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ABSTRACT

Accurately aligning distant protein sequences is notoriously difficult. Since the amino acid
sequence alone often does not provide enough information to obtain accurate alignments under
the standard alignment scoring functions, a recent approach to improving alignment accuracy
is to use additional information such as secondary structure. We make several advances in
alignment of protein sequences annotated with predicted secondary structure: (1) more accu-
rate models for scoring alignments, (2) efficient algorithms for optimal alignment under these
models, and (3) improved learning criteria for setting model parameters through inverse
alignment, as well as (4) in-depth experiments evaluating model variants on benchmark
alignments. More specifically, the new models use secondary structure predictions and their
confidences to modify the scoring of both substitutions and gaps. All models have efficient
algorithms for optimal pairwise alignment that run in near-quadratic time. These models have
many parameters, which are rigorously learned using inverse alignment under a new criterion
that carefully balances score error and recovery error. We then evaluate these models by
studying how accurately an optimal alignment under the model recovers benchmark reference
alignments that are based on the known three-dimensional structures of the proteins. The
experiments show that these new models provide a significant boost in accuracy over the
standard model for distant sequences. The improvement for pairwise alignment is as much as
15% for sequences with less than 25% identity, while for multiple alignment the improvement is
more than 20% for difficult benchmarks whose accuracy under standard tools is at most 40%.

Key words: affine gap penalties, inverse parametric alignment, protein secondary structure,

sequence alignment, substitution score matrices.

1. INTRODUCTION

While sequence alignment is one of the most basic and well-studied tasks in computational biology,

accurate alignment of distantly related protein sequences remains notoriously difficult. Accurately

aligning such sequences usually requires multiple sequence alignment, and a succession of ideas have been

employed by modern multiple alignment tools to improve their accuracy, including:

1Department of Computer Science, University of Arizona, Tucson, Arizona 85721.
2Work done while at Department of Computer Science, University of Arizona. Present affiliation: Department of

Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706.
3Work done while at Department of Computer Science, University of Arizona. Present affiliation: Janelia Farm

Research Campus, Ashburn, Virginia 20147.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 17, Number 3, 2010

# Mary Ann Liebert, Inc.

Pp. 561–580

DOI: 10.1089/cmb.2009.0222

561



(a) hydrophobic gap penalties, which modify the alignment score to avoid gaps in regions that may be in

the structural core, and are employed by CLUSTAL W (Thompson et al., 1994), T-Coffee (No-

tredame et al., 2000), and MUSCLE (Edgar, 2004);

(b) polishing, which iteratively refines the alignment by realigning subgroups, and is used by PRRN
(Gotoh, 1996), MAFFT (Katoh et al., 2005), MUSCLE, ProbCons (Do et al., 2005), and Opal
(Wheeler and Kececioglu, 2007a); and

(c) consistency, both in its combinatorial (Notredame et al., 2007) and probabilistic (Durbin et al., 1998;

Do et al., 2005) settings, which favors matches in the alignment that have high support, and is

employed by T-Coffee, MAFFT, ProbCons, SPEM (Zhou and Zhou, 2005), PROMALS (Pei and

Grishin, 2007), and ISPAlign (Lu and Sze, 2008).

These techniques all operate on the input sequences alone, and do not require additional sources of

information outside the input data.

Recent techniques that recruit additional information beyond the input sequences, and that have afforded

significant boosts in accuracy, include:

(d) sequence profiles, which augments the input residues with profiles of amino acid exchanges from

closely related sequences found through database searches, and is used by SPEM, PRALINE
(Simossis and Heringa, 2005), PROMALS, and ISPAlign;

(e) intermediate sequences, which adds new sequences to the alignment that link distant input sequences

through chains of similar sequences, and is employed by MAFFT and ISPAlign; and

(f ) predicted secondary structure, which annotates the input residues with their predicted structural type

and modifies the scoring of alignments to take these types into account, as used by SPEM, PRA-
LINE, PROMALS, and ISPAlign.

These latter techniques, including secondary structure prediction, all involve database searching to find

sequences that are closely related to the input sequences, which adds considerable overhead to the running

time for alignment.

Of these latter techniques, incorporating secondary structure seems to have the greatest scope for further

improvement. The scoring models based on secondary structure employed by current tools (SPEM,

PRALINE, PROMALS, and ISPAlign) do not make full use of predicted structural information when

modifying the scores of substitutions and gaps. Furthermore, recent advances in single-sequence secondary

structure prediction (Aydin et al., 2006) suggest it may eventually be possible to make sufficiently accurate

predictions based on the input sequences alone, which would yield improved alignment accuracy without

the slowdown caused by sequence database searches.

In this article, we introduce several new models for protein sequence alignment based on predicted sec-

ondary structure, and show they yield a substantial improvement in accuracy for distant sequences. These

models improve on those used by current tools in several ways. They explicitly take into account the

confidences with which structural types are predicted at a residue, and use these confidences in a rigorous way

to modify both the scores for substitutions and the penalties for gaps that disrupt the structure. Furthermore,

optimal alignments under these new models can be efficiently computed. Prior models tend to either have a

limited number of ad hoc parameters that are set by hand (Zhou and Zhou, 2005; Simossis and Heringa, 2005;

Lu and Sze, 2008), or have a large number of parameters that are estimated by counting frequencies of

observed events in comparatively small sets of reference alignments (Lüthy et al., 1991; Pei and Grishin,

2007; Söding, 2005). Our new models have multiple parameters whose values must be set, and we show that

recently developed techniques for parameter learning by inverse alignment (Kececioglu and Kim, 2006; Kim

and Kececioglu, 2008) can be used to find values for these parameters that are optimal in a well-defined sense.

Finally, experimental results show that our best model improves on the accuracy of the standard model by

15% for pairwise alignment of sequences with less than 25% identity, and by 20% for multiple alignment of

difficult benchmarks whose accuracy under standard tools is less than 40%.

1.1. Related work

Since structure is often conserved among related proteins even when sequence similarity is lost (Sander

and Schneider, 1991), incorporating structure has the potential to improve the accuracy of aligning distant

sequences. While deducing full three-dimensional structure from protein sequences remains challenging,

accurate tools are available for predicting secondary structure from protein sequences ( Jones, 1991).
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Predicted secondary structure can be incorporated into the alignment model quite naturally by encouraging

substitutions between residues of the same secondary structure type, and discouraging gaps that disrupt

regions of secondary structure.

The first work on incorporating secondary structure into the alignment scoring model appears to be by

Lüthy et al. (1991), who applied the log-odds scoring methodology of Dayhoff et al. (1978) to de-

rive substitution score matrices that take both the amino acids and the secondary structure types of the

aligned residues into account when scoring a substitution. For the three secondary structure types of a-

helix, b-strand, and other, Lüthy et al. (1991) derive three different log-odds substitution score matrices,

where a given matrix applies when both of the aligned residues have the same structural type. Due to the

nature of the reference alignments used to derive these matrices, their work does not provide matrices that

apply to substitutions between residues with differing structural types, such as a versus b, or a versus other.

Moreover, the log-odds methodology for substitution scores does not provide appropriate gap penalties for

these matrices.

Modern multiple alignment tools that take predicted secondary structure into account include PRALINE,

SPEM, PROMALS, and ISPAlign. We briefly summarize their approaches.

PRALINE (Simossis and Heringa, 2005) uses the three substitution matrices of Lüthy et al. (1991) when

the aligned residues have the same predicted structure type, plus the BLOSUM62 matrix (Henikoff and

Henikoff, 1991) when they have differing types. PRALINE also employs four pairs of hand-chosen affine

gap penalties (a gap open penalty paired with a gap extension penalty), with one pair per matrix.

SPEM (Zhou and Zhou, 2005) modifies a standard substitution matrix by adding a bonus of x to the

substitution score when the aligned residues have the same predicted structural type, and a penalty of �x

when they have differing types, where x is a single hand-chosen constant. No gaps are permitted following

a residue predicted to be in an a-helix or b-strand; otherwise, a fixed gap open and extension penalty is

used.

PROMALS (Pei and Grishin, 2007) employs a hidden Markov model approach where match, insert, and

delete states also emit secondary structure types (in addition to emitting amino acids). The emission and

transition probabilities for each of these states are set by counting observed frequencies of events in a

collection of reference alignments. When scoring an alignment by the logarithm of its emission and transition

probabilities, the relative contribution to the alignment score of secondary structure emission probabilities

versus amino acid emission probabilities is controlled by a single hand-chosen weighting constant.

ISPAlign (Lu and Sze, 2008) uses the hidden Markov model of ProbCons (Do et al., 2005), and modifies

its match states to emit secondary structure types as well. The probability of emitting a pair of the same type is

set to x for all three types, while the probability for a pair of differing types is 1�x, where x is a single hand-

chosen constant. The transition probabilities of ProbCons that correspond to gap open and extension

penalties are used, shifted by factor y to compensate for the effect of the structure type emission probabilities

on the substitution score, where y is a second hand-chosen constant.

In order of increasing accuracy, these tools are ranked: PRALINE, SPEM, PROMALS, and ISPAlign. It

should be pointed out that these tools also incorporate other approaches besides predicted secondary

structure, such as sequence profiles and intermediate sequences, and that they differ in their underlying

methods for constructing an alignment.

In contrast to the above approaches, we develop general scoring models with no ad hoc parameters that

modify substitution scores on the basis of the pair of secondary structure states of the aligned residues, and

that use an ensemble of affine gap penalties whose values depend on the degree of secondary structure in the

region disrupted by the gap. A unique feature is that at each residue we also take into account the confidence

of the prediction for the three structure types. (Confidences are output by tools such as PSIPRED [Jones,

1999].) While our models are more complex, especially in how gap costs are determined, we show that

optimal pairwise alignments under the models can still be computed efficiently. And though these models

have many parameters, we rigorously learn their values using inverse parametric alignment (Gusfield and

Stelling, 1996; Sun et al., 2004; Kececioglu and Kim, 2006) applied to training sets of benchmark reference

alignments.

1.2. Overview

In the next section, we present several new models for scoring alignments of protein sequences based on

their predicted secondary structure. Section 3 then develops efficient algorithms for computing optimal
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alignments of two sequences under these models. Section 4 reviews an approach called inverse alignment

that uses these optimal alignment algorithms to learn parameter values for the models from examples of

biological reference alignments, and also introduces a new learning criterion that we call average dis-

crepancy. Section 5 then presents experimental results that compare the accuracy of these models when used

for both pairwise and multiple alignment. Section 6 concludes and outlines one avenue for further research.

2. SCORING ALIGNMENTS WITH PREDICTED SECONDARY STRUCTURE

We now introduce several models for scoring an alignment of two protein sequences A and B that make

use of predicted secondary structures for A and B. These models score an alignment A by specifying a cost

function f (A), where an optimal alignment minimizes f. The features of an alignment that f scores are: (i)

substitutions of pairs of residues, (ii) internal gaps, and (iii) external gaps. A gap is a maximal run of either

insertions or deletions. A gap is external if it inserts or deletes a prefix or a suffix of A or B; otherwise it is

internal.

Substitutions and gaps are scored in a position-dependent manner that takes into account the predicted

secondary structure. A substitution in alignment A of residues A[i] and B[ j] is denoted by a tuple (A, i, B, j).

An internal gap is denoted by a tuple (S, i, j, T, k), where substring S[i : j] is deleted from sequence S and

inserted between positions k and kþ 1 of sequence T. An external gap is denoted by a pair (i, j), where

prefix or suffix S[i : j] is deleted from A or B.

In general, the alignment cost function f (A) is expressed in terms of two other functions: function s for

the cost of substitutions, and function g for the cost of internal gaps. External gaps use standard affine gap

costs (Gusfield, 1997, p. 240). The general form of f is then

f (A) :¼
X

substitutions
(A, i, B, j) 2 A

s(A, i, B, j) þ
X

internal gaps
(S, i, j, T , k) 2 A

g(S, i, j, T , k) þ
X

external gaps
(i, j) 2 A

eccþ ( j� iþ 1Þekk� �
, (1)

where ~cc, ~kk are respectively the gap open and extension penalties for external gaps. We next describe

substitution cost function s, and internal gap cost function g.

2.1. Scoring substitutions

Consider a substitution of two residues in an alignment, where these residues have amino acids a and b, and

are involved in secondary structures of types c and d. For secondary structures, we consider the standard three

types of alpha-helix, beta-strand, and loop, which we represent by the symbols a, b, andf, respectively. In the

following, G¼ {a,b,f} denotes the alphabet of secondary structure types, and S denotes the alphabet of

amino acids.

Function s scores a substitution of amino acids a, b 2 R with secondary structure types c, d 2 C using two

costs: s(a, b), the cost for substituting amino acids a and b, and m(c, d), an additive modifier for the residues

having secondary structure types c and d. Values sab¼ s(a, b) and mcd¼ m(c, d) are parameters to our

substitution model. In the model, both a, b and c, d are unordered pairs. This results in 210 substitution costs

sab, plus 6 secondary structure modifiers mcd, for a total of 216 parameters that must be specified for the

substitution model.

We consider two forms of prediction, which we call lumped or distributed.

Lumped prediction. In lumped prediction, which is a special case of distributed prediction, the prediction

at each residue is a single secondary structure type. The predicted secondary structure for protein sequence A

can then be represented by a string SA, where residue i of A has predicted type SA[i] 2 C.

For lumped prediction, the substitution cost function s is

s(A, i, B, j) :¼ r A[i], B[ j]ð Þ þ l(SA[i], SB[ j]): (2)

The modifer m(c, d) may be positive or negative. When the residues have the same secondary structure type,

m(c, c)� 0, which makes it more favorable to align the residues. When the residues have different types,

m(c, d)� 0, making it less favorable to align them. These constraints on the modifiers can be enforced during

parameter learning, as described in Section 4.
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Distributed prediction. The most accurate tools for secondary structure prediction, such as PSIPRED

( Jones, 1999), output a confidence that the residue is in each possible type. For residue i of sequence A, we

denote the predictor’s confidence that the residue is in secondary structure type c by PA(i, c)� 0. In

practice, we normalize the confidences output by the predictor at each residue i to obtain a distribution withP
c2C PA(i, c)¼ 1.

For distributed prediction, the substitution cost function s is

s(A, i, B, j) :¼ r(A[i], B[j]) þ
X

c, d 2 C

PA(i, c) PB(j, d) l(c, d): (3)

When the predictor puts all its confidence on one structure type at each residue, this reduces to the lumped

prediction substitution function.

2.2. Scoring gaps

With standard affine gap costs, the cost of inserting or deleting a substring of length k is gþ lk, where g
and l are respectively the gap open and extension costs. The new gap scoring models generalize this to a

suite of gap open and extension costs whose values depend on the secondary structure around the gap. The

basic idea is that the gap open cost g depends on a global measure of how disruptive the entire gap is to the

secondary structure of the proteins, while the gap extension cost l charged per residue depends on a local

measure of disruption at that residue’s position. Below we define these notions more precisely.

For an internal gap that deletes the substring S[i : j], and inserts it after the residue T[k], the gap cost

function g has the general form,

g(S, i, j, T , k) :¼ c

�
H(S, i, j, T , k)

�
þ

X
i�p� j

k

�
h(S, p, T , k)

�
:

The first term is a per-gap cost, and the second term is a sum of per-residue costs. Functions H and h are

respectively the global and local measures of secondary structure disruption. Both H and h return integer

values in the range L¼f1, 2, . . . , ‘g that give the discrete level of disruption. The corresponding values for

the gap open and extension costs, gi¼ g(i) and li¼ l(i) for i 2 L, are parameters to our model. For ‘ levels,

the internal gap cost model has 2‘ parameters gi and li that must be specified.

The gap costs at these levels satisfy

0 � c1 � . . . � c‘,

0 � k1 � . . . � k‘:

In other words, a higher level of disruption incurs a greater gap cost. These constraints are enforced during

parameter learning, as described in Section 4.

Functions H and h, which give the level of secondary structure disruption, depend on two aspects:

(i) how strongly the residue at a given position in a gap is involved in secondary structure, and

(ii) which gap positions are considered when determining the level of disruption.

We call the first aspect the degree of secondary structure, and the second aspect the context of the gap.

2.2.1. Measuring the degree of secondary structure. As described in Section 2.1, the predicted

secondary structure for the residues of a protein sequence A may be represented by string SA of structure types

in the case of lumped prediction, or vector PA of confidences for each type in the case of distributed

prediction. For both kinds of predictions, we want to measure the degree to which residue position i in

sequence A is involved in secondary structure. This degree CA(i) is a value in the range [0, 1], where

0 corresponds to no involvement in secondary structure, and 1 corresponds to full involvement.

We consider three approaches for measuring the degree CA(i), which depend on whether the prediction is

lumped or distributed, and whether the value is binary or continuous.

Lumped-binary approach. This approach assumes a lumped prediction, and produces a binary value for

the degree:

WA(i) :¼ 1, SA[i] 2 fa, bg;
0, otherwise:

�
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Distributed-binary approach. This approach assumes a distributed prediction, and produces a binary

degree:

WA(i) :¼ 1, PA(i, a) þ PA(i, b) > PA(i, /);

0, otherwise:

�

Distributed-continuous approach. This approach assumes a distributed prediction, and produces the

real value,

WA(i) :¼ PA(i, a) þ PA(i, b):

For each of these approaches, the degree measure is then aggregated over the positions in the gap context,

as discussed next.

2.2.2. Specifying the gap context. The gap context specifies the positions that functions H and h

consider when respectively measuring the global and local secondary structure level. Both H and h make

use of a degree function C(i), as defined above. In the definitions of H and h below, the notation hxi maps a

real value x 2 [0, 1] to the discrete levels 1, 2, . . . , ‘ by

hxi :¼ bx‘cþ 1, x 2 [0, 1);

1, x¼ 1:

�

To measure the local level h at position i in sequence S, we consider a small window W(i) of consecutive

positions centered around i. We first average the secondary structure degree over the positions in the

window,

d(S, i) :¼ 1��W(i)
�� X

p 2 W(i)

WS(p),

and then map this average degree to a discrete level:

h(S, i) :¼
D

d(S, i)
E
:

Informally, the local level h at position i reflects the average secondary structure degree C for the residues

in a window around i. Generally all windows have the same width jW(i)j ¼w, except when position i is too

close to the left or right end of S to be centered in a window of width w, in which case W(i) naturally shrinks

on the left or right side of i.

In our experiments in Section 5, we consider three ways of specifying the gap context, depending on

whether we take an insertion view, a deletion view, or a mixed view of a gap. This same context will apply

to all the gaps in an alignment.

Deletion context. This context views the disruption caused by a gap (S, i, j, T, k) in terms of the sec-

ondary structure lost by the deletion of substring S[i : j]. For the global measure of disruption, this context

takes the maximum local level of secondary structure over the positions in the deleted substring, which

gives the gap cost function,

g(S, i, j, T , k) :¼ c max
i� p� j

h(S, p)

� �
þ

X
i� p� j

k

�
h(S, p)

�
: (4)

An important property of this model is that for substrings S[i : j] and S[i0 : j0] where [i, j]� [i0, j0], their gap

costs satisfy g(S, i, j, T, k)� g(S, i0, j0, T, k0), independent of k and k0. In other words, the deletion context

gap cost is monotonically increasing as the substring for deletion is extended.

Insertion context. This context views the disruption in terms of the secondary structure displaced at

residues T [k] and T [kþ 1] where the insertion occurs. For both the global and local measures of disruption

this context uses

H(T , k) :¼ 1

2
d(T , k) þ 1

2
d(T , kþ 1)

� �
,
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which gives the gap cost function,

g(S, i, j, T , k) :¼ c
	
H(T , k)



þ (j� iþ 1) k

	
H(T , k)



: (5)

Mixed context. This context combines the above global measure H of the insertion context with the local

measure h of the deletion context, which gives

g(S, i, j, T , k) :¼ c
�

H(T , k)
�
þ

X
i�p� j

k
�

h(S, p)
�
: (6)

This completes the description of the scoring models that we consider for alignment of protein sequences

with predicted secondary structure.

To summarize, the parameters of the scoring models are:

� the 210 substitution costs sab,
� the 6 substitution modifiers mcd,
� the 2‘ gap costs gi and li for internal gaps, and
� the two gap costs ~cc and ~kk for external gaps.

This is a total of 218þ 2‘ parameters. In general, the models depend on the window width w, the number of

levels ‘, whether the secondary structure prediction is lumped or distributed, the choice of measure C for

the degree of secondary structure, and the choice of gap context.

We next develop efficient algorithms for computing optimal alignments under these models in near-

quadratic time. Section 4 then explains how to learn parameter values for these models through inverse

parametric alignment, which makes use of these efficient algorithms for optimal alignment.

3. COMPUTING OPTIMAL ALIGNMENTS EFFICIENTLY

We can efficiently compute an optimal alignment of sequences A and B under scoring function f given by

Equation (1) using dynamic programming. Let C(i, j) be the cost of an optimal alignment of prefixes A[1 : i]

and B[1 : j]. This alignment ends with either:

� a substitution involving residues A[i] and B[ j], or
� a gap involving either substring A[k : i] or B[k : j] for some k.

In each case, the alignment must be preceded by an optimal solution over shorter prefixes. This leads to the

recurrence,

C(i, j) ¼ min

C(i� 1, j� 1) þ s(A, i, B, j),

min
1�k�i
fC(k� 1, j) þ g(A, k, i, B, j)g,

min
1�k�j
fC(i, k� 1) þ g(B, k, j, A, i)g:

8><
>: (7)

(To simplify the presentation, this ignores boundary conditions and the special case of external gaps, which

are straightforward.) For two sequences of length n, the standard algorithm that directly evaluates this re-

currence in a table, and recovers an optimal alignment using the table, takes Y(n3) time. (This assumes

evaluating g takes O(1) time, which can be achieved through preprocessing, as discussed later.)

By studying gap cost function g, the time to compute an optimal alignment for all three gap contexts can

be reduced to nearly O(n2), as discussed next.

3.1. Insertion and mixed contexts

For the insertion context, function g given by Equation (5) is very close to a standard affine gap cost

function, with a per-gap open cost and a per-residue extension cost. The same technique developed by

Gotoh (1982) for alignment with standard affine gap costs can be used for the insertion context to reduce the

total time to compute an optimal alignment to O(n2). The basic idea is to:

(1) keep track of three separate quantities at each entry (i, j) of the dynamic programming table, de-

pending on whether the alignment ends with a substitution, insertion, or deletion, and
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(2) consider the last two columns of an alignment to decide whether or not the gap open cost should be

charged for an insertion or deletion involving a residue.

For the mixed context, given by Equation (6), this approach also leads to an O(n2) time algorithm.

More precisely, let

� S(i, j) be the cost of an optimal alignment of A[1 : i] and B[1 : j] that ends with a substitution of A[i] by

B[ j],
� I(i, j) be the cost of an optimal alignment of the same prefixes that ends with an insertion involving

B[ j], and
� D(i, j) be the cost of an optimal alignment of these prefixes that ends with a deletion involving A[i].

Then C(i, j) is min{S(i, j), I(i, j), D(i, j)}.

For the mixed context, these quantities satisfy the recurrences,

S(i, j) ¼ min

S(i� 1, j� 1),

I(i� 1, j� 1),

D(i� 1, j� 1)

8><
>:

9>=
>; þ s(A, i, B, j),

I(i, j) ¼ min

S(i, j� 1) þ c(H(A, i)),

I(i, j� 1),

D(i, j� 1) þ c(H(A, i))

8><
>:

9>=
>; þ k

	
h(B, j)



, (8)

D(i, j) ¼ min

S(i� 1, j) þ c(H(B, j)),

I(i� 1, j) þ c(H(B, j)),

D(i� 1, j)

8><
>:

9>=
>; þ k

	
h(A, i)



: (9)

(To simplify the presentation, this again ignores boundary conditions and the special case of external gaps.)

For the insertion context, these quantities satisfy identical recurrences, except that in Equation (8) the

final additive term becomes l(H(A, i)), while in Equation (9) this term becomes l(H(B, j)).

Aligning two sequences of lengths m and n by evaluating these recurrences in constant time at each entry

(i, j) of a table with O(mn) entries, and then recovering an optimal alignment from the values in the table,

gives the following result.1

Theorem 1 (Insertion and mixed context running time). For both the insertion and mixed contexts,

optimally aligning two sequences of lengths m and n takes O(mn) time.

3.2. Deletion context

For the deletion context, function g given by Equation (4) involves a maximization to determine the gap

open cost, which complicates matters. For this context, the total time can be sped up significantly using the

candidate list technique originally developed for alignment with convex gap costs by Miller and Myers

(1988) and Galil and Giancarlo (1989). While our gap cost function g is not convex in their original sense,

their technique still applies. We briefly review its ideas below.

The candidate list technique speeds up the evaluation of the two inner minimizations in Equation (7) for

C(i, j). The inner minimization involving g(B, k, j, A, i) can be viewed as computing the function

Fi(j) :¼ min
1�k� j

fGi(k, j)g,

where Gi(k, j) :¼C(i, k� 1)þ g(B, k, j, A, i). Similarly, the minimization involving g(A, k, i, B, j) can be viewed

as computing a function ~FFj(i) that is the minimum of another function ~GGj(k, i). At a high level, when filling in

row i of the table for C(i, j), the candidate list approach maintains a data structure for row i that enables fast

computation of Fi( j) across the row for increasing j. Similarly, it maintains a separate data structure for

1At an entry (i, j), functions H and h can be directly evaluated in constant time when windows have constant width w.
For non-constant w, we can precompute d(S, i) for both input strings S and all positions i using O(mþ n) time
preprocessing, and then evaluate H and h in constant time by table lookup.
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each column j that enables fast computation of ~FFj(i) down the column. When processing entry (i, j) of the

dynamic programming table, the data structures for row i and column j permit evaluation of Fi( j) and ~FFj(i)

and hence C(i, j) in O(log n) amortized time. Evaluating the recurrence at the O(n2) entries of the table then

takes a total of O(n2 log n) time. A very readable exposition is given by Gusfield (1997, pp. 293–302).

More specifically, for a fixed row i the candidate list technique computes F(j) as follows. (When i is

fixed, we drop the subscript i on Fi and Gi.) Each index k in the minimization of G(k, j) over 1� k� j is

viewed as a candidate for determining the value of F( j). A given candidate k contributes the curve G(k, j),

which is viewed as a function of j for j� k. Geometrically, the set of values of F(j) for 1� j� n, which is

the minimum of these curves, is known as their lower envelope (de Berg et al., 2000).

When computing F( j) across the row for each successive j, a representation of this lower envelope is

maintained at all j0 � j, only considering curves for candidates k with k� j. The lower envelope for j0 � j is

represented as a partition of the interval [j, n] into maximal subintervals such that across each subinterval

the lower envelope is given by exactly one candidate’s curve.

The partition can be described by a list of the right endpoints of the subintervals, say p1< . . .<pt¼ n for t

subintervals, together with a list of the corresponding candidates k1, . . . , kt that specify the lower envelope

at these subintervals. Note that once the partition is known at column j, the value F(j) is given by the curve

for the candidate corresponding to the first subinterval [j, p1] of the partition, namely G(k1, j). When

advancing to column jþ 1 in the row, the partition is updated by considering the effect of the curve for

candidate jþ 1 on the lower envelope.

The process of adding a candidate’s curve to the lower envelope exploits the following property of the

gap cost function.

Lemma 1 (Dominance property). Consider candidates a and b with a< b. Suppose G(a,c)<G(b,c)

at some c� b. Then at all d� c,

G(a, d) < G(b, d):

Proof. The key is to show that the difference	
G(b, d)�G(b, c)



�
	
G(a, d)�G(a, c)



(10)

is nonnegative, as adding G(b, c)�G(a, c) implies the lemma. Let function M(S, x, y) be the maximum of

h(S, p) over the interval p 2 [x, y]. For the deletion context, quantity (10) above equals	
c(M(S, b, d))� c(M(S, b, c))



�
	
c(M(S, a, d))� c(M(S, a, c))



: (11)

Considering where h(S, p) attains its maximum on the intervals [b, d], [b, c], [a, d], [a, c], and noting that

g(hxi) is nondecreasing in x, shows quantity (11) above is nonnegative, which proves the lemma. &

A consequence of Lemma 1 is that the curves for any pair of candidates cross at most once, which we

formalize in the following lemma. (In contrast, for the standard affine gap cost model, candidate curves do

not cross, so in that model a single candidate determines the lower envelope.) This property is the key to

efficiently updating the lower envelope.

Below, for candidates a, b and interval x, we write a�x b if G(a, j)�G(b, j) for all j in x. We write a�x b

if a�x b and G(a, j)<G(b, j) for some j in x.

Lemma 2 (Crossing once property). For candidates a< b on interval x, either a�x b, b�x a, or x

splits into successive intervals y,z such that b�y a and a�z b. Moreover if G(b,c)�G(a, c) at the right

endpoint c of x, then b�x a.

Proof. Essentially, there cannot be three positions i< j< k in x such that the candidate whose curve is

below the other at i, j, k is respectively b, a, b. In such a case, Lemma 1 contradicts G(b, k)<G(a, k).

For the last part of the lemma, suppose G(b,c)�G(a, c) at the right endpoint c. If G(a, j)<G(b, j) at some

j in x, Lemma 1 gives a contradiction at c. So b�x a. &

Using this crossing once property, we update the lower envelope as follows. Given a new candidate j,

we compare it on intervals of the current partition p1, …, pt, starting with the leftmost. In general when
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comparing against the ith interval x¼ ( pi� 1, pi], we first examine its right endpoint c¼ pi. If G(j, c)�G(ki, c),

then by Lemma 2 candidate j dominates across x, so we delete interval i from the partition (effectively

merging it with the next interval), and continue comparing j against interval iþ 1. If G(j, c)>G(ki, c), then by

Lemma 1, j is dominated on intervals iþ 1, . . . , t by their corresponding candidates, so those intervals do not

change in the partition. Interval i may change, though if it does, by Lemma 2 it at worst splits into two

pieces with j dominating in the left piece. In the case of a split, we insert a new leftmost interval [j, p] into

the partition with j as the corresponding candidate. To find the split point p (if it exists), we can use binary

search to identify the rightmost position such that G(j, p)<G(k, p), where k is the candidate corresponding

to the current interval. (The proof of Lemma 1 implies that the difference between the curves for candidates

k and j is nonincreasing.) During the binary search, gap cost function g is evaluated O(log n) times.

In general, updating the partition when considering a new candidate involves a series of deletes, followed

by an insert. Assuming g can be evaluated in O(1) time, a delete takes O(1) time while an insert takes

O(log n) time. While a given update can involve several deletes, each delete removes an earlier candidate,

which is never reinserted. Charging the delete to the removed candidate, the total time for deletes is then

O(n2). The total time for all inserts is O(n2 log n).

The final issue is the time to evaluate g(S, i, j, T, k) for the deletion context. With O(n) time and space

preprocessing, we can evaluate the sum of gap extension penalties l in the definition of g in O(1) time, by

taking the difference of two precomputed prefix sums. With O(n2) time and space preprocessing, we can

look up the gap open penalty g in O(1) time, by precomputing H(S, i, j) for all i, j. (Alternately, we can use a

range tree (de Berg et al., 2000) to find the maximum for H(S, i, j) online when evaluating the cost of a gap;

this only requires O(n) time and space preprocessing, but it evaluates g in O(log n) time, which is slightly

slower.) In short, using O(n2) time and space preprocessing, we can evaluate g in O(1) time.

We summarize the total time for the alignment algorithm below.

Theorem 2 (Deletion context running time). For the deletion gap context, optimally aligning two

sequences of lengths m� n takes O(n2þmn log n) time.

This provides a significant speedup in practice as well as in theory.

4. LEARNING MODEL PARAMETERS BY INVERSE ALIGNMENT

We now show how to learn values for the parameters of these alignment scoring models using the inverse

alignment technique with a new optimization criterion. (For a survey on inverse alignment, see Kim [2008].)

This new criterion extends the approach of Kim and Kececioglu (2007) to incorporate a so-called loss

function as introduced by Yu et al. (2007). Informally, the goal of parameter learning is to find values for

which the optimal scoring alignment is the biologically correct alignment. Inverse alignment takes as input

a collection of examples of correct reference alignments, and outputs an assignment of values for the

parameters of the alignment scoring model that makes the reference alignments score as close as possible to

optimal scoring alignments of their sequences. The approach of Kim and Kececioglu (2007) finds a parameter

assignment that minimizes the average absolute error in score across the examples, while Yu et al. (2007) also

incorporate the error in recovery between an optimal scoring alignment and the reference alignment. We

briefly review these approaches below.

The reference alignments of protein sequences that are widely available for parameter learning, which are

generally based on aligning known three-dimensional structures for families of related proteins, are actually

only partial alignments. In a partial alignment, columns are labeled as reliable or unreliable. Reliable col-

umns typically correspond to core blocks, which are gapless regions of the alignment where common three-

dimensional structure is shared across the family. At the unreliable columns in a partial alignment, the

alignment is effectively left unspecified. In a complete alignment, all columns are reliable. An example is said

to be complete or partial depending on whether its reference alignment is complete or partial. We follow the

presentation of Kim and Kececioglu (2008), which first develops an algorithm for inverse alignment from

complete examples, and then extends it to partial examples.

4.1. Minimizing discrepancy on complete examples

In the following, we define inverse alignment from complete examples under a new optimization

criterion that we call discrepancy. This discrepancy criterion generalizes the score error approach of Kim
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and Kececioglu (2007) and the recovery error approach of Yu et al. (2007). In our experiments, it is

superior to both.

For alignment scoring function f, let p1, p2, . . . , pt be its parameters. We view the entire set of parameters

as a vector p¼ (p1, . . . , pt) drawn from domain D. When we want to emphasize the dependence of f on its

parameters p, we write fp. The input to inverse alignment consists of many example alignments, where each

exampleAi aligns a corresponding pair of sequences Si. We denote the average length of the sequences in

Si, say the pair A and B, by L(Si) :¼ 1
2
jAj þ 1

2
jBj.

For an alignment Bi of the sequences Si for example Ai, let function d(Ai,Bi) be the number of reliable

columns of exampleAi that are not present in alignment Bi, divided by the total number of reliable columns

in the example.2 In other words, function d measures the error in recovering example Ai by alignment Bi as

a fraction between 0 and 1 (which correspond respectively to no error and total error). Yu et al. (2007) call

d a loss function.

Definition 1 (Inverse alignment under discrepancy with complete examples). Inverse Alignment

from complete examples under the discrepancy criterion is the following problem. The input is a collection

of complete alignments Ai of sequences Si for 1� i� k. The output is parameter vector

x� :¼ argmin
x 2 D

D(x),

where

D(x) :¼ 1

k

X
1�i�k

max
Bi of Si

(1� a)
fx(Ai)� fx(Bi)

L(Si)
þ a d(Ai,Bi)

� �
: (12)

In the above sum, the maximum is over all alignments Bi of the example sequences Si, and a 2 [0, 1] is a

constant that controls the relative weight on score error versus recovery error. Function D(x) is called the

average discrepancy of the examples under parameters x. &

The discrepancy criterion reduces to the approach of Kim and Kececioglu (2007) when a¼ 0, and to the

approach of Yu et al. (2007) when a¼ 1
2
, upon removing the length normalization of score error by setting

L(Si) 	 1. Intuitively, when minimizing discrepancy D(x), the recovery error term d(Ai,Bi) drives the

alignments Bi that score better than example Ai (which have a positive score error term under fx) toward

also having low recovery error d. In other words, the recovery error term helps make the best scoring

alignments agree with the example on its columns. On the other hand, the scale of recovery error d 2 [0, 1]

is small, while the score error fx(Ai)� fx(Bi) can grow arbitrarily big, especially for long sequences.

Correctly tuning the relative contribution of score error and recovery error is impossible for examples Ai of

varying lengths, unless score error is length normalized, which leads to the above discrepancy formulation.

For the alignment scoring functions f presented in Section 2, inverse alignment from complete examples

under the discrepancy criterion can be reduced to linear programming. The parameters of scoring function

fx are the variables x of the linear program. The domain D of the parameters is described by a set of

inequalities that includes the bounds

(0, �1, 0, 0) � (rab, lcd , ci, ki) � (1, 1, 1, 1),

and the inequalities

raa � rab,

lcc � 0,

lcd � 0,

ci � ciþ 1,

ki � kiþ 1:

2Since d will be applied to partial examples in Section 4.2, we emphasize that the counts in its numerator and
denominator are with respect to reliable columns only.

ALIGNING PROTEIN SEQUENCES USING SECONDARY STRUCTURE 571



The remaining inequalities in the linear program measure discrepancy D(x). Associated with each

example Ai is an error variable di. For example Ai, and every alignment Bi of sequences Si, the linear

program has an inequality

(1� a)
fx(Ai)� fx(Bi)

L(Si)
þ a d(Ai,Bi) � di: (13)

Note this is a linear inequality in the variables x, since function fx is linear in x.

Finally, the objective function for the linear program is to minimize

1

k

X
1�i�k

di:

Minimizing this objective forces each variable di to equal the term with index i in the summation for D(x) in

Equation (12). Thus, an optimal solution x* to the linear program minimizes the average discrepancy of the

examples.

This linear program has an exponential number of inequalities of form (13), since for an example Ai, the

number of alignments Bi of Si is exponential in the lengths of the sequences (Griggs et al., 1990).

Nevertheless, this program can be solved in polynomial time by a far-reaching result from linear pro-

gramming theory known as the equivalence of separation and optimization (Grötschel et al., 1988). This

equivalence result is that a linear program can be solved in polynomial time iff the separation problem for

the linear program can be solved in polynomial time. The separation problem is, given a possibly infeasible

vector ~xx of values for all its variables, to report an inequality from the linear program that is violated by ~xx,

or to report that ~xx satisfies the linear program if there is no violated inequality.

We can solve the separation problem in polynomial time for the above linear program, given a concrete

vector ~xx, by the following. We consider each example Ai, and find an alignment B�i that maximizes the left-

hand side of inequality (13), where for scoring function f we use the parameter values in ~xx. If for this

alignment B�i the left-hand side is at most di, then all inequalities of form (13) involving Ai are satisfied by

~xx; if the left-hand side exceeds di, then this B�i gives the requisite violated inequality. Finding this extreme

alignment B�i can be reduced to computing an optimal scoring alignment where scoring function f is

modified slightly to take into account the contribution of substitutions that coincide with the reliable

columns of Ai to the recovery error d(Ai,Bi). (More details are provided in Yu et al. [2007] and Kim and

Kececioglu [2008].) For an instance of inverse alignment with k examples, solving the separation problem

for the linear program involves computing at most k optimal scoring alignments, which can be done in

polynomial time.

In practice, we solve the linear program using a cutting plane algorithm (Cook et al., 1998). This approach

starts with a small subset P of all the inequalities in the full linear program L. An optimal solution ~xx of the

linear program restricted to P is found, and the separation algorithm for the full program L is called on ~xx. If

the separation algorithm reports that ~xx satisfies L, then ~xx is an optimal solution to L. Otherwise, the violated

inequality that is returned by the separation algorithm is added to P, and the process is repeated. (For more

details, see Kim and Kececioglu [2008].) While such cutting plane algorithms are not guaranteed to

terminate in polynomial time, they can be fast in practice. We start with subset P containing just the trivial

inequalities that specify parameter domain D.

4.2. Extending to partial examples

As mentioned earlier, the examples that are currently available are partial alignments. Given such a

partial example A for sequences S, a completion A of A is a complete alignment of S that agrees with the

reliable columns of A. In other words, a completion A can change A on the substrings that are in unreliable

columns, but must not alter A in reliable columns.

When learning parameters by inverse alignment from partial examples, we treat the unreliable columns

as missing information, as follows.

Definition 2 (Inverse alignment with partial examples). Inverse Alignment from partial examples is the

following problem. The input is a collection of partial alignments Ai for 1� i� k. The output is parameter

vector
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x� :¼ argmin
x 2 D

min
A1, . . . ,Ak

D(x),

where the inner minimum is over all possible completions Ai of the partial examples. &

Kim and Kececioglu (2007) present the following iterative approach to partial examples. Start with an

initial completion (Ai)0 for each partial example Ai, which may be formed by computing alignments of its

unreliable regions that are optimal with respect to a default parameter choice (x)0. (In practice, for (x)0 we

use a standard substitution matrix [Henikoff and Henikoff 1992] with appropriate gap penalties.) Then

iterate the following process for j¼ 0, 1, 2, . . . . Compute an optimal parameter choice (x)jþ 1 by solving

inverse alignment on the complete examples (Ai)j. Given (x)jþ 1, form a new completion (Ai)jþ 1 of each

example Ai by computing an alignment of each unreliable region that is optimal with respect to parameters

(x)jþ 1, and concatenating these alignments of the unreliable regions alternating with the alignments given

by the reliable regions. Such a completion optimally stitches together the reliable regions of the partial

example, using the current estimate for parameter values.

The analysis of Kim and Kececioglu (2008) also proves that for the new average discrepancy criterion, the

discrepancy D of successive parameter estimates (x)j forms a monotonically decreasing sequence, and hence

converges. In practice, we iterate until the improvement in discrepancy becomes too small, or a limit on

the number of iterations is reached. As discrepancy improves across the iterations, recovery of the examples

generally improves as well (Kim and Kececioglu, 2008).

5. EXPERIMENTAL RESULTS

To evaluate these new alignment scoring models, we studied how well an optimal alignment under the

model recovers a biological benchmark alignment, using parameters learned from reference alignments.

The experiments study the models when used for both pairwise alignment and multiple alignment.

5.1. Pairwise sequence alignment

For the experiments on pairwise alignment, we collected examples from the following suites of reference

alignments: BAliBASE (Bahr et al., 2001), HOMSTRAD (Mizuguchi et al., 1998), PALI (Balaji et al.,

2001), and SABMARK (Van Walle et al., 2004). From each suite, we selected a subset of 100 pairwise

alignments as examples. We denote these sets of examples by:

� B for the BAliBASE subset,
� H for the HOMSTRAD subset,
� P for the PALI subset,
� S for the SABMARK subset,
� U for the union B[H[P[ S, and
� X for the complement U�X of each set X 2 fB, H, P, Sg.

Gap level ‘¼ 8, window width w¼ 7, and discrepancy weight a¼ 0.1 are used throughout. To predict sec-

ondary structure we used PSIPRED ( Jones, 1999), and to solve linear programs we used GLPK (Makhorin,

2005). For the pairwise alignment experiments of this section (and the multiple alignment experiments of

Section 5.2), recovery is measured by the so-called SPS score (Bahr et al., 2001). For pairwise alignment

recovery, this score is the percentage of residue pairs in the core blocks of the reference alignment that are

Table 1. Recovery Rates Comparing the Substitution Models Alone

Modifier model

Training set Test set None Lumped Distributed

B B 73.52 80.99 81.57

H H 79.92 82.44 83.58

P P 67.87 74.67 76.60

S S 68.76 72.58 72.55
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correctly aligned in the computed alignment. (For multiple alignment recovery in Section 5.2, this same score

is measured across all induced pairwise alignments of the reference multiple alignment.)

The first set of experiments, shown in Table 1, study the effect of the substitution models alone, without the

new gap models. We compared the recovery rates of the lumped and distributed prediction models for

secondary structure modifiers mcd on substitution costs. (In our tables, recovery rates are in percentages.) Gap

costs use the standard affine model of a gap open and extension penalty for internal gaps, and a separate gap

open and extension penalty for terminal gaps; these four penalties were learned as well. The new substitution

models are also compared with the standard substitution model that does not use modifiers, called ‘‘none.’’

These experiments use hold-out cross validation, where parameters learned on training set B are applied to

test set B, and so on for each suite of benchmarks. As the table shows, the highest recovery is achieved

using the distributed prediction model.

Table 2 studies the effect of the gap models alone, without substitution modifiers. (The standard substi-

tution model is used.) The table compares each of the three models of gap context, combined with each of

the three measures of the degree of secondary structure. To simplify the presentation for these compari-

sons between all context and degree models, the test and training sets are both U. (Table 3 shows the best of

these gap models across all four disjoint test and training sets.) As the table shows, the highest recovery is

achieved using the mixed context combined with the distributed-continuous degree measure of secondary

structure.

Table 3 shows the improvement in recovery over the standard model (without the new substitution or gap

models), upon first adding the best new substitution model (distributed prediction), and then adding the best

new gap model (distributed-continuous degree with mixed context). As can be seen, adding the new

substitution model with secondary structure modifiers mcd gives a large improvement in recovery. Adding

the new gap model gives a further, but smaller, improvement.

The results in these tables have shown aggregate recovery, which effectively is an average across all the

reference alignments in a test set, but do not show how the new substitution and gap models improve the

recovery for sequences of varying similarity. Figure 1 plots the improvement in recovery for pairwise

alignment on benchmark reference alignments that are ranked according to the similarity of their sequences.

To explain the plot, we first sorted the reference alignments in set U in order of decreasing normalized

alignment cost (Wheeler and Kececioglu, 2007a), where this measure divides the cost of an alignment by the

average length of its sequences (which in general is a more robust measure of dissimilarity than percent

identity). For this measure, alignment cost was scored under the standard alignment model using the default

parameter values of the multiple alignment tool Opal (Wheeler and Kececioglu, 2007b). Each value of n

along the horizontal axis corresponds to using as a test set the first n reference alignments in this ranking. The

uppermost curve plots the average percent identity for these corresponding test sets, which generally in-

creases as the average normalized alignment cost decreases along the horizontal axis. The lower two curves

Table 2. Recovery Rates Comparing the Gap Models Alone

Gap context model

Structure degree model Deletion Insertion Mixed

Lumped–binary 75.63 75.59 76.51

Distributed–binary 75.86 75.90 76.43

Distributed–continuous 75.96 76.22 76.63

Table 3. Recovery Rates on Adding the New Substitution and Gap Models

Substitution and gap model

Training set Test set None Sub Subþ gap

B B 73.51 81.57 82.88

H H 79.92 83.58 84.62

P P 67.87 76.60 77.32

S S 68.76 72.55 75.52
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plot the improvement in recovery as measured on these test sets for parameter values learned on training set

U. Improvement is measured with respect to the standard model with no substitution modifiers and no gap

context. The lowest curve adds only substitution modifiers to the standard model, and the next higher curve

adds both substitution modifers and gap context. Note that the greatest improvement is generally achieved for

benchmark reference alignments with the lowest percent identity. For benchmarks with less than 25%

identity, the combined improvement in recovery using both substitution modifiers and gap context is as much

as 15%.

Additional experiments show the effect of the number of examples in the training set on both the recovery

rate and the running time for parameter learning. To vary the number of examples in our prior test and training

sets, for each set X 2 fB, H, P, Sg and various i, we formed a subset Xi�X containing exactly i examples.

(Notice that X100¼X, since our original sets X each have 100 examples.) Similarly, with respect to the

union Ui :¼ Bi[Hi[Pi[ Si, we also formed the complement Xi :¼ Ui�Xi for each X.

Table 4 shows how the size of the training set affects the recovery rate. Note that each training set Xi has

3i examples, so as index i doubles across the table, the size of the training set also doubles. (An advantage

of learning parameters by inverse alignment is that the linear programming approach can handle large

training sets.) For increasingly larger training sets, the parameters learned are applied to the same disjoint

test set X100¼X. Generally, using more examples yields higher recovery rates.

For these same training sets, Table 5 shows the running time and number of cutting planes in the linear

program for parameter learning by inverse alignment. (The number of cutting planes reported is the maxi-

mum across the iterations of the approach to partial examples described in Section 4.2, which is a measure of

the size of the largest linear program solved.) Running times are in minutes and seconds on a Pentium IV

running at 3 GHz with 1 GB of RAM. Note that all experiments completed in less than one hour. In particular,

solving the largest instances with 300 examples took at most 55 minutes and used at most around 18,600

cutting planes. (Keeping the linear programs to this size is nontrivial and requires a careful implementation of

the cutting plane algorithm [Kim 2008].) It is noteworthy that as the number of examples increases, the

running time and size of the linear program remains comparatively stable, even though the number of

examples is doubling. Interestingly, the number of cutting planes actually decreases with more examples,

suggesting that a greater variety of examples may enable the algorithm to find more effective cutting planes.
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FIG. 1. Improvement in recovery rate in relation to percent identity.

Table 4. Effect of Training Set Size on Recovery Rate

Index i

Training set Test set 25 50 100

Bi B100 79.36 80.67 82.88

Hi H100 81.83 83.48 84.62

Pi P100 75.26 75.10 77.32

Si S100 72.81 74.65 75.52
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5.2. Multiple sequence alignment

To evaluate these models when used for multiple sequence alignment, we incorporated them into the

multiple alignment tool Opal (Wheeler and Kececioglu, 2007b). Opal is unique in that it constructs mul-

tiple sequence alignments by exploiting a fast algorithm for optimally aligning two multiple alignments

under the sum-of-pairs scoring function with affine gap penalties (Wheeler and Kececioglu, 2007a). (While

the problem of optimally aligning two alignments is theoretically NP-complete for affine gap penalties

[Starrett, 2008], Opal builds upon an exact algorithm for aligning alignments that is remarkably fast in

practice on biological sequences [Kececioglu and Starrett, 2004].) Since its subalignments have optimal

score in this sense, Opal is a good testbed for comparing the new scoring models, as effects due to

suboptimality with respect to the scoring function are reduced. The baseline version of Opal uses the

BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992) with carefully chosen affine gap penalties

(specifically, a gap open and extension penalty for internal gaps, and another open and extension penalty for

terminal gaps). We modified baseline Opal to incorporate predicted secondary structure, still using the

BLOSUM62 substitution matrix, but now combined with parameters learned using our best scoring model:

the distributed prediction model for substitution modifiers, with the distributed-continuous degree measure

and mixed context for gap costs. (Modifying the fast algorithm for optimally aligning alignments within Opal
to accommodate this more complex gap model is nontrivial, but outside the scope of this paper [Wheeler,

2009].)

When studying the scoring models applied to multiple alignment, we rank the benchmark reference

alignments in our experiments according to what we call their hardness: the average of their recovery rates

under the baseline tools MAFFT, ProbCons, and Opal, all of which have equivalent recovery rates

(Wheeler and Kececioglu 2007a) and are among the most accurate tools available for multiple alignment that

do not use secondary structure. This is in contrast to the common practice of ranking benchmarks by their

percent identity. As shown in Figure 2, which gives a scatter plot of hardness versus percent identity for all

reference alignments in the BAliBASE, HOMSTRAD, and PALI suites, once percent identity falls below

Table 5. Effect of Training Set Size on Running Time and Cutting Planes

Index i

25 50 100

Training set Time Planes Time Planes Time Planes

Bi 39:09 15,448 40:37 14,234 45:03 13,838

Hi 46:47 17,841 37:29 14,864 49:58 14,789

Pi 54:55 18,619 52:01 16,008 38:22 14,440

Si 54:50 17,831 48:44 15,313 52:53 15,356

FIG. 2. Hardness versus percent identity for benchmark reference alignments.
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30%, there is little correlation between the percent identity of a benchmark and its difficulty: a benchmark

with low percent identity can be easy (100% recovery) or hard (0% recovery). Consequently, in what follows,

we use recovery rate under a baseline tool as our measure for ranking benchmarks.

Figure 3 gives a scatter plot of the improvement in the recovery rate of Opal over its baseline version

when using the secondary structure scoring model, for all benchmarks in BAliBASE, HOMSTRAD, and

PALI. Note that for the harder benchmarks (with lower baseline recovery), the boost in recovery using

secondary structure tends to be greater. Notice also that using secondary structure occasionally worsens the

recovery (which should be expected, since structure prediction is imperfect, and no universal parameter

choice will improve all benchmarks).

Figure 4 shows the recovery rates on these same benchmarks for three variants of Opal: (1) the baseline

version with no secondary structure, (2) using the new substitution model but the baseline gap model, and

(3) using the new substitution model and the new gap model. Benchmarks are binned according to their

recovery again for baseline Opal. Bin x contains benchmarks whose baseline recovery is in interval

(x� 10, x]. Bars show the recovery rate for a variant averaged over the benchmarks in its bin. In paren-

theses are the number of benchmarks in each bin. Note that the substitution model provides the largest

boost in recovery, which is generally greatest for the hardest benchmarks.

Finally, Figure 5 compares the improvement in recovery rate achieved by using secondary structure in two

multiple alignment tools: ISPAlign (Lu and Sze, 2008) and Opal. (ISPAlign has the best recovery among

the competing alignment tools PRALINE, SPEM, and PROMALS that use secondary structure. ISPAlign,

FIG. 3. Improvement in recovery rate using secondary structure in Opal.

FIG. 4. Recovery rates of models in Opal versus binned baseline recovery.
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like Opal in this comparison, uses PSIPRED to predict secondary structure.) To make an equitable com-

parison of secondary structure models, ISPAlign was modified to not annotate the input sequences with

profiles of amino acid exchanges, and to not augment the input with intermediate sequences, both of which

are found through database searches (and are not used by Opal), so the effect of the ISPAlign secondary

structure scoring model could be isolated. Since without secondary structure ISPAlign effectively uses

ProbCons to compute its alignments, the recovery boost in ISPAlign is measured with respect to Prob-
Cons. (Recall that ProbCons and baseline Opal have equivalent accuracy [Wheeler and Kececioglu,

2007a].) The same benchmarks from BAliBASE, PALI, and HOMSTRAD are used, binned by hardness.

(Note that these standard suites contain comparatively few hard benchmarks, so simply reporting the im-

provement averaged over all benchmarks will not convey the true strength of the models, as most of these

benchmarks already are easy.) For the hardest benchmarks of at most 40% baseline recovery, the im-

provement in recovery for Opal is more than 20%. The boost in recovery for Opal is generally much greater

than for ISPAlign, suggesting that the new secondary structure scoring model may be making more effective

use of secondary structure information than the simpler model used in ISPAlign.

6. CONCLUSION

We have presented new models for protein sequence alignment that incorporate predicted secondary

structure, and have shown through experimental results on benchmark reference alignments that when model

parameters are learned using inverse alignment, the models significantly boost the accuracy of both pairwise

and multiple alignment of distant protein sequences. Incorporating secondary structure into the substitution

scoring function provides the largest benefit, with distributed prediction giving the most accurate substitution

scores, while the new gap penalty functions provide a lesser yet still substantial benefit. Comparing with other

multiple alignment tools that incorporate secondary structure shows that our models provide a larger increase

in accuracy compared to not using secondary structure, which suggests that the additional complexity of our

models is offset by their correspondingly greater increase in accuracy.

There remain many avenues for further research. In particular, given that improved substitution scores

provided the largest boost in accuracy, it would be interesting to learn a model with a substitution scoring

function s(a,b,c,d) that directly scores each pairing {(a, c), (b, d)} of amino acids a, b with secondary

structure types c, d respectively. Such a model has 1,830 substitution parameters sabcd alone, and will require

a very large training set, combined with a careful procedure for fitting default values for unobserved pa-

rameters.
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