that � i,j Sab(i, j) is
the worst-case total number of shapes. This governs the
worst-case time and space, and has the following order of
growth.

Corollary 1 (Total Shapes). The worst-case total

number of shapes in the table, for the exact algorithm on

an a × m and b × n alignment, is

Θ
�
F
� �a+1, �b+1 � + �m F

� �a+1, �b � + �n F
� �a, �b+1 � + �m �n F

� �a, �b � � ,

where �a = min{a, m}, �b = min{b, n}, �m = max{m−a, 0},
and �n = max{n−b, 0}.

With the number of shapes in hand, we can now determine
the worst-case time and space for the exact algorithm.

4.2 Worst-case performance
Recall that the exact algorithm proceeds lexicographically

through the entries of the dynamic programming table, and
at each entry maintains a list of the shapes that can be
achieved by alignments that end at that entry. With each
shape on the list, the cost of the optimal alignment that ends
in that shape is stored. To process entry (i, j), the algorithm
considers each shape on its list and extends the alignment to
entries (i, j+1), (i+1, j) and (i+1, j+1) by inserting, delet-
ing, or substituting a column. Extending to an alignment
at one of these adjacent entries yields an alignment ending
in some shape s with some cost C. The algorithm searches
the list L at the adjacent entry to see whether s is already
in L. If s is not present, it is inserted with cost C. If s is
present and its cost in L is greater than C, its associated
cost is lowered to C.

Suppose we represent a shape s as a one-dimensional ar-
ray S[1 :a+b] for an input with a and b sequences, where S[i]
is the rank of the block in s that contains row i. We can then
maintain each shape list as a balanced search tree, where
shapes are ordered lexicographically by their array repre-
sentation. Comparing two shapes by lexicographic order
takes O(a + b) time. So searching for a shape, inserting a
shape, or updating a shape’s cost in a list of length ` takes
O((a + b) log `) time. Finally when extending an alignment,
determining the resulting shape and counting gap initiation
events to evaluate its cost takes O(ab) time. In short, if

every list has length at most `, processing an entry takes
O(`(a + b) log ` + `ab) time and uses O(`(a + b)) space.

Theorem 2 implies every list has at most F (a, b) shapes.
In general, function F (m, n) exhibits a variety of orders of
growth depending on the relative order of growth of m and n.
When m = n, it is known (see Waterman [44, p. 187]) that

F (n, n) = Θ
� �

3+
√

2 � n
n−1/2 � .

Combining this fact with the above analysis and Corollary 1
yields the following.

Theorem 3 (Time and Space). To align two align-

ments, each having k sequences and n columns, the exact

algorithm takes worst-case time	
� 
� Θ
� �

3+
√

2 � k
(n−k)2 k3/2 � , k < n;

Θ
� �

3+
√

2 � n
k2 n−1/2 � , k ≥ n.

This is exactly a factor k greater than the worst-case space.

We can simplify the result of Theorem 3 to the following
slightly looser bound. For any constant c > 3 +

√
2 ≈ 4.4,

the time for the exact algorithm is

O
�
cmin(k,n) max(k, n)2 � .

This transitions between two orders of growth, depending on
the relative number of rows and columns in the alignments.

When m = O(1), it is not hard to show F (m, n) = nO(1).
By Theorem 2, this implies the following.

Corollary 2 (Special Case). When one of the align-

ments has a constant number of sequences, the exact algo-

rithm runs in polynomial time and space.

In practice an algorithm whose time and space is expo-
nential in the number of sequences is unlikely to be feasible
for large inputs. The next section presents two techniques
for reducing the size of a shape list, and hence reducing the
running time, which we call pruning. While our problem
is NP-complete, pruning is remarkably effective in practice,
enabling us to compute optimal solutions even for very-large,
highly-gapped alignments.

5. REDUCING THE TIME
We now present two techniques for removing shapes from

the shape lists of the exact algorithm, while guaranteeing
that the algorithm is still correct. The first technique, which
we call dominance pruning, uses a dominance relation on
pairs of shapes. The second, which we call bound pruning,
exploits upper and lower bounds on the cost of an optimal
alignment.

5.1 Dominance pruning
Consider a series of insertions, deletions, and substitutions

of columns that extend the alignment at an entry. We call
the subalignment given by the series an extension. The idea
behind dominance pruning is to remove shape t from a list
if it can be determined that t is never better than another
shape s in the list over all possible extensions. We now
derive a sufficient condition for this to hold for a pair of
shapes s and t.



For shape s and extension ρ, let s◦ρ denote the alignment
obtained by concatenating ρ onto the alignment associated
with s. Let C(s) denote the cost associated with shape s,
and C(ρ) the cost of subalignment ρ starting from the flat
shape. Finally, let G(s, ρ) count the number of pairs of
rows p ∈ A and q ∈ B such that p overhangs or underhangs q
in a gap that is continued by ρ. Then

C(s ◦ ρ) = C(s) + C(ρ) − γ G(s, ρ).

So shape t is no better than shape s on extension ρ if

C(t ◦ ρ) − C(s ◦ ρ)

=
�
C(t) − C(s) � − γ

�
G(t, ρ) − G(s, ρ) �

≥
�
C(t) − C(s) � (4)

− γ �
p∈A
q∈B

���
qt

p and qsp � or
�
ptq and psq

���
≥ 0,

where Inequality (4) follows by upper bounding the pairs of
rows that contribute positive terms to G(t, ρ) − G(s, ρ) by
the number of pairs p and q that satisfy (qt

p and qsp) or
(ptq and psq).

Since Inequality (4) is independent of ρ, rearranging yields
the following sufficient condition for C(t ◦ ρ) − C(s ◦ ρ) ≥ 0
to hold for all extensions ρ.

Definition 2 (Shape Dominance). Shape s dominates

shape t if

C(t) ≥ C(s)+γ �
p∈A
q∈B

���
qt

p and qsp � or
�
ptq and psq

� � . (5)

With dominance pruning the exact algorithm proceeds as
follows. Whenever a new shape s is considered for prop-
agation to the list L at an entry, it is compared to each
shape t in L to determine if s dominates t or t dominates s.
(We actually organize L so comparisons can potentially be
skipped.) If t is dominated it is removed from L, while if s
is dominated it is not added to L.

In general we say s is as good as t on all extensions if for
every extension ρ,

C(s ◦ ρ) ≤ C(t ◦ ρ).

The following lemma is immediate from the discussion pre-
ceding Inequality (5).

Lemma 4 (Extending Dominated Shapes). Suppose

shape s dominates shape t. Then s is as good as t on all

extensions.

A consequence of the following lemma is that interleaving
pruning with the propagation of shapes to an entry, as is
done by the exact algorithm with dominance pruning, is
equivalent to pruning only after all shapes are propagated
to the entry.

Lemma 5 (Transitivity). For all shapes r, s, and t,
if r dominates s, and s dominates t, then r dominates t.

The list of shapes at an entry is formed by propagating
shapes from three adjacent entries in the table while apply-
ing pruning. We say the shape list at an entry is determined

once propagation from all three entries is finished.

Lemma 6 (Dominance-Pruning Shape-Lists). Let L
be the set of shapes determined by dominance pruning at

entry (i, j), and S be the set of shapes of all alignments

of A[1 : i] and B[1 : j]. For every shape t in S − L there is

a shape s in L that is as good as t on every extension.

We can now prove dominance pruning is correct.

Theorem 4 (Correctness of Dominance Pruning).
The exact algorithm with dominance pruning finds an opti-

mal alignment.

Proof. We use induction on the number of columns in
an optimal alignment. Once the exact algorithm with dom-
inance pruning determines the list L at entry (m, n), by
Lemma 6 applied to the empty extension there is a shape t
in L that corresponds to an optimal alignment. Recall from
Section 3 that to recover a solution the exact algorithm iden-
tifies the last column of the alignment solely from t and the
indices of its table entry. Thus the algorithm will find the
last column c of an optimal alignment.

Shapes are never removed from a determined list, and a
list is determined before it propagates any shapes. So the
shape s that propagated t is still in the table and will be
identified by the recovery phase. Shape s corresponds to the
prefix of the optimal alignment with one less column. By
induction this prefix will be recovered, and concatenating c
recovers an optimal alignment.

As demonstrated in Section 7, the exact algorithm with
dominance pruning is highly effective. Section 6 shows it
also has the desirable property that it can be implemented
to run in space linear in the number of input columns.

5.2 Bound pruning
With bound pruning, a shape is pruned similar to the way

subproblems are pruned in branch-and-bound algorithms.
We compute a lower bound L(s) on the cost of the best
alignment of A and B that extends the alignment associated
with shape s. This is compared to an upper bound U on
the cost of an optimal alignment of A and B. If L(s) ≥ U ,
shape s can be safely pruned.

To obtain upper bound U , at the start of the computa-
tion three feasible alignments of A and B are scored, and
U is assigned the minimum of these three scores. The three
alignments are the so-called optimistic and pessimistic align-
ments [25], and the trivial alignment of A and B, which
aligns column i of A with column i of B possibly with a
final run of either insertions or deletions. (The trivial align-
ment can be good when the input arises from polishing a
multiple alignment by splitting it and realigning.)

To compute the lower bound L(s) at an entry, we lookup
a score in the dynamic programming table obtained from
running the optimistic algorithm on the reverse of the in-
put alignments. The score at each entry in this table is a
lower bound on the optimal alignment of a suffix of A with
a suffix of B, where these suffixes start with the flat shape.
We actually use the three tables computed by the optimistic
algorithm, which give the optimistic scores for alignments of
the suffixes that start with an insertion, deletion, or substi-
tution. By combining the score of shape s with an optimistic
score for the extension of s to an alignment of A and B, and
adjusting for gaps that may be overcounted in both scores, a
lower bound on the cost of an optimal alignment extending



shape s is obtained. This lower bound is computed sepa-
rately for extensions starting with an insertion, deletion, or
substitution; each must exceed U for s to be pruned.

While dominance pruning always leaves at least one shape
in a list, bound pruning can delete an entire list. As shown
in Section 7, bound pruning is very effective: often only
a tiny fraction of the entries remain with nonempty shape
lists. When combined with dominance pruning, it yields our
fastest exact algorithm in practice.

5.3 Gotoh’s pruning
Gotoh [14] describes a procedure for aligning alignments

that uses a form of pruning different from both dominance
and bound pruning. (Of our two techniques, Gotoh’s is
closer to dominance pruning.) We call Gotoh’s procedure
extremal pruning. The precise statement of extremal prun-
ing is long and involves four separate criteria; to save space
we omit it. We state here our main result on the relationship
between extremal pruning and dominance pruning. (Full de-
tails and proofs are in [24].)

Dominance pruning is simpler than extremal pruning, and
is also stronger in the following sense. For pruning method A
and set of shapes S, let A(S) be the subset of S that remains
after pruning by A. We say method A is stronger than
method B if for all sets S, A(S) ⊆ B(S), and there exist
sets S for which A(S) is strictly smaller than B(S).

Theorem 5 (Pruning Strength). Dominance prun-

ing is stronger than extremal pruning.

6. REDUCING THE SPACE
A classic result in sequence comparison is that an optimal

alignment of two strings can be computed in space linear in
the lengths of the strings without exceeding the time com-
plexity of the standard quadratic-space algorithm, as dis-
covered by Hirschberg [20]. This result can be generalized
to aligning two strings with linear gap-costs, as explained
by Myers and Miller [31], though it becomes more complex.
Linear-space algorithms are a necessity to optimally align
long genomic regions.

Given that the space used by the exact algorithm is po-
tentially exponential (see Theorem 3 in Section 4), reduc-
ing its space complexity is critical. In this section we show
that Hirschberg’s divide-and-conquer approach can be gen-
eralized to Aligning Alignments. In particular, the good
time-behavior of the exact algorithm with dominance prun-
ing described in Section 5.1 can be retained while achiev-
ing space-complexity that grows linearly in the number of
columns in the input alignments.

Working out a generalization to Aligning Alignments and
showing it is correct in the presence of dominance pruning
is involved, and is not possible to present within the allowed
page limit. (Full details are in [24].) The key idea is to
reduce the subproblem that arises in the divide-and-conquer
approach to computing an alignment of minimum cost over
an interval A[i : j] and B[i′ : j′] of the input, subject to the
constraint that the alignment is preceded by a given shape s
and followed by a given shape t. This subproblem can be
solved by running the exact algorithm over the interval in
both a forward and reverse pass, where each pass maintains
shape lists for just two consecutive rows of the table, and
then carefully gluing together the terminal shapes of the
alignments from both passes. Correctness in the presence of

dominance pruning relies on Lemma 6. We state here just
the final result.

Theorem 6 (Linear Space). The exact algorithm with

dominance pruning can be implemented to find an optimal

alignment using space linear in the number of columns in

the input, without increasing the time complexity.

Note that obtaining such a result for bound pruning is
obstructed by the fact that it uses quadratic-size tables to
lookup lower bounds (though see Myers and Jain [30] for a
technique that yields a space-time tradeoff).

7. COMPUTATIONAL RESULTS

7.1 Feasibility of the exact algorithm
In practice we can solve large instances to optimality de-

spite the potential for the number of shapes to grow ex-
ponentially in the number of rows. We attribute this to a
ceiling phenomenon in the growth of shapes. As shown in
Section 7.1.2, for instances with a given number of columns
the observed number of shapes does not grow once the num-
ber of rows exceeds a threshold. Furthermore this threshold
is small (roughly 10 rows in our experiments) and appears
to be independent of the number of columns.

7.1.1 Time and space

Biological data
Trials were run on challenging biological instances taken
from the McClure, Vasi, and Fitch [29] benchmark set, which
we call MVF, and the Thompson, Plewniak, and Poch [40]
set called BAliBASE. Trials used all MVF benchmarks, and all
BAliBASE benchmarks in their reference sets 1 through 5,
which we call groups. These benchmarks are alignments
with up to nearly 30 rows and 1,000 columns. Instances
were generated by splitting the rows of a benchmark into
two subsets. For each MVF benchmark, trials were run on
all of the roughly 2,000 possible splits. For each BAliBASE

benchmark, trials were run on 20 random equal-sized splits.
To preview our results, the most time-efficient version of

the exact algorithm took less than 2 seconds on each trial,
and the most space-efficient version less than 1 megabyte.

Simulated data
A natural question is how big an instance we can solve in a
given amount of time and space. Since extrapolating from
isolated biological instances is dubious, we ran experiments
on simulated data to observe the order of growth as a func-
tion of input size.

Generator The data generator was designed with the goal
of producing instances at least as hard as typical biological
data. Generator parameters include size, a specification of
gap structure, and the letter distribution.

We define spacer density as the percentage of alignment
entries that are spacers. Startup density is the percentage of
entries that are spacers but not preceded by a spacer. For a
given alignment size, startup density specifies the number of
gaps; spacer density specifies their lengths. Together spacer-
and startup-density are called gap densities. The generator
produces an alignment with the given gap densities by ran-
domly placing an equal number of gaps in each row, where
gaps have the same length to within one unit.



Table 1: Time and space for the BAliBASE benchmarks. For each alignment group and algorithm version, the statistics

are for 20 random balanced splits of each alignment in the group, where a benchmark of k sequences was split into

alignments with bk/2c and dk/2e sequences. Versions are: BDQ, bound and dominance pruning in quadratic space, and DL,

dominance pruning in linear space.

Time (sec) Space (Mb)
short medium long short medium long

group version mean max dev mean max dev mean max dev mean max dev mean max dev mean max dev
1 BDQ 0.00 0.01 0.00 0.02 0.03 0.01 0.05 0.07 0.01 0.30 0.35 0.05 1.92 2.48 0.36 5.39 6.74 0.92

DL 0.03 0.05 0.01 0.25 0.41 0.07 0.70 0.87 0.09 0.01 0.02 0.00 0.03 0.03 0.00 0.03 0.03 0.00

2 BDQ 0.01 0.02 0.01 0.08 0.12 0.03 0.19 0.30 0.06 0.35 0.39 0.03 2.57 3.02 0.50 6.27 8.45 1.47
DL 0.13 0.33 0.06 1.30 2.58 0.37 3.36 6.20 1.23 0.02 0.03 0.00 0.07 0.08 0.01 0.11 0.14 0.02

3 BDQ 0.01 0.02 0.01 0.11 0.14 0.01 0.23 0.44 0.08 0.33 0.39 0.07 2.60 3.17 0.50 6.18 8.35 1.51
DL 0.18 0.29 0.06 1.85 2.21 0.22 3.48 9.84 1.31 0.03 0.03 0.00 0.08 0.09 0.00 0.11 0.14 0.02

4 BDQ 0.33 1.00 0.39 10.31 23.17 7.87
DL 3.08 14.58 4.37 0.07 0.20 0.06

5 BDQ 0.11 0.29 0.09 3.73 6.72 1.71
DL 1.52 3.84 0.77 0.06 0.12 0.03

Table 2: Shape-list lengths for the MVF benchmarks. The columns below give the maximum length of a shape list in

the table (measured once all shapes have been propagated to an entry), the total length of all such shape lists, and the

number of shapes allocated during the computation. (Fewer shapes are allocated than the total length of all shape lists

as shapes are reused during the computation.) Statistics are over all Θ(2k) splits of a given alignment of k sequences

for a given algorithm version, except for version Q on benchmark kin12, where statistics are for 20 random balanced

splits into two alignments of 6 sequences each. A benchmark of size k × n has k sequences and n columns.

Maximum length Total length Shapes allocated
benchmark size version mean max dev mean max dev mean max dev

glob12 12 × 166 Q 101 129 37 114,088 125,721 7,260 16,996 25,180 3,375
BQ 9 53 4 421 4,809 227 221 714 35
DQ 4 6 0 35,157 40,131 1,023 12,067 13,406 760
BDQ 2 5 0 261 2,479 90 184 396 9
DL 3 5 1 35,690 40,906 1,081 466 577 28

pro12 12 × 191 Q 1,836 7,183 1,503 1,043,574 3,177,917 552,556 179,104 794,774 145,675
BQ 380 4,295 334 11,703 132,500 9,106 2,664 28,421 2,285
DQ 6 12 1 52,164 57,913 3,469 11,023 15,676 2,105
BDQ 4 8 1 1,725 19,113 780 363 1,783 93
DL 6 12 1 53,268 58,774 3,578 600 751 46

rh12 12 × 194 Q 3,890 8,989 2,672 1,492,059 3,245,298 528,942 161,583 555,116 92,311
BQ 1,576 8,526 1,050 99,935 282,208 41,871 16,338 59,051 9,193
DQ 9 20 2 60,018 65,616 2,932 8,922 12,295 922
BDQ 6 20 2 3,056 21,078 1,000 347 2,077 112
DL 9 20 2 58,899 64,301 2,592 665 795 46

kin12 12 × 396 Q 2,635 3,653 1,069 5,790,926 11,950,393 3,015,472 987,011 2,161,794 743,806
BQ 773 3,653 502 388,099 3,315,026 448,456 102,413 1,065,764 125,554
DQ 7 16 1 182,149 198,920 7,625 41,365 52,312 4,284
BDQ 5 16 1 5,277 39,160 2,062 905 3,431 241
DL 7 16 1 193,212 208,494 7,228 1,069 1,259 54

The sequences in each row are formed by choosing letters
randomly and independently from the given distribution.
To test whether random sequences yield easier instances,
trials were run on each BAliBASE benchmark in group 1, by
randomly shuffling the letters in each row while not moving
gaps. The average time and space increased or remained the
same compared to unshuffled alignments.

Columns of all spacers were kept in generated data.

Experiments The experiments on simulated data used
random instances generated as described above. Both align-
ments in an instance had the same size, which varied from 1
to 500 rows, and 100 to 10,000 columns. For the letter dis-
tribution we took the frequencies observed in BAliBASE. For

substitution costs we used the PAM250 matrix [11] with in-
teger entries in the range 0 to 24. Gap initiation and ex-
tension costs were fixed at 8 and 12 respectively. The same
gap densities were used to generate all instances, so the only
variation between instances of a given size is gap placement.

In the benchmarks, startup density ranges from around 1%
to 10%, and spacer density from about 5% to 80%, though
all benchmarks from MVF and BAliBASE groups 1, 2, and 3
have less than 35% spacer density. To set the gap densities
for our experiments, three suites of exploratory tests were
run on random alignments with 15 rows and 500 columns
generated with startup densities of 1%, 5%, and 10%; for
each startup density, spacer density stepped from 5% to 75%.



 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100  1000  10000

T
im

e 
(s

ec
on

ds
)

Number of columns

Time for fixed rows

500
250
100
50
25
15
8
4
2
1

 0

 1

 2

 3

 4

 5

 6

 100  2500  5000  7500  10000

M
em

or
y 

(M
b)

Number of columns

Space for fixed rows

500
250
100
50
25
15
8
4
2
1

Figure 1: Time and space versus input length for sim-

ulated data. Each curve has a fixed number of rows,

given in the legend. Each point is an average of 10 trials

of version DL. Alignments have 35% spacer density and

10% startup density.

We chose for startup density the largest value of 10%,
since time and space generally increased with startup den-
sity. We chose a spacer density of 35%, which covers all
benchmarks except those with unusually long inserts, since
resource use also increased with spacer density; choosing a
higher value would have reduced the size of an instance we
could complete within a resource limit, without necessarily
showing anything new.

Results
The following versions of the exact algorithm were imple-
mented:

• Q, no pruning in quadratic space,
• BQ, bound pruning in quadratic space,
• DQ, dominance pruning in quadratic space,
• BDQ, bound and dominance pruning in quadratic space,
• DL, dominance pruning in linear space.

For biological data, trials were run on instances derived
from the MVF and BAliBASE benchmarks by splitting their
rows into two disjoint subsets, and removing any resulting
null columns. For the BAliBASE benchmarks, random bal-

anced splits of k rows into subsets of size bk/2c and dk/2e
were used. For the MVF benchmarks, every possible split was
used, except only 20 random balanced splits were used for
version Q on the kin12 benchmark.

Time and space results on these instances are summarized
for each BAliBASE group in Table 1. The boldface entries
highlight the maximum time used by BDQ (our most time-
efficient version), and the maximum space used by DL (our
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Figure 2: Number of shapes as a function of number of

rows for biological and simulated data. In the top plot,

curves correspond to BAliBASE benchmarks sh3 (2500,

500), 7tm (1000), and myb (250, 100), trimmed to the num-

ber of columns in the legend; instances were generated

by randomly selecting rows from the benchmark, with-

out removing null columns. In the bottom plot, curves

correspond to simulated alignments with the number of

columns in the legend. Trials and gap densities are the

same as Figure 1. Total shapes processed is the sum of

the lengths of all determined shape lists in the top-level

of recursion for version DL.

most space-efficient version). Notice that the time for ver-
sion DL is roughly twice that of DQ, which is consistent with
analysis of their running times.

Table 2 summarizes shape-counts for the MVF trials, in-
cluding the maximum length of a shape list in the table, the
total length of all such lists, and the maximum number of
shapes allocated at any point in the computation. The to-
tal length is a machine-independent measure that captures
some aspects of time, while the number of shapes allocated
is a similar measure for space. When comparing shapes al-
located for versions BDQ and DL, keep in mind BDQ uses much
more space as it also allocates quadratic-size tables to lookup
bounds, which is not reflected in the shape count.

Time and space for simulated data are plotted in Figure 1.
The straight lines of slope roughly 2 in the time plot indicate
that over this size range time is growing roughly quadrati-
cally in the number of columns. Space grew linearly in the
number of columns (and also the number of rows [24]).

7.1.2 Ceiling phenomenon in the growth of shapes
The most surprising result from these experiments is that

with version DL on instances with a fixed number of columns,
the observed number of shapes does not grow with the num-



Table 3: Relative error in optimistic and pessimistic alignment-scores compared to the exact score. The presumed

score is the value obtained by evaluating the optimistic and pessimistic recurrences, while the actual score is the real

value of the alignment recovered by the heuristic. Statistics are over all splits of an MVF benchmark.

Optimistic error (%) Pessimistic error (%)
Exact score presumed actual presumed actual

benchmark mean max dev mean max dev mean max dev mean max dev mean max dev

glob12 73,771 83,503 8,979 -0.18 -0.56 0.07 0.13 0.60 0.10 0.01 0.05 0.01 0.00 0.02 0.00
pro12 74,650 82,968 9,111 -0.90 -1.45 0.11 0.28 0.81 0.15 0.18 0.35 0.03 0.01 0.16 0.01
rh12 83,518 92,013 10,190 -0.97 -1.37 0.09 0.33 0.90 0.13 0.78 1.02 0.07 0.04 0.52 0.04
kin12 149,374 165,131 18,222 -0.67 -0.99 0.07 0.21 0.71 0.08 0.36 0.53 0.04 0.02 0.15 0.02

Table 4: Relative error in the number of gaps using optimistic and pessimistic versus exact gap-counts. When

measuring relative error, we take the absolute value of the difference between the heuristic and exact count. Presumed

counts, actual counts, and statistics are as in Table 3.

Exact Optimistic error (%) Pessimistic error (%)
gap count presumed actual presumed actual

benchmark mean max dev mean max dev mean max dev mean max dev mean max dev

glob12 179 227 25 12.31 36.00 4.76 3.45 19.32 2.74 0.48 1.72 0.39 0.10 1.33 0.22
pro12 369 446 47 25.36 37.87 3.14 4.66 21.51 2.69 3.86 12.38 1.03 0.50 6.86 0.62
rh12 471 549 61 23.09 31.49 2.37 5.19 31.03 2.60 16.51 31.63 1.75 0.63 20.04 1.10
kin12 649 753 83 20.92 28.98 2.13 4.38 17.36 2.03 9.72 15.20 1.14 0.43 5.44 0.53

ber of rows once a threshold is reached. In our experiments
this threshold is small (around 10 rows) and seems indepen-
dent of the number of columns. This ceiling phenomenon in
the growth of shapes is shown in Figure 2. Note this con-
trasts with the exponential growth that occurs in the worst
case. We suspect the tractability of Aligning Alignments in
practice is largely due to the ceiling phenomenon.

In benchmark alignments, gaps often line up across rows.
To test if this causes the ceiling phenomenon, we looked at
shape counts in simulated data. Since the generator places
gaps randomly and independently in each row, gaps tend to
not line up. As shown in Figure 2, the number of shapes
hits a ceiling in simulated data as well.

7.2 Accuracy of the optimistic and pessimistic
heuristics

Two fast and easy-to-implement alternatives to the ex-
act algorithm are what Kececioglu and Zhang [25] call the
optimistic and pessimistic heuristics, which respectively un-
dercount or overcount the true number of gaps. (The pes-
simistic heuristic is equivalent to the quasi-natural gap counts
of Altschul [1].) Now that we have a provably correct algo-
rithm that feasibly computes optimal alignments, we can
measure the accuracy of these heuristics.

Score accuracy The optimistic and pessimistic heuris-
tics give a presumed score, the score obtained from their
recurrences, and an actual score, the score of the alignment
recovered by the heuristic.

Table 3 summarizes the relative error between these heuris-
tic scores and the true score from the exact algorithm. As
can be seen, the heuristic scores tightly bound the true score
(which explains the effectiveness of bound pruning). On av-
erage the actual pessimistic score was the most accurate,
with less than 1 percent error on all trials. Error seems
to correlate with computational difficulty (in terms of time
and space of the exact algorithm) as seen in the roughly

equal-size benchmarks glob12, pro12, and rh12: as these
instances get harder, the heuristics become less accurate.

Gap-count accuracy In contrast to score accuracy, the
heuristic gap counts can differ considerably from the true
count, as shown in Table 4. The actual pessimistic count
was the most accurate on average, yet hit 20 percent error
on the toughest benchmark.

8. CONCLUSION
While Aligning Alignments is NP-complete, the exact al-

gorithm with linear-space dominance pruning can compute
optimal solutions for highly-gapped instances with 100 se-
quences and 1,000 columns in both alignments, in about
40 minutes and 2 megabytes on a current workstation. The
addition of bound pruning further reduces the time by an
order of magnitude, but increases the space to quadratic.

Many interesting questions remain: the accuracy of the
optimistic and pessimistic heuristics compared to the ex-
act algorithm in recovering correct gap placement, whether
Aligning Alignments is approximable within a constant fac-
tor (we suspect not), and whether the ceiling phenomenon

can be explained by analyzing the expected shape-list length
under dominance pruning.
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