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Abstract. We consider characterizations of level planar trees. Healy et al. [8]
characterized the set of trees that are level planar in terms of two minimal level
non-planar (MLNP) patterns. Fowler and Kobourov [7] later proved that the set of
patterns was incomplete and added two additional patterns. In this paper, we show
that the characterization is still incomplete by providing new MLNP patterns not
included in the previous characterizations. Moreover, we introduce an iterative
method to create an arbitrary number of MLNP patterns, thus proving that the set
of minimal patterns that characterizes level planar trees is infinite.

1 Introduction

An important application of automatic graph drawing can be found in the layout of
graphs that represent hierarchical relationships. When drawing graphs in the xy-plane,
this translates to a restricted form of planarity where the y-coordinate of a vertex is
given and the drawing algorithm only has the freedom to choose the x-coordinate. This
restricted form of planarity is called level planarity, and each given y-coordinate corre-
sponds to a level.

Jünger, Leipert, and Mutzel [13] provide a linear-time recognition algorithm for
level planar graphs. This algorithm is based on the level planarity test given by Heath
and Pemmaraju [9, 10]. The algorithm by Heath and Pemmaraju is based on the more
restricted PQ-tree level planarity testing algorithm of hierarchies (level graphs of di-
rected acyclic graphs in which all edges are between adjacent levels and all the source
vertices are on the uppermost level) given by Di Battista and Nardelli in [3]. In the pa-
per, the authors also characterize such hierarchies in terms of level non-planar (LNP)
patterns. Jünger and Leipert [12] provide a linear-time level planar embedding algo-
rithm that outputs a set of linear orderings in the x-direction for the vertices on each
level. However, to obtain a straight-line planar drawing one needs to subsequently run
an O(|V |) algorithm given by Eades et al. [4] who demonstrate that every level planar
embedding has a straight-line drawing, though it may require exponential area.

Healy et al. [8] use LNP patterns to provide a set of minimal level non-planar
(MLNP) subgraph patterns that characterize level planar graphs. This is the counterpart
for level graphs to the characterization of planar graphs by Kuratowski [14] in terms of
forbidden subdivisions of K5 and K3,3. Two new MLNP tree patterns were added in [7]
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by Fowler and Kobourov to the previous set of patterns given by Healy et al. In this
paper, we show that the characterization remains incomplete by providing new MLNP
patterns not included in the previous characterizations. Moreover, we introduce an iter-
ative method to create an arbitrary number of MLNP patterns, thus proving that the set
of minimal patterns that characterizes level planar trees is infinite.

The motivation of the study of MLNP patterns comes from the visualization of hi-
erarchical representations given by Sugiyama et al. [15]. This algorithm is the most
common method to draw directed acyclic graphs and consists of two steps. While
there exist good heuristics as well as exact methods based upon integer linear pro-
grams (ILPs) to find crossing minimal embeddings using Sugiyama’s algorithm [11].
A preliminary step that requires the assignment of nodes to levels is usually imple-
mented based upon greedy local optimization [2]. Given the success of the approach
using ILPs with branch-and-cut to find exact solutions for other problems, it is natural
to ask whether an ILP approach is possible for the leveling required by Sugiyama’s al-
gorithm. In order to devise the constraints of such an ILP, having a better understanding
of the underlying obstructions to level planarity (such as MLNP patterns) is essential.

Level planarity is also related to simultaneous embedding [1]. In general, a set of
restrictions on the layout of one graph may help in the layout of a second graph on the
same vertex set. Specifically, when embedding a path with a planar graph, if the graph
can be drawn on horizontal levels, then the path can be drawn in a y-monotone fashion
without crossings. Estrella-Balderrama et al. [6] characterized the set of unlabeled level
planar (ULP) trees on n vertices that are level planar over all possible labelings of the
vertices in terms of two forbidden trees: T 8 and T9. A level non-planar labeling of T 9

was used to obtain MLNP patterns P3 and P4 in [7]; see Fig. 3.

2 Preliminaries

A k-level graph G(V, E, φ) on n vertices is a directed graph G(V, E) with a level as-
signment φ : V → {1, . . . , k} such that the induced partial order is strict: φ(u) < φ(v)
for every (u, v) ∈ E. A k-level graph is a k-partite graph in which φ partitions V into
k independent sets V1, V2, . . . , Vk, which form the k levels of G. A level- j vertex v is
on the jth level V j if φ(v) = j (i.e. v ∈ V j). In a level graph, an edge (u, v) is short if
φ(v) = φ(u)+1 while edges spanning multiple levels are long. A proper level graph has
only short edges. Any level graph can be made proper by subdividing long edges into
short edges. In this paper, a level graph is proper unless stated otherwise.

A level graph G has a level drawing if there exists a drawing such that every vertex
in Vj is placed along the horizontal line � j = {(x, j) | x ∈ �} and the edges are drawn as
strictly y-monotone polylines. The order that the vertices of V j are placed along each
� j in a level drawing of a proper graph induces a family of linear orders along the x-
direction, which form a linear embedding of G. A level drawing, and consequently its
level embedding, is level planar if it can be drawn without edge crossings. A level graph
G is level planar if it admits a level planar embedding. The definition of level drawings
allowing only straight-line segments for edges is equivalent, given that Eades et al. [4]
have shown that every level planar graph has a straight-line planar drawing.
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Fig. 1. Original MLNP patterns P1 in (a) and P2 in (b) proposed by Healy et al.

A path is a non-repeating ordered sequence of vertices (v 1, v2, . . . , vn) for n ≥ 1. A
star with n vertices is a tree with one vertex of degree n − 1, called the root, and n − 1
vertices of degree 1. A spider is an arbitrarily subdivided star, where subdividing an
edge (u, v) replaces the edge with a new vertex w and new edges (u,w) and (w, v). In a
degree-k spider, the root has degree k.

A chain-link, denoted u� v, is a path from vertex u to vertex v with u � v such that
each internal vertex w that lies along the path has degree 2. Let φ(u � v) denote the
set of levels of the internal vertices where i ≤ φ(u � v) ≤ j is a short-hand for saying
that i ≤ φ(w) ≤ j for each internal vertex w of the chain-link u � v. Unless stated
otherwise we assume that φ(u) ≤ φ(u� v) ≤ φ(v) for each chain-link u� v. A linking
chain, or simply a chain, is a sequence of one or more chain-links. Notice that a vertex
in the intersection of two chains is not considered a crossing between the chains. In all
figures, a curve connecting two vertices, represents a chain.

In a level non-planar graph, a pattern is an obstructing subgraph with a level as-
signment that forces a crossing. Since here we define particular patterns in terms of
chains, they represent a set of graphs with similar properties in terms of leveling. A
level non-planar pattern is minimal if the removal of an arbitrary edge makes the pat-
tern level planar. All the patterns described here (with the exception of a few that are
symmetrical) have a corresponding horizontally flipped version.

3 Previous Work

3.1 Characterization of Level Planar Trees by Healy et al.

Healy et al. [8] defined MLNP patterns as follows: Let i and j be the minimum and
maximum level, respectively, of any vertex in the pattern. Let x be a vertex of degree
3 with three subtrees with the following properties: (i) each subtree has at least one
vertex on both extreme levels; (ii) a subtree is either a chain or it has two subtrees that
are chains; (iii) all leaves are located on extreme levels (and each leaf is the only vertex
in its subtree on the extreme level); and (iv) the subtrees that are chains and have non-
leaf vertices on one extreme level, also have at least one leaf vertex on the opposite
extreme level.
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Fig. 2. (a-e) Five variations of pattern P1 in addition to the one in Fig. 1(a); (f) One variation
of pattern P2 in addition to the one in Fig. 1(b).

Then they distinguish two patterns; P1 with x on an extreme level and P2 with x on
a non-extreme level (Healy et al. denote them T1 and T2). Figure 1 shows P 1 and P2.
Notice that these patterns are defined in terms of subtrees. This implies, for example,
that a subtree with a vertex of degree 3 may be replaced by a path. Fowler and Kobourov,
on the other hand, defined the patterns in terms of paths. Hence, to properly compare
the set of patterns we need to consider the different cases, or variations, of the subtrees
in P1 and P2. Hence, P1 leads to variations PA

1 , . . . , P
F
1 and P2 leads to variations PA

2
and PB

2 ; see Fig. 2. Notice that when a chain reaches an extreme level with a degree-2
vertex, more degree-2 vertices of the chain can also be on the extreme level. This is
illustrated in Fig. 2(a) for the chain c � g � f with a second degree-2 vertex. Healy
et al. [8] showed that both of these patterns are minimal level non-planar.

3.2 Characterization of Level Planar Trees by Fowler and Kobourov.

While investigating unlabeled level planar trees (ULP trees), Fowler and Kobourov re-
alized that one of the forbidden ULP trees, called T 9, had a labeling that makes the
tree level non-planar and did not match any of the patterns given by Healy et al; see
Fig. 3(a). Thus, they found that the characterization was incomplete in the case of trees
(but still complete for the case of hierarchies). The result is a new pattern called P 3

based on a level non-planar embedding of T 9; see Fig. 3(b). Notice that matching with
P1 or P2 is not possible as they are based on a central vertex of degree 3 (vertex c in
Fig. 1), while P3 has a central vertex of degree 4 (vertex x in Fig. 3(b)).
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Fig. 3. Fowler and Kobourov generalized the forbidden ULP tree T9 in (a) to produce the
MLNP patterns P3 in (b) and P4 in (c).

The characterization by Fowler and Kobourov also includes pattern P 4. This pattern
can be obtained from P3 by “splitting” vertex x of degree 4 such that i < l ≤ φ(x) ≤ m <
j into two vertices of degree 3 connected by a path. In Fig. 3(b) vertex x is replaced by
a chain x � y such that l ≤ φ(x� y) ≤ m in Fig. 3(c). Patterns P3 and P4 were added
to the previous set of two patterns (eight variations) to obtain a new characterization
consisting of four patterns (ten variations). A sketch of a proof for the claim that this
new characterization is complete was made in [7], but in the next section we show that
the characterization remains incomplete.

4 New Minimal Level Non-Planar Patterns

In this section, we show that the characterization of level planar trees by minimal pat-
terns is still incomplete. In Sect. 4.1, we show that there are variations of P 3 and P4

that were not considered. Then in Sect. 4.2, we describe a new pattern previously not
considered as it has a vertex of degree 5, whereas, all of the previously known MLNP
patterns have maximum degree 4.

4.1 Variations of Patterns P3 and P4

The previous characterization introduces the new patterns P 3 and P4. Just as with the
variations of P1 and P2, different variations of P3 and P4 can be produced by replacing
some chains with degree-3 spiders. We describe these variations next.

– Pattern PA
3 . This is the original pattern P3; see Fig. 3(b).

– Pattern PB
3 . This pattern is similar to PA

3 but replaces the chain x � f � g such
that l ≤ φ(x) ≤ m, φ( f ) = m, φ(g) = i, and i ≤ φ( f � g) ≤ m, with a degree-3
spider rooted at f ′ and leaves f , g, and x such that l ≤ φ( f ′) ≤ m, φ(x) = φ( f ) = m,
φ(g) = i, and l ≤ φ( f � f ′) ≤ m; see Fig. 4(a).

– Pattern PC
3 . This pattern is similar to PA

3 but replaces the chain x � e � d, such
that l ≤ φ(x) ≤ m, φ(e) = l, φ(d) = j, and l ≤ φ(x� e) ≤ m with a degree-3 spider
rooted at e′ and leaves e, d, and x such that l ≤ φ(e′) ≤ m, φ(x) = φ(e) = l, φ(d) = j,
and l ≤ φ(e� e′) ≤ m; see Fig. 4(b).
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Fig. 4. (a-c) Variations of pattern P3 (PB
3 , PC

3 , and PD
3 ); (d-f) Variations of pattern P4 (PB

4 , PC
4 ,

and PD
4 ).

– Pattern PD
3 . This pattern makes both replacements made by patterns P B

3 and PC
3 on

PA
3 such that φ(e) = φ( f ′) = l, φ(e′) = φ( f ) = m, l ≤ φ(x) ≤ m, i ≤ φ(x� g) ≤ m,

and l ≤ φ(x� h) ≤ j; see Fig. 4(c).
– Pattern PA

4 . This is the original pattern P4; see Fig. 3(c).
– Patterns PB

4 , PC
4 , and PD

4 . These patterns make analogous replacements on P A
4 as

those made by PB
3 , PC

3 , and PD
3 on PA

3 ; see Fig. 4(d-f).

The importance of the new variations of P3 and P4 is that they break the fundamental
assumption made in the characterizations by Healy et al. and Fowler and Kobourov
that in any minimal level non-planar pattern, leaves must lie on extreme levels i or j.
All of the new patterns have leaves on non-extreme levels. We omit the proofs for the
variations of P3 and P4 as in the next section we formally show that a new pattern, P 5

with non-extreme leaves is MLNP. Moreover, in Sect. 5, we show that the set of MLNP
patterns for trees is not just missing a few more patterns but is actually infinite.

4.2 New pattern P5

In this section, we describe a new pattern P5 and its variations. The main characteristic
of this pattern is the presence of a vertex x with degree 5.

– Pattern PA
5 . This pattern is a degree-5 spider, rooted at x, with two levels l and m

between the extreme levels i and j such that i < l < φ(x) ≤ m < j. There is a chain
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Fig. 5. Patterns PA
5 , PB

5 , and PC
5 .

x � c such that φ(c) = i, a chain x � d such that φ(d) = j; a chain x � p � q
such that φ(p) = m and φ(q) = l; a chain x � e � f � g � h such that
φ(e) = l, φ( f ) = m, φ(g) = i, and φ(h) = j; and a chain x � k � b � a such that
l < φ(k) < φ(x), φ(b) = j, φ(a) = i and l < φ(x� k� b) ≤ j; see Fig. 5(a).

– Pattern PB
5 . Similar to PA

5 but replaces the chain x � e � f � g � h with a
degree-3 spider rooted at f ′ such that l < φ( f ′) < m, with x, g, and f such that
l < φ(x) ≤ m, φ(e) = l, φ(g) = i, φ( f ) = m, and there is a chain x � e � f ′
such that φ(e) = l where l ≤ φ(x � e � f ′) ≤ m, l ≤ φ( f � f ′) ≤ m, and
i ≤ φ( f ′ � g) ≤ m ; see Fig. 5(b).

– Pattern PC
5 . Similar to PA

5 but replaces the chain x � e � f � g � h with a
degree-3 spider rooted at e such that φ(e) = l with leaves g, x, and f ; see Fig. 5(c).

In the following two lemmas we show that this new pattern is MLNP.

Lemma 1. Pattern P5 is level non-planar.

Proof. We show that PA
5 is level non-planar (the cases for PB

5 and PC
5 are similar). First

notice that to avoid a crossing with chain c � x � d, all the vertices of the chain
x � e � f � g � h must lie to the right of the chain c � x � d while all the
vertices of the chain x � k � b � a must lie to the left, or vice versa; see Fig. 5(a).
Assume w.l.o.g. that x� k � b� a lies to the left and x � e� f � g� h lies to
right of chain c� x� d (as in Fig. 5(a)). Now observe that in order to avoid a crossing
of chain x � p � q with chains a� b, c� x � d or g� h, the chain x � p � q
must lie between chains a� b and c � x � d or lie between chains c� x � d and
g � h. However, in the first case a crossing will occur with chain x � k � b (since
φ(k) < φ(x) and φ(x) ≤ φ(x� p) ≤ m) and in the later case a crossing will occur with
chain x� e� f � g. �

Lemma 2. The removal of any edge in pattern P5 makes it level planar.

Proof. We consider the different cases of edge removal from the chains in P A
5 (PB

5 and
PC

5 are similar):
case 1) If any edge is removed from chain x � p � q, then the crossing with chain
x� e� f is avoided when x� p� q is to the right of c� x� d as in Fig. 6(a).
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Fig. 6. Different cases of removing an edge (dotted) from pattern PA
5 .

case 2) If any edge is removed from chains x� k� b� a or x� e� f � g� h,
then all the vertices in the chain (except x) can be to the left or to the right of chain
c � x � d where chain x � p � q can be on the other side avoiding the crossing as
in Fig. 6(b).
case 3) If any edge is removed from chain c � x, then chains x � k � b � a and
x � e � f � g can be on the same side with respect to c � x � d. Thus avoiding
the crossing with chain x� p� q; see Fig. 6(c).
case 4) If any edge is removed from chain x� d, then chain x� k� b can lie to the
right of chain x� p� q as in Fig. 6(d). �

We now use Lemmas 1 and 2 to show that P5 is indeed MLNP.

Theorem 1. P5 is a minimal level non-planar pattern for trees.

Proof. By Lemma 1, P5 is level non-planar and by Lemma 2, P5 is minimal. Minimal-
ity also implies that P5 does not contain any MLNP pattern as a subgraph. Moreover,
pattern P5 does not match any of the previous patterns given that vertex x has degree 5,
while all of the previously known patterns have maximum degree 4. �

In this section, we have shown that a new pattern P5 is MLNP. However, P5 is not the
only pattern missing from earlier characterizations. New patterns P 6, . . . , P11 are shown
along with their variations in [5]. The proofs of level non-planarity and minimality of
these patterns are similar to the one given for P5. Thus, instead of proving that each of
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Fig. 7. Construction of a new pattern (PA
4 )1 in (b) from pattern PA

4 in (a).

these patterns is MLNP, we describe a constructive method for generating an infinite
number of distinct MLNP patterns in the next section.

5 Infinite Minimal Level Non-Planar Patterns

Our approach for creating new MLNP patterns is to take a known pattern as a base and
then repeat a subgraph of the pattern making modifications on the leveling such that the
new pattern does not strictly contain the previous one. Here we use P A

4 but the method
applies to other patterns as well.

The first step is to make a copy of the path p0 = c � x � f � g � h such
that φ(c) = φ(g) = i < φ(x) < φ( f ) < φ(h) = j as in Fig. 7(a) in order to get a new
path p1 = c1 � x1 � f1 � g1 � h1 such that φ(c1) = φ(g1) = i − 1, φ(x1) = j,
φ( f1) = j + 1, and φ(h1) = j + 2 as in Fig. 7(b). The second step is to add p1 to PA

4 by
merging vertices x1 and h creating a new vertex of degree 3 that takes the place of h.
This new level assignment creates two new extreme levels i− 1 and j + 2. We complete
the construction of the new pattern by moving vertices a, b, and d to the new extreme
levels, specifically, we set φ(a) = i − 1 and φ(b) = φ(d) = j + 2.

We now generalize the previous construction to an arbitrary number of iterations.
We denote the pattern created at iteration t from pattern P as (P) t. Thus, the original
PA

4 is (PA
4 )0 and the pattern created in Fig. 7(b) is (PA

4 )1. The vertices in the pattern are
labeled in the same way, for example x0 = x. Therefore, in order to create a new pattern
(PA

4 )t+1 from pattern (PA
4 )t, we first copy the path pt = ct � xt � ft � gt � ht to get

a new path pt+1 = ct+1 � xt+1 � ft+1 � gt+1 � ht+1 such that φ(ct+1) = φ(gt+1) =
i − t − 1, φ(xt+1) = j + 2t, φ( ft+1) = j + 2t + 1, and φ(ht+1) = j + 2t + 2. We then merge
xt+1 with ht to obtain the new xt+1. Finally, we set the levels as φ(a) = i − t − 1, and
φ(b) = φ(d) = j + 2t + 2; see Fig. 8.

In the next lemma we show that a pattern, (PA
4 )t, generated with the previous method

is level non-planar.

Lemma 3. Pattern (PA
4 )t for t ≥ 0, is level non-planar.
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Proof. We use induction on t, the number of iterations in the generation method. The
base case is t = 0; this is the original pattern P4 which is proven to be level non-planar
in the characterization by Fowler and Kobourov [7]. We now assume that (P A

4 )t is level
non-planar in order to prove that (P A

4 )t+1 is level non-planar. That is, we show that the
modifications made to (PA

4 )t to obtain (PA
4 )t+1 do not affect the level non-planarity of the

new pattern.
Clearly, the addition of vertices and edges cannot affect the level non-planarity of a

tree, hence the addition of the path pt+1 does not make the pattern level planar. More-
over, since the chains a � b and e � d in (PA

4 )t are contained in the chains a � b
and e � d of (PA

4 )t+1, the change on the levels of a and d are simply addition of ver-
tices and edges that cannot affect the level non-planarity of the pattern. Finally, we
consider the change of level of vertex b. Notice that the crossing between the chain
a � b � y � x � f � g and the chain y � e � d in (PA

4 )t cannot be avoided
in (PA

4 )t+1 with the change of level of b. This is because as d is moved to the level of b
the chain f � g � · · · � xt+1 � ft+1 � ht+1 plays an analogous role in the pattern
(PA

4 )t+1 that the chain f � · · · � ht plays in the pattern (PA
4 )t. That is, the addition

of the chain ct+1 � ht+1 to the pattern (PA
4 )t+1 prevents the switch of side of the chain

a � b in order to avoid the crossing with y � e � d as this will produce a crossing
with the chain ct+1 � xt+1 (as in Fig. 9(d)). Therefore, by induction the pattern (P A

4 )t is
level non-planar for all non-negative integers t ≥ 0. �

We next show the minimality of the patterns generated with the method above.

Lemma 4. The removal of any edge in (PA
4 )t for any t ≥ 0, makes it level planar.

Proof. We consider the cases of edge removal in (PA
4 )t.

case 1) If any edge is removed from the chain a � b � y � e � d, then the self-
intersection is avoided as in Fig. 9(a).
case 2) If any edge is removed from the chain x� y, then the chain e� d can use the
gap to avoid the crossing as in Fig. 9(b).
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Fig. 9. Different cases of removing an edge (dotted) from pattern (PA
4 )t.

case 3) If any edge is removed from the chain xα � fα or gα � hα for any α = 0, . . . , t,
then chain a � b � y can use the gap to be drawn between the chains c α � xα and
fα � gα as in Fig. 9(c) or between gα and hα.
case 4) If any edge is removed from the chains cα � xα or fα � gα for any α = 0, . . . , t,
then the chain a � b can interchange sides with the chain hα � gα if α = t as in
Fig. 9(d). When α < t, all the chains cβ � xβ � fβ � gβ � hβ for β = α + 1, . . . , t are
moved along with the chain hα � gα. �

With the last two lemmas we now show that a pattern generated with the iterative
method described in this section is MLNP.

Theorem 2. Pattern (PA
4 )t for t ≥ 0, is a minimal level non-planar pattern for trees.

Proof. By Lemma 3, (PA
4 )t is level non-planar and by Lemma 4, (PA

4 )t is minimal. Mini-
mality implies that (PA

4 )t does not contain any MLNP pattern as a subgraph. In particular,
(PA

4 )t does not contain the previous pattern (PA
4 )t−1. To see this in Fig. 8(b), observe that

in the subgraph between levels i and j, the chain a� b� y is separated by level j into
two disjoint chains. Moreover, pattern (PA

4 )t does not match any of the previous patterns
(PA

4 )α for α = 0, . . . , t − 1 since (PA
4 )t contains an additional vertex of degree 3, x t. �

Theorem 2 implies that we can generate an arbitrary number of different MLNP
patterns. This gives our main result.
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Theorem 3. The set of minimal level non-planar patterns for trees is infinite.

6 Conclusions and Future Work

In this paper, we showed why two earlier attempts to characterize the set of level non-
planar trees in terms of minimal level non-planar patterns failed. In both cases, there
was an implicit assumption that the set of different MLNP patterns is small and finite.
However, it turns out that there are infinitely many different MLNP patterns, and an
altogether different approach might be needed for a complete characterization.
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