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Figure 1: An illustration of Multi-Dimensional Scaling (MDS) approach for drawing graphs on the sphere: (1) the output from
spherical MDS which matches the geodesic distance between two points on the sphere to the corresponding graph distance,
(2) the stereographic projection from the sphere to the Euclidean plane, (3) clustering similar nodes (e.g., based on graph
distances); (4) the final output with the clusters projected back to the sphere.

ABSTRACT
Graphs are most often visualized in the two dimensional Euclidean
plane, but spherical space offers several advantages when visual-
izing graphs. First, some graphs such as skeletons of three dimen-
sional polytopes (tetrahedron, cube, icosahedron) have spherical
realizations that capture their 3D structure, which cannot be vi-
sualized as well in the Euclidean plane. Second, the sphere makes
possible a natural “focus + context" visualization with more detail
in the center of the view and less details away from the center.
Finally, whereas layouts in the Euclidean plane implicitly define
notions of “central" and “peripheral" nodes, this issue is reduced
on the sphere, where the layout can be centered at any node of
interest.

We first consider a projection-reprojection method that relies on
transformations often seen in cartography and describe the imple-
mentation of this method in the GMap visualization system. This
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approach allows many different types of 2D graph visualizations,
such as node-link diagrams, LineSets, BubbleSets and MapSets, to
be converted into spherical web browser visualizations. Next we
consider an approach based on spherical multidimensional scaling,
which performs graph layout directly on the sphere. This approach
supports node-link diagrams and GMap-style visualizations, ren-
dered in the web browser using WebGL.
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1 INTRODUCTION
Graph visualizations, usually in the form of node-link diagrams in
the two dimensional (2D) Euclidean plane, are a feature of many vi-
sualization tools and software packages. Force directed algorithms,
otherwise known as spring embedders, model the graph layout
problem using physical force analogies. The conceptual simplicity
of such algorithms, and the generally aesthetically pleasing results,
makes them useful for visualizing relational datasets. Some graphs,
however, do not have an ideal representation in two dimensions
due to their structure. For example, skeletons of three dimensional
polytopes such as the tetrahedron and the cube are better visu-
alized in three dimensions (3D) or even in non-Euclidean spaces
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Figure 2: Node link diagrams, BubbleSets, MapSets style
graph visualizations on the sphere.

such as the sphere. Trees and other hierarchical graphs are well-
suited for visualization in hyperbolic space, where all edges can
have uniform lengths with vertices uniformly distributed in the
space. While there is some work on graph visualization in spheri-
cal and hyperbolic space there are no graph visualization tools or
packages that provide this functionality. Further, existing work of
this type requires 3D visualization environments and there are no
implementations in the web browser.

In this paper we describe two different approaches to visualize
graphs on the sphere. We first consider a projection-based method
that relies on transformations often seen in cartography, and de-
scribe the implementation of these ideas in the GMap visualization
system. This approach allows us to take the output of any 2D graph
visualization method (e.g., a standard node-link diagram, a map-like
visualization, etc.) and project this to the sphere and interact with
the spherical visualization in the browser via panning, zooming
and rotation; see Fig. 2.

While our first approach is still inherently a 2D Euclidean visual-
ization wrapped around the sphere, our second approach, based on
spherical multidimensional scaling (MDS), truly takes advantage
of the space. It embeds a given graph on the sphere so that pair-
wise geodesic distances on the sphere correspond to the underlying
pairwise graph distances. This method also allows for GMap-style
visualization of clusters/countries, where the clusters can be com-
puted based on the graph structure (modularity clustering) [2],
or random-walk distances (InfoMap clustering) [37], or geometric
distances (k-means) [31].

Due to the nature of spherical geometry relative to Euclidean
geometry, applying a force-directed algorithm on the sphere or
applying MDS on the sphere requires significant modifications. For
example, on the sphere there is not necessarily a unique shortest
path between two given points (e.g., there are infinitely many such
paths between the north pole and the south pole), two points mov-
ing in parallel may intersect, moving a point away from another
point might make the two closer if the movement it too large, etc.

The rest of the paper is organized as follows. In Section 2 we
discuss work related to graph visualization in non-Euclidean spaces,
cartographic projections, and multi-dimensional scaling. Section 3
discusses the first method of spherical graph visualization, based
on the projection-reprojection method. This section also contains
a detailed discussion about rendering graphs with labeled nodes,
showing clusters on the sphere, and providing interactions such as
zooming and panning in the browser. Section 4 describes the direct
approach to spherical graph visualization via MDS. It provides
details about MDS, spherical MDS, how to use the output to create
clusters, and techniques to render the resulting sphere in WebGL.
Discussion and limitations are in Section 5 , and conclusions and
future work are in Section 6.

2 RELATEDWORK
While there are not too many publications on visualizing graphs
in spherical space, the idea has been used in the Map of Science
project [4], in exhibitions such as “Places and Spaces" [3] and
“Worldprocessor" [21]. Human subject studies show that map-like
visualizations are as good or better than standard node-link repre-
sentations of graphs, in terms of task performance, memorization
and recall of the underlying data, as well as engagement [38, 39].

A force-directed algorithm for graph layouts has been general-
ized to arbitrary Riemannian geometries (which includes the sphere)
by extending the Euclidean notions of distance, angle, and force-
interactions to smooth non-Euclidean geometries via projections
to and from appropriately chosen tangent spaces [26]. For example,
on the sphere, a tangent plane exists for every point, and when the
forces acting on a given node v need to be computed, every other
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Figure 3: Illustration of the spherical reprojection approach, where an input 2D visualization is inversely projected onto the
sphere and then orthographically projected into the browser. We begin with the input 2D visualization (step 1), then (concep-
tually) place a tangent sphere (step 2) and inversely project the 2D input onto the sphere (step 3). The result is then ortho-
graphically projected onto the browser (step 4) which provides the spherical “look and feel."

node is mapped onto the tangent plane at v and the force calcula-
tion is performed in the plane and after the appropriate move, the
node is projected back on the sphere.

Hyperbolic and spherical graph visualization have been studied
by Munzner [33–35], especially in the context of trees. In fact, a sur-
vey on tree visualizations has more than ten different sphere-based
approaches [40]. Concentric spheres have been used to visualize
graphs by Sprenger et al. [45]. Self-organizing maps on the sphere
have been also been considered by Ritter [36].

Recent work looks at spherical embeddings as a way to visualize
graphs in an immersive setting. In this case, the user is placed inside
the sphere and is able to interact and visualize the graph this way
[29][48]. Our first method is similar to those used in [29], however,
in our approach we can also visualize GMap [19], LineSets [1],
MapSets [13], BubbleSets [8], and our visualizations work in the
browser instead of an immersive environment.

Force-directed graph layout algorithms can be seen as a special
case of multi-dimensional scaling (MDS). The main idea behind
MDS is to find a placement of the nodes of a graph in such away that
pairwise distances between the nodes in the visualization match the
graph distances between these nodes (e.g., computed via all pairs
shortest path). MDS is a more general dimensionality reduction
technique dating back to the 1960s. The problem was first studied
in the non-metric setting by Shepard [42] and Kruskal [28]. Non-
metric MDS recovers structure from measures of similarity, based
on the assumption of a reproducible ordering between the distances
rather than relying on the exact distances. The metric variant of
MDS is more frequently used and it relies on the exact distances.
The goal of metric MDS is to place objects in some low dimensional
space so as to preserve the given pairwise distances between the
objects. Given a distance matrix (pairwise dissimilarity matrix)
D = (di j )

n,n
i , j=1, betweenn objects (orn nodes), the objective function

function for MDS is

S(v1, . . . ,vn ) =
∑︂
i>j

(︁
di j − ∥xi − x j ∥

)︁2
. (1)

The function defined in (1) is called the stress function. Some well
known techniques for minimizing the stress function (1) are stan-
dard gradient descent, stochastic gradient descent [6], and stress
majorization [20].

Cox [9] proposed a modification of MDS for the sphere. As the
stress function above relies on preserving the rank order of dissimi-
larities in the distances, Cox argues that rather than using spherical
arc distance in the formula, Euclidean distance between points on
the surface of the sphere can be substituted, producing an equally
suitable configuration. The equation for di j then becomes:

di j = {2 − 2 sinθi2 sinθ j2 cos(θi1 − θ j1) − 2 cosθi2 cosθ j2}
1
2 ,

where θi1 is the azimuthal angle for point i and θi2 is the zenith
angle for point i .

Wu and Takatsuka [47] consider the problem of visualizing high-
dimensional data on the sphere and show how to generalize the
notion of a self-organizing map to the sphere.

3 METHOD 1: PROJECTION-REPROJECTION
Our first approach uses projections of the graph and is implemented
and functional at http://gmap.cs.arizona.edu. The implementation
relies on the JavaScript library D3.js [5] to handle the computations
of the projections and rendering of the graphics which are created
with scalable vector graphics (SVG). D3.js allows for binding of
data to the document object model (DOM), which allows for effi-
cient display and manipulation. Conveniently, D3.js also contains
implementations of common projections in its Geographies module.

In GMap, graphs are stored in the DOT format [17, 27] which
specifies a list of nodes, each containing an identifying field along
with a list of attributes. Following the nodes, a list of edges is de-
fined using the identifying fields of the nodes. Further details of the
specification are provided in the graphviz system [14]. The first step
of GMap is to embed the graphs in the two dimensional Euclidean
plane [19]. Current options include sfdp [22], a multi-level force
directed algorithm which relies on the Barnes and Hut approxima-
tion algorithm to optimize long-distance force calculations, and
neato [23], which uses the MDS approach.

3.1 XDOT Parsing
When visualizing only a node link diagram, having the coordinates
of the vertices in the plane is enough to compute the spherical
visualization. When dealing with more complex graph visualiza-
tions, such as GMap, LineSets [1], MapSets [13], BubbleSets [8]
(all available within the GMap system), additional information is
needed, such as the computed clusters, polygons in the plane, as

http://gmap.cs.arizona.edu
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well as labels, colors, etc. This information can be stored in differ-
ent formats, such as PNG, SVG, or XDOT. We use XDOT [18] as
it includes the positions for regions and nodes along with other
relevant information such as colors. The XDOT file must first be
parsed to extrapolate the vertices of each region in the map. D3.js
needs geographic data to be presented in GeoJSON [7] format when
performing projection calculations, with regions defined by ver-
tices in counter-clockwise order. The following formula estimating
the area under the region was applied to each set of vertices to
determine the orientation of the region:

orientation =
n−1∑︂
i=0

(xi − xi+1)(yi + yi+1)

If the output of the summation for the region is negative, then
the points are in counter-clockwise order. Otherwise, the order of
the vertices must be flipped. Once the correctly ordered regions
are defined, the vertices of each region are passed through the
equirectangular inverse projection formula to map the regions
to the sphere. Then, they are filtered through the orthographic
projection formula to map them back onto the plane. Nodes and
edges are handled in a similar manner, where a node is defined
by a point, and edges are defined by two points. Nodes and edges
do not require the orientation preprocessing step; instead, their
geometric properties are captured by the GeoJSON tags, “Point"
and “LineString".

3.2 Spherical Projections to the Plane
A sphere does not have a representation on the plane that perfectly
preserves direction, area, shape, and distance. Thus, any representa-
tion of a sphere on the plane results in the loss of some information,
and can be classified as a projection. Various sphere to plane projec-
tions have been explored extensively in the field of cartography, and
are the basis for two dimensional maps; see [24] and the excellent
xkcd comic1.

Our approach for rendering a graph on the surface of a sphere can
be divided into two separate tasks. The first is to model an existing
graph in two dimensional Euclidean geometry with a sphere, and
the second is to display that sphere in a web browser and provide
a “spherical look and feel." We begin with a brief review of the
essentials of spherical projection formulas.

3.2.1 Plane to Sphere. Before we can visualize the graph on the
surface of a sphere we need to select a projection from the plane
(where the input graph visualizations live) to the surface of the
sphere. The equirectangular projection is a cylindrical projection
which maps a sphere onto a Cartesian grid that contains equal-
sized squares. Meridians are mapped to vertical lines and parallels
to horizontal lines. The simplest form of this projection is the Plate
Carrée, where the line of tangency between the cylinder with the
sphere is the equator; see Fig. 4(a). Taking λ as the longitude and ϕ
as the latitude of a point on the sphere, the Plate Carée projection to
a point in the plane is given by the simple formula: (x = λ,y = ϕ).

The Plate Carrée projection is neither conformal nor equiareal,
but for visualizing graphs on the surfaces of the sphere this seems
acceptable. In the context of graph visualization, the output can be

1https://xkcd.com/977/

(a) (b)

Figure 4: Visualizing Earth with (a) an equirectangular pro-
jectionwhere distortion of shapes and areas clearly increase
near the poles; and (b) an orthographic projection based on
shooting rays from infinity above the north pole [44].

summarized succinctly by the position of all the nodes (as points).
The shape distortion in spherical projections is less important in the
context of the graph layout, thanmaintaining proportionally similar
distances between the nodes (points). In graph visualization systems
such as GMap the output is usually bounded by a rectangular region
and since cylindrical projections produce rectangular results, they
are a natural choice for mapping from the plane onto a sphere.
Further, the simplicity of the Plate Carée projection, (x = λ,y = ϕ),
allows the two dimensional graph to be quickly translated onto a
sphere even for large numbers of nodes.

3.2.2 Sphere to Browser Plane. In the previous step we projected
a graph visualization from the Euclidean plane onto the sphere.
Now we need to show this sphere in a web browser. Since there
are no good ways to handle 3D objects in the browser, we utilize
yet another projection from the sphere back to the Euclidean plane,
which provides the “look and feel" of a sphere.

While cylindrical projections produce rectangular shaped lay-
outs in a plane, planar projections result in circular shaped layouts.
As we aim to provide a spherical “look and feel" in the browser, a
planar projection such as the orthographic one is a suitable choice.
An orthographic projection maps the sphere to the plane by casting
rays from infinity, through the sphere, and orthogonal to the projec-
tion plane. Then each point on the sphere has a ray through it and
that point is mapped to the point on the plane that the ray inter-
sects. If projecting the entire sphere, some pairs of spherical points
will be mapped to the same point in the plane (when a ray passes
through the sphere at two points). Thus the orthographic projec-
tion is usually applied to a single hemisphere, and the mapping is
one-to-one and onto; see Fig. 4(b).

Orthographic projections can be computed as follows:

x = R cosϕ sin(λ − λ0)

y = R[cosϕ1 sinϕ − sinϕ1 cosϕ cos(λ − λ0)]

h′ = sinϕ1 sinϕ + cosϕ1 cosϕ cos(λ − λ0)

k ′ = 1.0

where ϕ1 and λ0 are the latitude and longitude, respectively, of
the center point and origin of the projection, h′ is the scale factor
along a line radiating from the center, and k ′ is the scale factor in a
direction perpendicular to a line radiating from the center [43].

https://xkcd.com/977/
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3.3 Other Considerations
The equirectangular inverse projection maps the input plane onto
the entire sphere, and as a result, the orthographic projection pro-
duces an overlapping visualization. To deal with this issue we re-
strict orthographic projection so that it projects only a hemisphere
rather than the entire sphere. This is accomplished in D3.js by
clipping by π

2 the visualization boundary. This in effect hides the
“back" of the sphere.

A different problem arises when drawing text labels, as text is
dealt with in a different manner than nodes, edges, and regions.
We build a custom clipping function to also hide the labels in
the “back" of the sphere, so that labels are drawn only for the
nodes/edges/regions that are visible. To do this we need to solve
the following problem: given a set of points, does each point exist
on a hemisphere with a specified center that lies on the surface of
the sphere? We can identify the center of our desired hemisphere
in a similar way that we inverted points from the plane onto the
sphere. Instead, we take the center point of the projection from the
browser, and pass it through the inverse equidistant projection for-
mula used previously. Then, for each node’s spherical coordinates,
we calculate the distance from the node to the selected center. For
simplicity, we use a unit sphere as the intermediate mapping step.
Thus, if the distance from a node to the center point is greater than
π
2 , then neither the node, nor the label should be drawn.

(a) Minimal Coverage (b) Increased Coverage

Figure 5: As the coverage slider of GMap increases, the el-
ements of the sphere are scaled, while the sphere stays at
constant size.

3.4 Zoom and Coverage
When visualizing graphs on the sphere there are two related but
different notions of scale to deal with. Zooming a spherical visu-
alization is similar to zooming a plane visualization: zooming in
shows a smaller portion of the image at larger scale. Coverage is
related to what portion of the sphere is occupied by the visualiza-
tion. When the coverage is small, the visualization occupies only a
tiny part of the surface of the sphere; when the coverage is large,
the visualization occupies most of the sphere.

The coverage setting for spherical drawings in GMap corre-
sponds to the inverse of the scale of the equirectangular projection.
However, this scale represents the distance between points of the
output that an equirectangular projection would produce given a

sphere. In our pipeline, the two dimensional plane (rather than the
sphere) is our input and that has a fixed size. Hence, increasing the
scale of the projection makes the two dimensional graph cover less
of the sphere when the inverse projection is applied. Increasing the
coverage slider in GMap decreases the scale of the projection and
the graph covers more of the sphere; see Fig. 5

(a) Minimal Zoom (b) Increased Zoom

Figure 6: As the zoom slider of GMap increases, the sphere
and contents are both scaled at a proportional rate.

The zoom parameter corresponds directly to the scale of the
orthographic projection. Increasing the scale of this projection
increases the output size in the browser of every node, edge, and
region linearly. By adjusting the zoom parameter one can decide
the context in which to view the nodes/edges/regions in the center
of the view: from just a few neighbors, to most of the graph; see
Fig. 6.

3.5 Spherical Layout Examples
The software is available for use at http://gmap.cs.arizona.edu by
selecting the “Spherical" visualization type checkbox under the
advanced options tab. While the layout and clustering algorithms
are performed on the server, the performance of spherical visual-
izations is dependent on the local machine due to D3.js handling
many of the calculations. Graphs with a few hundred nodes can be
easily visualized, although larger ones slow down the system; see
Fig. 7.

4 METHOD 2: SPHERICAL MDS
The projection-reprojection approach for visualizing graphs on
the sphere provides a fairly straight-forward way to visualize and
interact with a spherical graph visualization inside a standard web
browser. However, this approach does not take full advantage of
the sphere. For example, graphs that correspond to 3D polytopes
(tetrahedron, cube, icosahedron, etc.), visualizedwith the projection-
reprojection approach still look like 2D plane layouts. To take full
advantage of the sphere we need an approach that embeds the
graph directly on the sphere. One natural direction is to generalize
multidimensional scaling from Euclidean space to spherical space.

Recall that MDS is a dimensionality reduction technique that
relies on comparing the pairwise dissimilarities of the input data
(typically the distance between high dimensional points), with the
pairwise dissimilarities represented in the visualization (typically

http://gmap.cs.arizona.edu
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(a) Recipes (b) Trade

Figure 7: Examples of graphs on the sphere: (a) the recipes graph shows recipe ingredients with edges placed between pairs
that frequently co-occur in recipes, and (b) the trade graph connects pairs of countries that have significant trade partnerships.

the 2D Euclidean distance between the projected points). The dif-
ference between the input dissimilarities and the visualization dis-
similarities is modeled by the stress function.

We implement an approach that uses MDS to create a layout on
the sphere. This is implemented and available at http://masonsunyin.
pythonanywhere.com/polls/

While we will focus on metric MDS as a solution to our problem,
the other forms are described by Cox [10].

4.1 MDS for Graph Drawing
Computing a good graph layout can be naturally modeled as an
MDS problem as follows: Given G = (V , E) with |V | = n, we can
compute the all-pairs-shortest-path n × n matrix with entries δi j
corresponding to the length of the shortest path between nodes
i and j. We compute this with Dijkstra’s algorithm. For any em-
bedding of the graph on the sphere we have another n × n matrix
where an entry di j corresponds to the actual pairwise distances
between nodes i and j on the sphere, using the length of the shorter
arc of the great circle defined by i , j and the center of the sphere.
Then the MDS formulation of the spherical embedding problem is
to position the nodes on the surface of the sphere so as to minimize
the difference between all pairwise entries |δi j − di j |. To compute
the values di j we use the following formula [11]:

di j = λarccos(
xix j

λ2
)

where λ is the radius of the sphere and xi , x j are the vectors rep-
resenting nodes i, j in the visualization space. Therefore, we can
define the optimal configuration representing the graph as one that
minimizes the sum of squares of differences between δi j and di j

for every pair of nodes:

stress =
n∑︂
i=1

n∑︂
j=1

wi j (δi j − di j )
2

where wi j is the weight or importance of that pair. In our imple-
mentation we setwi j = 1 for all pairs.

While the resulting configuration defines points in R3, Con-
strained Monotone Distance Analysis (CMDA) can be used to en-
force the constraint that nodes are placed on the surface of a sphere
in the visualization space [30]. In CMDA, a parameter is used to
penalize nodes that are not on the sphere. This is modeled by the
function:

σκ (X ) = min
∆ϵDL

σ (X ,∆) + κ min
∆ϵDC

σ (X ,∆)

where ∆ϵDL is the graph theoretic distance matrix and ∆ϵDC con-
tains the spherical constraints. The penalty parameter is κ and the
stress functions are σL(X ,∆) and σC (X ,∆) where X is the config-
uration matrix for the point positions on the sphere in Euclidean
coordinates and ∆ is the dissimilarity matrix for the stress function.
When κ = ∞, the second term of σκ (X ) is forced to zero, and we
minimize the first term under the conditions that the second term is
zero, meaning that all points lie on the sphere. This adjusted stress
function can be optimized via stress majorization [11].

While we could parameterize the sphere using two coordinates,
we leave it in three dimensions and use CMDA as this method will
extend simply to other conics, such as ellipsoids and hyperbolas.

4.2 Sphere to Plane using Stereographic
Projection

Stereographic projection is used in the MDS version to bring points
already found on the sphere to the plane for clustering and then
projecting the clustered points back to the sphere.

http://masonsunyin.pythonanywhere.com/polls/
http://masonsunyin.pythonanywhere.com/polls/
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This projection takes a point on the sphere and rotates it until
it becomes the north pole. A tangent plane is placed at the south
pole. Then lines are drawn from the north pole through each of the
nodes on the sphere. The projections of the nodes on the plane are
the points of intersection of these lines and the plane. This gives
each point on the sphere a unique projection point on the plane.

The stereographic projection is found using the following, where
xs ,ys , zs are the Cartesian points on the sphere and xp ,yp are the
Cartesian points on the plane:

xp =
xs

1 − zs

yp =
ys

1 − zs

The inverse mapping follows a similar pattern, except the line is
drawn through the north pole and the point on the plane. The
intersection of this line with the sphere is the projected values. This
is used to bring the 2D clusters onto the sphere.

The inverse projection can be written as follows:

xs =
2xp

1 + x2p + y2p

ys =
2yp

1 + x2p + y2p

zs =
x2p + y

2
p − 1

1 + x2p + y2p
where xs ,ys , zs are points on the sphere in Cartesian coordinates
and xp ,yp indicate points on the plane.

4.3 Implementation of the MDS version
The implementation can be broken down in three steps: (1) compute
the dissimilarity matrix and node positions on the sphere based on
spherical MDS; (2) project the sphere stereographically to the plane
and compute cluster boundaries; (3) projecting back to the sphere
and render the final visualization.

4.3.1 Using MDS to Find Positions. MDS expects pairwise dissimi-
larity values for all pairs of nodes in the graph. If the graph is given
with similarities instead of dissimilarities, the given similarities are
normalized between [0, 1] and the dissimilarities in the matrix are
given by 1− this value. To compute the final dissimilarity matrix, we
use Disktra’s all pairs shortest paths algorithm on the given graph.
After computing the dissimilarity matrix for the graph, we apply
spherical MDS. We implemented spherical MDS in python, based
on the R package smacof (Scaling by MAjorizing a COmplicated
Function) [12]. The output of this step are spherical coordinates for
all nodes in the input graph.

4.3.2 Clustering with MDS. After computing spherical node posi-
tions we cluster the nodes. This step uses the stereographic pro-
jection to bring the points into the 2D plane, using existing graph
clustering algorithms, and then reprojecting those clusters back
onto the sphere using the inverse stereographic projection.

When projecting, we would like to choose a point as the north
pole (and origin of the stereographic projection) such that most of
the nodes are as far as possible from it. This corresponds to choosing
the center of a large empty region on the sphere as the north pole

and reduces the area of the plane occupied by the projected points
(which could be arbitrarily large if there are nodes close to the north
pole). Currently we apply a simple heuristic to rotate the sphere
randomly n times (in our implementation n = 100), projecting, and
then selecting the projection with the smallest final area.

Once the nodes are projected to the plane they are clustered to
create the desired map-like look, using one of several algorithms,
including modularity clustering [2], InfoMap clustering [37], and
k-means clustering [31]. Once the polygons for each cluster have
been computed, the polygons are reprojected onto the sphere.

4.4 Rendering
The rendering is done using WebGL [25]. We use the points on the
sphere output by the spherical MDS and use inverse stereographic
projection to get the cluster boundaries to the sphere. Again, clip-
ping is used to hide the back of the sphere.

The rendering of the spherical graph consists of three main
objects, points, lines, and triangles. For example, the sphere itself
is generated using tiny triangles that interlock with each other,
resulting in a curved surface that looks smooth to the naked eye.
Nodes are drawn by converting the selected point on the sphere
into a small sphere, which is drawn using the THREE.js spherical
geometry method. Labels are attached to the nodes using HTML
which allows us to hide them when they are behind the sphere.
Edges are drawn using the shortest (geodesic) path along the sphere.

To render the cluster polygons on the sphere we convert each
given cluster into a large collection of small triangles, filled in with
the same color. As the sphere itself is made out of many tiny 2D
triangles stitched together, our cluster drawing algorithm attempts
to split each polygon to the same resolution of triangles on the
sphere to create a spherical look.

Before the clusters are rendered on the sphere, several steps are
needed to help the rendering perform well. First, the clustering
is performed, which gives back the locations of each point of the
cluster on the 2d plane. Each polygon is then cut into small trian-
gles using the earcut algorithm [15, 41] as implemented by mapbox
(https://github.com/mapbox/earcut). This algorithm splits the poly-
gon into triangles, where each triangle is a set of three points from
the polygon. No new points are created, so each point in a triangle
corresponds to a point in the 2d polygon, and the triangles can
be easily projected to the sphere without changing the original
polygon. After the triangles are mapped onto the sphere, there are
still some projected triangles that are too large to render properly
on the sphere. To reduce the size of triangles, each triangle (now a
set of three arcs) on the sphere is recursively bisected until every
arc of the resulting triangles is no larger than a specified threshold.
This ensures that the polygons appear on the surface of the sphere
rather than inside the sphere.

Some of the clustering algorithms produce clusters that are not
contiguous polygons: a cluster can be a set of disjoint polygons
or a polygon with a hole that contains another cluster. Such cases
require special treatment. Through the use of THREE.js, we can
refer to the Shape and Edges objects to extract holes. A Shape object
is constructed from the points of a cluster and then the Edges object
extracts edges from the points that define the shape. The Edges
object contains all edges, inside and outside the polygon. If the

https://github.com/mapbox/earcut
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edges are on the inside they serve as the contour lines for the holes.
The inside edges are then stitched together based on the start and
end positions of each line and are reorganized as new “clusters,"
and can be filled in grey or left empty if the data identifies that
region as a hole.

4.5 Examples

(a) Cube Graph (b) Dodecahedral Graph

Figure 8: Examples of graphs embedded using spherical
MDS. Note how the 3D polytopes “cover" the entire sphere.

When applied to graphs that correspond to 3D polytopes, the
spherical MDS approach produces the desired results; see Fig. 8.
Similarly, when applied to graphs that do not have a latent 2D
embedding, the spherical MDS approach produces layouts that take
advantage of the ability to “wrap around" the sphere. The Last.fm
graph is extracted from the larger graph described in [16]. Nodes
are music bands, weighted by number of listeners. Edges connect
pairs of bands with weights determined by number of shared co-
listeners. For this examples we extract the top 100 most popular
bends and consider the largest induced connected component. The
graph has 59 nodes and 170 edges; see Fig. 9. The colors graph
contains 38 nodes and 184 edges. The nodes are the most popular
colors as found in a survey by xkcd [32] and the weight of the edges
corresponds to their distances in 3D RGB space; see Fig. 10.

5 DISCUSSION AND LIMITATIONS
Larger graphs result in cluttered spherical visualization, which is
even more of a problem than in the plane as the sphere has finite
size for any given radius while the plane is infinite [46]. This issue
is partially remedied through the zoom functionality. A semantic
zoom functionality on the sphere remains an open problem.

Another inherent limitation of spherical visualization is that it
can hide nodes, edges and clusters at the back of the sphere. This
could be partially remedied by changing the opacity of the sphere.
However, given that most users are familiar with physical globes,
this may turn out to be a desirable feature rather than a bug.

In this paper we focused on two different methods for getting
graph visualizations on the sphere and allowing for interactions in
the browser. Naturally, a human-subjects study would be helpful
to determine whether spherical visualizations in the browser are as
intuitive and usable as we would like to believe.

Figure 9: The Last.fm graph obtained by spherical MDS.

Figure 10: The colors graph obtained by spherical MDS.

6 CONCLUSIONS AND FUTUREWORK
We described two approaches for visualizing graphs on the sphere.
The first projection-reprojection approach provides a simple way
to interact with spherical graph visualizations in the browser and
is easily extensible to different visualization styles and different
underlying layout algorithms.

The second approach applies MDS directly on the sphere and
takes better advantage of the underlying geometry, but cannot be
directly applied to visuaizations other than and GMap-style and
node-link visualizations. So while this approach lays out the graph
in a manner more appropriate to the sphere, it lacks the options of
the first approach.

In the future, we would like to make any type of 2D plane vi-
sualization generalizable to the sphere in the browser. We would
like also like to experiment with other non-Euclidean geometries in
the browser, such as the hyperbolic plane, which offers even more
promising “focus+context" visualization and interactions.
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