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Abstract. We introduce the concept of colored simultaneous geometric
embeddings as a generalization of simultaneous graph embeddings with
and without mapping. We show that there exists a universal pointset
of size n for paths colored with two or three colors. We use these re-
sults to show that colored simultaneous geometric embeddings exist for:
(1) a 2-colored tree together with any number of 2-colored paths and
(2) a 2-colored outerplanar graph together with any number of 2-colored
paths. We also show that there does not exist a universal pointset of
size n for paths colored with five colors. We finally show that the follow-
ing simultaneous embeddings are not possible: (1) three 6-colored cycles,
(2) four 6-colored paths, and (3) three 9-colored paths.

1 Introduction

Visualizing multiple related graphs is useful in many applications, such
as software engineering, telecommunications, and computational biology.
Consider the case where a pair of related graphs is given and the goal is to
visualize them so as to compare the two, e.g., evolutionary trees obtained
by different algorithms. When visually examining relational information,
such as a graph structure, viewers construct an internal model called the
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mental map, for example, using the positions of the vertices relative to
each other. When viewing multiple graphs the viewer has to reconstruct
this mental map after examining each graph and a common goal is to aid
the viewer in this reconstruction while providing a readable drawing for
each graph individually. Simultaneous embeddings [4] aid in visualizing
multiple relationships between the same set of objects by keeping common
vertices and edges of these graphs in the same positions.

A simultaneous geometric embedding is a generalization of the tra-
ditional planar graph embedding problem, where we look for a common
embedding of multiple graphs defined on the same vertex set. We omit
the “geometric” clarification in the rest of the paper as we only consider
straight-line drawings. There are two main variations of the problem. In
simultaneous embedding with mapping the embedding consists of plane
drawings for each of the given graphs on the same set of points, with
corresponding vertices in the different graphs placed at the same point.
In simultaneous embedding without mapping the embedding consists of
plane drawings for each of the given graphs on the same set of points,
where any vertex can be placed at any of the points in the point set.

Restricted subclasses of planar graphs, such as pairs of paths, pairs
of cycles, and pairs of caterpillars, admit a simultaneous embedding with
mapping, while there exist pairs of outerplanar graphs and triples of paths
that do not [4]. Recently, it was shown that pairs of trees do not always
have such embeddings [9]. Fewer results are known for the less restricted
version of the problem where the mapping is not predefined. While it
is possible to simultaneously embed without mapping any planar graph
with any number of outerplanar graphs, it is not known whether any pair
of planar graphs can be simultaneously embedded without mapping [4].

Simultaneous embedding is related to universal pointsets, graph thick-
ness, and geometric thickness. While de Fraysseix et al. [6] showed that
there does not exist a universal pointset of size n in the plane for n-vertex
planar graphs, Bose [3] showed that a set of n points in general position is
a universal pointset for trees and outerplanar graphs. Using simultaneous
embedding techniques, Duncan et al. [8] showed that degree-four graphs
have geometric thickness two.

As we show, colored simultaneous embeddings allow us to generalize
the problems above so that the versions with and without mappings be-
come special cases. Formally, the problem of colored simultaneous embed-
ding is defined as follows. The input is a set of planar graphs G1 = (V,E1),
G2 = (V,E2), . . . , Gr = (V,Er) on the same vertex set V and a partition
of V into k classes, which we refer to as colors. The goal is to find plane
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straight-line drawings Di of Gi using the same |V | points in the plane for
all i = 1, . . . , r, where vertices mapped to the same point are required to
be of the same color.

We call such graphs k-colored graphs. Given the above definition, si-
multaneous embeddings with and without mapping correspond to colored
simultaneous embeddings with k = |V | and k = 1, respectively. Thus,
when a set of input graphs allows for a simultaneous embedding without
mapping but does not allow for a simultaneous embedding with map-
ping, there must be a threshold for the number of colors beyond which
the graphs can no longer be embedded simultaneously.

In this paper we present the first results about colored simultane-
ous embeddings. We study different values of k and show that any line-
separated set of points of size n is a universal pointset for n-vertex
2-colored paths. Moreover, there exists a universal pointset of size n for
n-vertex 3-colored paths while there is no such universal pointset n-vertex
5-colored paths. We also show how to simultaneously embed a 2-colored
outerplanar graph and any number of 2-colored paths. Finally we show
the existence of three 6-colored cycles (or four 6-colored paths, or three
9-colored paths) that cannot be simultaneously embedded.

2 Two-Colored Simultaneous Embeddings

We begin by showing the existence of a universal pointset for 2-colored
paths. The following lemma extends a result of Abellanas et al. [1] on
proper 2-colorings of paths.

Lemma 1. Given a 2-colored path P of r red and b blue vertices and a
set S of r red and b blue points separated by a line and in general position,
there exists a planar straight-line embedding of P into S.

Proof. Without loss of generality we can assume that S is separated by
a vertical line, and that the red points are on the left of that line. Let
P = v0, v1, . . . vn and let Pi be the drawing of the path after the first i

vertices of P have been embedded. Let Hi be the lower convex envelope
of the points of S not used by Pi. We maintain the following invariants
for all i = 0, . . . , n − 1 for which the colors of vi and vi+1 are different:

1. The drawing of Pi does not intersect Hi.

2. The point pi into which the most recent vertex vi has been embedded
can see a point of Hi of the other color and Pi does not intersect the
area bounded by this line of sight and the vertical line from pi upward.
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Fig. 1. Embedding a 2-colored path.

Assume that vi is of different color than vi+1 and let h, 1 ≤ h ≤ n− i,
be maximal such that vi+1, vi+2, . . . vi+h all have the same color. To
maintain the above invariants, we find a line that cuts off the required
number h of points of color different from vi from Hi (identified with the
area on and above it). Assume vi is red (which implies that it has been
placed at a point pi in the left half-plane) and vi+1 is blue; see Fig. 1.

Consider now the red end-point ri of the unique edge of Hi that crosses
the vertical separation line. We rotate a ray emanating from ri counter-
clockwise until either h unused blue points are encountered, or a red point
r′i lies on the ray. In the latter case, we continue by rotating counterclock-
wise the ray around r′i. We repeat this process until h blue points are
found, and let Bi be the set of identified blue points. Let CBi

be the
convex hull of Bi. These points can be added to the path, as follows: Let
a be the first blue point of Hi that is hit by a ray emanating from pi

and rotated counterclockwise. Point a also belongs to CBi
. We can then

connect pi to point a. From point a we move counterclockwise along CBi

until the right-most point of CBi
is reached, while adding each encoun-

tered point to the drawing of the path. The remaining points of Bi are
taken in decreasing value of their x-coordinates until the final point, pi+h.

The resulting path ending at pi+h satisfies the invariants: Pi+h does
not intersect Hi+h and since pi+h is the leftmost point of Bi the second
invariant is also satisfied. ⊓⊔

Using Lemma 1 we can embed k 2-colored paths for any k > 0 on a
set of 2-colored points in general position in the plane that are separated
by a straight-line, provided we have sufficient number of points of each
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color. The resulting set of points is a universal one for these k 2-colored
paths, which yields the following theorem:

Theorem 1. Any number of 2-colored paths can be simultaneously em-
bedded.

2.1 A Tree and Paths on Two Colors

We first show that it is always possible to draw a 2-colored tree in such
a way that the two colors are separated by a line.

Lemma 2. Any 2-colored tree can be embedded so that the colors are
separated by a straight line.

Proof. We use a divide-and-conquer approach and recursively process the
tree from an arbitrary root node. We begin by drawing a vertical line l

and assigning the left side to color 1 and the right side to color 2. Next
we sort the children of the root by their colors. Let j of the children have
color 1 and k children have color 2.

We can assume without loss of generality that the root is of color 1
and can place it on the left side of line l. The j children of color 1 are
placed consecutively, such that the first is strictly beneath and to the left
of the root, the second is strictly beneath and to the left of the first, and
so on. We place the k children of color 2 to the right of line l in a similar
fashion. We place the first child strictly beneath and to the right of the
root, the second strictly beneath and to the right of the first, and so on.
Note that every child has unobstructed line of sight to an horizontal sliver
of the plane on both sides of line l. Thus, we can recursively place the
children of the j + k vertices until the entire tree has been processed. ⊓⊔

Now using the result from Lemma 2 we can embed a 2-colored tree on
a set of 2-colored points in the plane that are separated by a straight-line.
Then we can perturb the positions of the vertices until they are in general
position. This can be done without introducing crossings as shown in [4].
From Lemma 1, the resulting set of points is a universal one for 2-colored
paths. Together these two results yield the next theorem:

Theorem 2. A 2-colored tree and any number of 2-colored paths can be
simultaneously embedded.

2.2 Planar Graph and Paths on Two Colors

We have seen that in order to simultaneously embed a 2-colored planar
graph G with any number of 2-colored paths it suffices to find a plane
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drawing of G in which the vertex sets of the same color, V1 and V2, can be
separated by a line. Let G1 and G2 be the two subgraphs induced by the
vertex sets V1 and V2 respectively. We call such a partition a bipartition,
and the edges with vertices from both graphs are called bipartition edges.

Next we present a characterization of the class of 2-colored planar
graphs that can be separated by a line. We make extensive use of the
characterization and the embedding algorithm for HH layouts by Biedl et
al. [2]. An HH layout is a drawing of a planar bipartition without crossings
(but not necessarily using straight-line edges), in which the two vertex
sets are separated by a horizontal line. We begin with the characterization
of planar bipartitions that can be drawn as HH layouts.

Lemma 3. [2] Planar bipartitions can be realized as HH layouts only if
the subgraph D of the dual graph induced by the dual edges of the bipar-
tition edges is connected.

Moreover, it is shown in [2] that D is Eulerian and that it is possible
to construct y-monotone HH layouts with few bends in linear time. The
construction is roughly as follows. Find an Eulerian circuit of D that
separates the sets V1 and V2. Then dummy vertices, that will become
bends later, are introduced along the bipartition edges. Next the chain
of dummy vertices is processed in the order of the Eulerian circuit and
the straight-line drawing algorithm of Chrobak and Kant [5] is applied to
the two subgraphs separately by placing one of them below (without loss
of generality, say, G1) and the other above the chain. The final result is
straight-line planar drawing with the exception of the bipartition edges
which have exactly one bend each; see Fig. 2(a).

This approach does not produce exactly the result that we need. We
now show how to obtain a drawing with no bends, while not introducing
any crossings, after applying the above technique to the planar bipartition
and obtaining the HH layout (which may have some bends).

Lemma 4. From each HH layout with some bends on the separation line,
we can derive a straight-line drawing, while keeping the two partitions
separated by a line.

Proof. We begin by directing all the edges upward with respect to the
basic HH layout L in order to obtain an upward planar embedding E of G.
A theorem of Di Battista and Tamassia [7] states that the upward planar
embedding E can be realized as a straight-line upward drawing. The
resulting drawing, however, may not separate the two sets by a straight
horizontal line. Below we show how to obtain the needed straight-line
drawing in which the two sets are indeed separable by a line.
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(a) Sample HH
layout.

t

(b) Extended HH
layout of G1.

(c) Resulting
embedding.

Fig. 2. HH Layouts.

Let Γ1 be the upward embedding of the graph G1 with an upper
boundary B1 made of vertices adjacent to the bipartition edges. We ex-
tend Γ1 by adding a top vertex t which we connect to all the boundary
vertices by edges (v, t), where v ∈ B1. Now we can apply the straight
line drawing algorithm of Di Battista and Tamassia to the extended em-
bedding and obtain an upward straight-line drawing, with the vertices
on the boundary B1 drawn with increasing x-coordinates; see Fig 2(b).
After removing vertex t, B1 is once again the upper boundary. Similarly,
we can extend the embedding Γ2 of G2 in order to obtain a drawing with
x-monotone lower boundary B2.

Next we stretch the two layouts in the x-direction so that the slopes of
the boundary edges become smaller. In particular, we stretch the layouts
until all slopes are less than 40◦. Note that stretching preserves both
planarity and upwardness of the layouts.

Finally we place the two layouts of Γ1 and Γ2 above each other and
at vertical distance twice the larger of their widths. Now we can safely
insert the bipartition edges which connect the two boundaries B1 and
B2. By the choice of separation distance, the slopes of the bipartition
edges are larger than 60◦. Thus the bipartition edges cannot introduce
any crossings and now the two parts can be separated by an horizontal
line as desired; see Fig. 2(c). ⊓⊔

Lemma 1 and the algorithm above yield the following lemma:

Lemma 5. Let G be a planar bipartition graph in which the dual graph
of the subgraph induced by the bipartition edges is connected. (a) Then a
straight-line drawing for G can be constructed where the two parts are sep-
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arated by a horizontal line. (b) Since the bipartition includes a 2-coloring,
G plus any number of 2-colored paths can be simultaneously embedded.

As 2-colored outerplanar graphs fulfill the conditions of Lemma 5, we
have the following theorem:

Theorem 3. A 2-colored outerplanar graph and any number of 2-colored
paths can be simultaneously embedded.

3 k-Colored Simultaneous Embeddings

In this section we extend the investigation to more than two colors. We
recall that there exist three paths which do not admit a simultaneous
embedding with mapping [4], whereas it is easy to see that any number of
paths have a simultaneous embedding without mapping. Now we consider
k-colored paths and/or k-colored k-cycles for 3 ≤ k ≤ 9.

3.1 Three Colors

As in the case of 2-colored embeddings we are looking for a universal
pointset for paths. A slight modifications of the original universal pointset
for 2-colored paths allows us to extend its utility to the 3-colored case.

Theorem 4. Any number of 3-colored paths can be simultaneously em-
bedded.

Proof. Let P be any 3-colored path with c1 vertices of color 1, c2 vertices
of color 2 and c3 vertices of color 3, where c1 + c2 + c3 = n. Let l1, l2 and
l3 be three line-segments with a common endpoint O and meeting at 120◦

angle. Place c1 points along l1, c2 points along l2, and c3 points along l3,
ensuring that the origin O is not used.

Next map every vertex of the path, in order, to the point of the cor-
responding color that is closest to the origin and is not already taken.
Since every point has line of sight to any other point and for a given pi of
P the previous path only blocks line of sight to the points already taken,
the result is a plane drawing. ⊓⊔

3.2 Four and Five Colors

While universal pointsets exist for 1-colored paths, 2-colored paths and
3-colored paths, we have not been able to find one for 4-colored paths.
However, we can show that for k > 4 universal pointsets for k-colored
paths do not exist.

Theorem 5. There does not exist a universal pointset for 5-colored paths.
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cd

(a) Five 5-colored paths

a b c

fed

(b) Three 6-colored 6-cycles

Fig. 3. Sets of k-colored graphs for k ∈ {5, 6} on distinctly colored points whose unions
form a K5 and a K3,3.

Proof. Consider the following five 5-colored paths on 5 points given in
Fig. 3(a) whose union is K5 where each edge in the K5 belongs to exactly
two paths:

1. a−c−d−b−e (thin red dashed edges),
2. a−d−e−b−c (thick light purple alternating dash and dot edges),

3. b−a−c−e−d (thick green dotted edges),
4. b−d−a−e−c (thick yellow solid edges), and

5. e−a−b−c−d (thin blue solid edges).

In any drawing of K5 there must be at least one crossing. If this cross-
ing is formed by a pair of edges from different paths then a simultaneous
embedding might be possible. However, the paths above were chosen in
such a way that every pair of edges either belongs to the same path or is
incident. As straight-line incident edges cannot form the crossing pair it
suffices to examine all pairs of non-adjacent edges in order to verify that
they occur in at least one of the paths.

3.3 Six and Nine Colors

Here we consider sets of graphs on pointsets of six or more colors, in
which the sets of graphs to simultaneously embed have cardinality less
than five.

Lemma 6. There exist three 6-colored cycles that cannot be simultane-
ously embedded.

Proof. Consider the following three cycles, also shown in Fig. 3(b):

1. e−a−d−c−f−b−e (thin blue solid edges),
2. e−a−f−b−d−c−e (thin red dashed edges), and

3. a−f−c−e−b−d−a (thick green dotted edges).
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(a) One 5-colored and three
6-colored paths
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(b) Three 9-colored paths

Fig. 4. Sets of k-colored graphs for k ∈ {6, 9} on distinctly colored points whose unions
form a K3,3 or a subdivision thereof.

A visual examination of Fig. 3(b) shows that the union of these cycles
forms a K3,3. Moreover, every edge in the K3,3 belongs to two of the three
cycles. In any drawing of K3,3 there must be at least one crossing. Since
there are only three paths altogether, every pair of edges in the K3,3 must
share a common 6-cycle, which forces a self-intersecting cycle. ⊓⊔

Lemma 7. There exist four 6-colored paths that cannot be simultaneously
embedded.

Proof. Fig. 4(a) depicts the following set of one 5-colored path and three
6-colored paths whose union forms K3,3:

1. e−a−d−c−f (thin blue solid edges),
2. e−a−f−b−d−c (thin red dashed edges),
3. a−f−c−e−b−d (thick green dotted edges), and
4. a−d−c−e−b−f (thick brown dash-and-dots edges).

Every edge in K3,3 belongs to at least two of the four paths. As a result,
since there are more than three paths, it is easy to manually inspect all
18 pairs of non-adjacent edges to verify that each pair shares a common
path. Thus at least one of the paths must be self-intersecting. ⊓⊔

Lemma 8. There exist three 9-colored paths that cannot be simultane-
ously embedded.

Proof. Fig. 4(b) shows that every edge in the subdivided K3,3 union be-
longs to exactly two of the following three paths:

1. h−c−f−b−e−a−g−d−i (thin blue solid edges),
2. g−d−h−c−e−a−f−b−i (thin red dashed edges), and
3. g−a−f−c−e−b−i−d−h (thick green dotted edges).

Since there are only three 9-colored paths altogether, every pair of
edges in the subdivided K3,3 must share a common path forcing a self-
intersecting path. Note that this result is a simplified version of Theorem
2 of Brass et al. [4]. ⊓⊔
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4 Conclusions and Open Problems

Table 1 summarizes the current status of the newly formulated problem
of colored simultaneous embedding. A “X” indicates that it is always
possible to simultaneously embed the type of graphs, a “✗” indicates that
it is not always possible, and a “?” indicates an open problem.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 9 k = n

Paths P1 . . . P3 X X X ? ? ? ✗ ✗

Paths P1 . . . P4 X X X ? ? ✗ ✗ ✗

Any number of paths X X X ? ✗ ✗ ✗ ✗

Planar Graph G and Path P X X ? ? ? ? ✗ ✗

Outerplanar Graph G and Path P X X ? ? ? ? ? ?

Tree T and Path P X X ? ? ? ? ? ?

Two trees T1, T2 X ? ? ? ? ? ? ✗

Two planar graphs G1, G2 ? ? ? ? ? ? ✗ ✗

Table 1. k-colored simultaneous embeddings: results and open problems.

References
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