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Abstract. Motivated by the fact that in a space where shortest paths1

are unique, no two shortest paths meet twice, we study a question posed2

by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in3

which the shortest path between any pair of vertices is a unique, is there4

a philogeodetic drawing of G, i.e., a drawing of G in which the curves5

of any two shortest paths meet at most once? We answer this question6

in the negative by showing the existence of geodetic graphs that require7

some pair of shortest paths to cross at least four times. The bound on8

the number of crossings is tight for the class of graphs we construct.9

Furthermore, we exhibit geodetic graphs of diameter two that do not10

admit a philogeodetic drawing.11

Keywords: Edge crossings · Unique Shortest Paths · Geodetic graphs.

1 Introduction12

Greg Bodwin [1] examined the structure of shortest paths in graphs with edge13

weights that guarantee that the shortest path between any pair of vertices is14

unique. Motivated by the fact that a set of unique shortest paths is consistent in15

the sense that no two such paths can “intersect, split apart, and then intersect16

again” he conjectured that if the shortest path between any pair of vertices in a17

graph is unique then the graph can be drawn so that any two shortest paths meet18

at most once. Formally, a meet of two curves γ1, γ2 : [0, 1] → R2 is a maximal19

interval I ⊆ [0, 1] so that γ1(x) = γ2(x), for all x ∈ I. A crossing is a meet with20

I ∩ {0, 1} = ∅. Two curves meet k times if they have k pairwise distinct meets.21
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Shortest paths in simple polygons (geodesic paths) have the property that they22

meet at most once [6].23

A drawing of graph G in R2 maps the vertices to pairwise distinct points and24

maps each edge to a Jordan arc between the two end-vertices that is disjoint from25

any other vertex. Drawings extend in a natural fashion to paths: Let ϕ be a draw-26

ing of G, and let P = v1, . . . , vn be a path in G. Then let ϕ(P ) denote the Jordan27

arc that is obtained as the composition of the curves ϕ(v1v2), . . . , ϕ(vn−1vn). A28

drawing ϕ of a graph G is philogeodetic if for every pair P1, P2 of shortest paths29

in G the curves ϕ(P1) and ϕ(P2) meet at most once.30

An unweighted graph is geodetic if there is a unique shortest path between31

every pair of vertices. Trivial examples of geodetic graphs are trees and com-32

plete graphs. Observe that any two shortest paths in a geodetic graph are either33

disjoint or they intersect in a path. Thus, a planar drawing of a planar geodetic34

graph is philogeodetic. Any straight-line drawing of a complete graph is philo-35

geodetic. It is a natural question to ask whether (geodetic) graphs can be drawn36

in such a way that the drawn shortest paths meet at most once.37

Results. We show that there exist geodetic graphs that require some pair of38

shortest paths to meet at least four times (Theorem 1). This is even true in any39

topological drawing. The idea is to start with a sufficiently large complete graph40

and subdivide every edge exactly twice. The crossing lemma can be used to show41

that some pair of shortest paths must cross at least four times. By increasing the42

number of subdivisions per edge, we can reduce the density and obtain sparse43

counterexamples. The bound on the number of crossings is tight because any44

uniformly subdivided Kn can be drawn so that every pair of shortest paths45

meets at most four times (Theorem 2).46

On one hand, our construction yields counterexamples of diameter five. On47

the other hand, the unique graph of diameter one is the complete graph, which48

is geodetic and admits a philogeodetic drawing (e.g., any straight-line drawing49

since all unique shortest paths are single edges). Hence, it is natural to ask what50

is the largest d so that every geodetic graph of diameter d admits a philogeodetic51

drawing. We show that d = 1 by exhibiting an infinite family of geodetic graphs52

of diameter two which do not admit philogeodetic drawings (Theorem 3). The53

construction is based on incidence graphs of finite affine planes. The proof also54

relies on the crossing lemma.55

Related work. Geodetic graphs were introduced by Ore who asked for a charac-56

terization as Problem 3 in Chapter 6 of his book “Theory of Graphs” [7, p. 104].57

An asterisk flags this problem as a research question, which seems justified, as58

more than sixty years later a full characterization is still elusive.59

Stemple and Watkins [14,15] and Plesńık [10] resolved the planar case by60

showing that a connected planar graph is geodetic if and only if every block61

is (1) a single edge, (2) an odd cycle, or (3) it stems from a K4 by iteratively62

choosing a vertex v of the K4 and subdividing the edges incident to v uniformly.63

Geodetic graphs of diameter two were fully characterized by Scapellato [12].64
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They include the Moore graphs [3] and graphs constructed from a generaliza-65

tion of affine planes. Further constructions for geodetic graphs were given by66

Plesńık [10,11], Parthasarathy and Srinvasan [9], and Frasser and Vostrov [2].67

Plesńık [10] and Stemple [13] proved that a geodetic graph is homeomorphic68

to a complete graph if and only if it is obtained from a complete graph Kn by69

iteratively choosing a vertex v of the Kn and subdividing the edges incident to70

v uniformly. A graph is geodetic if it is obtained from any geodetic graph by71

uniformly subdividing each edge an even number of times [9,11].72

2 Subdivision of a Complete Graph73

The complete graph Kn is geodetic and rather dense. However, all shortest paths74

are very short, as they comprise a single edge only. So despite the large number75

of edge crossings in any drawing, every pair of shortest paths meets at most76

once, as witnessed, for instance, by any straight-line drawing of Kn. In order to77

lengthen the shortest paths it is natural to consider subdivisions of Kn.78

As a first attempt, one may want to “take out” some edge uv by subdividing79

it many times. However, Stemple [13] has shown that in a geodetic graph every80

path where all internal vertices have degree two must be a shortest path. Thus,81

it is impossible to take out an edge using subdivisions. So we use a different82

approach instead, where all edges are subdivided uniformly.83

Theorem 1. There exists an infinite family of sparse geodetic graphs for which84

in any drawing in R2 some pair of shortest paths meets at least four times.85

Proof. Take a complete graph Ks, for some s ∈ N, and subdivide every edge86

uniformly t times, for t even. The resulting graph K(s, t) is geodetic. Note that87

K(s, t) has n = s+ t
(
s
2

)
vertices and m = (t+ 1)

(
s
2

)
edges, where m ∈ O(n), for88

s constant and t sufficiently large. Consider an arbitrary drawing Γ of K(s, t).89

Let B denote the set of s branch vertices (that is, vertices of degree > 2) in90

K(s, t). For two distinct vertices u, v ∈ B, let [uv] denote the shortest uv-path91

in K(s, t), which corresponds to the subdivided edge uv of the underlying Ks.92

As t is even, the path [uv] consists of t+ 1, an odd number of edges. For every93

such path [uv], with u, v ∈ B, we charge the crossings in Γ along the t+ 1 edges94

of [uv] to one or both of u and v as detailed below; see Fig. 1 for illustration.95

– Crossings along an edge that is closer to u than to v are charged to u;96

– crossings along an edge that is closer to v than to u are charged to v; and97

– crossings along the single central edge of [uv] are charged to both u and v.98

Let Γs be the drawing of Ks induced by Γ : every vertex of Ks is placed at105

the position of the corresponding branching vertex of K(s, t) in Γ and every106

edge of Ks is drawn as a Jordan arc along the corresponding path of K(s, t) in107

Γ . Assuming
(
s
2

)
≥ 4s (i.e., s ≥ 9), by the Crossing Lemma [8], at least108

1

64

(
s
2

)3
s2

=
1

512
s(s− 1)3 ≥ c · s4109
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u

v

Fig. 1. Every crossing is charged to at least one endpoint of each of the two involved
(independent) edges. Vertices are shown as white disks, crossings as red crosses, and
charges by dotted arrows. The figure shows an edge uv that is subdivided four times,
splitting it into a path with five segments. A crossing along any such segment is assigned
to the closest of u or v. For the central segment, both u and v are at the same distance,
and any crossing there is assigned to both u and v.
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pairs of independent edges cross in Γs, for some constant c. Every crossing in Γs110

corresponds to a crossing in Γ and is charged to at least two (and up to four)111

vertices of B. Thus, the overall charge is at least 2cs4, and at least one vertex112

u ∈ B gets at least the average charge of 2cs3.113

Each charge unit corresponds to a crossing of two independent edges in Γs,114

which is also charged to at least one other vertex of B. Hence, there is a vertex115

v 6= u so that at least 2cs2 crossings are charged to both u and v. Note that there116

are only s− 1 edges incident to each of u and v, and the common edge uv is not117

involved in any of the charged crossings (as adjacent rather than independent118

edge). Let Ex, for x ∈ B, denote the set of edges of Ks that are incident to x.119

We claim that there are two pairs of mutually crossing edges incident to u120

and v, respectively; that is, there are sets Cu ⊂ Eu \ {uv} and Cv ⊂ Ev \ {uv}121

with |Cu| = |Cv| = 2 so that e1 crosses e2, for all e1 ∈ Cu and e2 ∈ Cv.122

Before proving this claim, we argue that establishing it completes the proof of123

the theorem. By our charging scheme, every crossing e1 ∩ e2 happens at an edge124

of the path [e1] in Γ that is at least as close to u as to the other endpoint of e1.125

Denote the three vertices that span the edges of Cu by u, x, y. Consider the two126

subdivision vertices x′ along [ux] and y′ along [uy] that form the endpoint of the127

middle edge closer to x and y, respectively, than to u; see Fig. 2 for illustration.128

u

x y

︸ ︷︷ ︸t/2 vertices

︸ ︷︷ ︸t/2 vertices ︸ ︷︷ ︸
t/2

ver
tice

s

︸ ︷︷ ︸
t/2

ver
tice

s
x′ y′

Fig. 2. Two adjacent edges ux and uy, both subdivided t times, and the shortest path
between the “far” endpoints x′ and y′ of the central segments of [ux] and [uy].

129

130
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The triangle uxy in Ks corresponds to an odd cycle of length 3(t + 1) in131

K(s, t). So the shortest path between x′ and y′ in K(s, t) has length 2(1+t/2) =132

t+2 and passes through u, whereas the path from x′ via x and y to y′ has length133

3(t+1)−(t+2) = 2t+1, which is strictly larger than t+2 for t ≥ 2. It follows that134

the shortest path between x′ and y′ in K(s, t) is crossed by both edges in Cv.135

A symmetric argument yields two branch vertices a′ and b′ along the two edges136

in Cv so that the shortest a′b′-path in K(s, t) is crossed by both edges in Cu.137

By definition of our charging scheme (that charges only “nearby” crossings to a138

vertex), the shortest paths x′y′ and a′b′ in K(s, t) have at least four crossings.139

It remains to prove the claim. To this end, consider the bipartite graph X140

on the vertex set Eu ∪Ev where two vertices are connected if the corresponding141

edges are independent and cross in Γs. Observe that two sets Cu and Cv of142

mutually crossing pairs of edges (as in the claim) correspond to a 4-cycle C4 in143

X. So suppose for the sake of a contradiction that X does not contain C4 as a144

subgraph. Then by the Kővári-Sós-Turán Theorem [5] the graph X has O(s3/2)145

edges. But we already know that X has at least 2cs2 = Ω(s2) edges, which yields146

a contradiction. Hence, X is not C4-free and the claim holds. ut147

The bound on the number of crossings in Theorem 1 is tight.148

Theorem 2. Any uniformly subdivided (an even number of times) Kn can be149

drawn so that every pair of shortest paths crosses at most four times.150

We only sketch the construction, a proof of Theorem 2 can be found in the151

appendix. Place the vertices in convex position, and draw the subdivided edges152

along straight-line segments. For each edge, put half of the subdivision vertices153

very close to one endpoint and the other half very close to the other endpoint154

(Fig. 3). As a result, all crossings fall into the central segment of the path.155

Fig. 3. A drawing of K(8, 2), the complete graph K8 where every edge is subdivided
twice, so that every pair of shortest paths meets at most four times. Two shortest paths
that meet four times are shown bold and orange.

156

157

158
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3 Graphs of Diameter Two159

In this section we give examples of geodetic graphs of diameter two that cannot160

be drawn in the plane such that any two shortest paths meet at most once.161

An affine plane of order k ≥ 2 consists of a set of lines and a set of points162

with a containment relationship such that (i) each line contains k points, (ii) for163

any two points there is a unique line containing both, (iii) there are three points164

that are not contained in the same line, and (iv) for any line ` and any point p165

not on ` there is a line `′ that contains p, but no point from `. Two lines that do166

not contain a common point are parallel. Observe that each point is contained167

in k + 1 lines. Moreover, there are k2 points and k + 1 classes of parallel lines168

each containing k lines. The 2-dimensional vector space F2 over a finite field F169

of order k with the lines {(x,mx + b); x ∈ F}, m, b ∈ F and {(x0, y); y ∈ F},170

x0 ∈ F is a finite affine plane of order k. Thus, there exists a finite affine plane171

of order k for any k that is a prime power (see, e.g., [4]).172

Scapellato [12] showed how to construct geodetic graphs of diameter two as173

follows: Take a finite affine plane of order k. Let L be the set of lines and let P174

be the set of points of the affine plane. Consider now the graph Gk with vertex175

set L ∪ P and the following two types of edges: There is an edge between two176

lines if and only if they are parallel. There is an edge between a point and a line177

if and only if the point lies on the line; see Fig. 4. There are no edges between178

points. In Appendix B, we prove that Gk is a geodetic graph of diameter two.179

. . . k2 points

. . .
k + 1 cliques of
k parallel lines each

Gk :
. . .. . .

Fig. 4. Structure of the graph Gk.180

Theorem 3. There are geodetic graphs of diameter two that cannot be drawn181

in the plane such that any two shortest paths meet at most once.182

Proof. Let k ≥ 129 be such that there exists an affine plane of order k (e.g., the183

prime k = 131). Assume there was a drawing of Gk in which any two shortest184

paths meet at most once. Let G be the bipartite subgraph of Gk without edges185

between lines. Observe that any path of length two in G is a shortest path in Gk.186

As G has n = 2k2+k vertices and m = k2(k+1) > kn/2 edges, we have m > 4n,187

for k ≥ 8. Therefore, by the Crossing Lemma [8, Remark 2 on p. 238] there are188

at least m3/64n2 > k3n/512 crossings between independent edges in G.189

Hence, there is a vertex v such that the edges incident to v are crossed more190

than k3/128 times by edges not incident to v. By assumption, (a) any two edges191

meet at most once, (b) any edge meets any pair of adjacent edges at most once,192
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and (c) any pair of adjacent edges meets any pair of adjacent edges at most193

once. Thus, the crossings with the edges incident to v stem from a matching.194

It follows that there are at most (n − 1)/2 = (2k2 + k − 1)/2 such crossings.195

However, (2k2 + k − 1)/2 < k3/128, for k ≥ 129. ut196

4 Open Problems197

We conclude with two open problems: (1) Are there diameter-2 geodetic graphs198

with edge density 1 + ε that do not admit a philogeodetic drawing? (2) What is199

the complexity of deciding if a geodetic graph admits a philogeodetic drawing?200
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A Proof of Theorem 2238

Proof. Draw the graph as described on Page 5 and as illustrated in Fig. 3 for239

K(8, 2). There are two different types of vertices, and six different types of240

shortest paths. Let B denote the set of branch vertices, and let S denote the241

set of subdivision vertices. Note that for every edge uv of Kn, only the central242

segment of the subdivided path [uv] may have crossings in the drawing. We claim243

that every shortest path in the graph contains at most two central segments in244

the drawing, from which the theorem follows immediately. Consider a pair u, v245

of vertices.246

Case 1: {u, v} ∩ B 6= ∅. Suppose without loss of generality that u ∈ B. If247

v ∈ B or v ∈ S subdivides an edge incident to u, then the shortest uv-path248

contains at most one central segment. Otherwise, v ∈ S subdivides an edge xy249

disjoint from u. One of x or y, without loss of generality x is closer to v. Then the250

shortest uv-path is [vx][xu], which contains exactly one central segment, [xu].251

Case 2: u, v ∈ S. If u and v subdivide the same edge, then the shortest uv-252

path contains at most one central segment. If u and v subdivide distinct adjacent253

segments, xy and xz, then the shortest uv-path is either [ux][xv], which contains254

at most two central segments. Or the sum of the length of [uy] and [zv] is at most255

half of the number of subdivision vertices per edge and the shortest uv-path is256

[uy][yz][zv], which then contains at most one central segment. Otherwise, u and257

v subdivide disjoint segments, xy and wz, where without loss of generality x258

is closer to u than y and w is closer to v than z. Then the shortest uv-path is259

[ux][xw][wv], which contains exactly one central segment, [xw]. ut260

B Proof that Gk (as Defined in Section 3) is Geodetic261

Lemma 1. Gk is a geodetic graph of diameter two.262

Proof. Two lines have distance one if they are parallel. Otherwise they share263

exactly one vertex and, hence, are connected by exactly one path of length two.264

For any two points there is exactly one line that contains both. Given a line `265

and a point p then either p lies on ` and, thus, p and ` have distance one. Or266

there is exactly one line `′ containing p that is parallel to ` and, thus, there is267

exactly one path of length two between ` and p. ut268
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