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Abstract. A geometric simultaneous embeddingof two graphsG1 = (V1, E1) and G2 =
(V2, E2) with a bijective mapping of their vertex setsγ : V1 → V2 is a pair of planar straight-
line drawingsΓ1 of G1 andΓ2 of G2, such that each vertexv2 = γ(v1) is mapped inΓ2 to the
same point wherev1 is mapped inΓ1, wherev1 ∈ V1 andv2 ∈ V2.
In this paper we examine several constrained versions of thegeometric simultaneous embedding
problem as well as a more relaxed version in which instead of exactly simultaneous we look
for near-simultaneous embeddings. We show that if the inputgraphs are assumed to share no
common edges this does not seem to yield large classes of graphs that can be simultaneously
embedded. Further, we show that if a prescribed combinatorial embedding for each input graph
must be preserved, then we can answer some of the problems that are still open for geometric
simultaneous embedding. Finally, we present some positiveand negative results on the near-
simultaneous embedding problem, in which vertices are not forced to be placed exactly in the
same, but just in “near” points in different drawings.

1 Introduction

Graph drawing techniques are commonly used to visualize relationships between objects, where
the objects are the vertices of the graph and the relationships are captured by the edges in the graph.
Simultaneous embedding is a problem that arises when visualizing two or more relationships defined
on the same set of objects. If the graphs that correspond to these relationships are planar, the aim
of simultaneous embedding is to find point locations in the plane for the vertices of the graphs, so
that each of the graphs can be realized on the same point-set without edge crossings. To ensure good
readability of the drawings, it is preferable if the edges are drawn as straight-line segments. This
problem is known asgeometric simultaneous embedding. It has been shown that only a few classes
of graphs can be embedded simultaneously with straight-line segments. In particular, Brasset al.[1],
Erten and Kobourov [6], and Geyeret al. [11] showed that three paths, a planar graph and a path,
and two trees do not admit geometric simultaneous embeddings. On the positive side, an algorithm
for geometric simultaneous embedding of two caterpillars [1] is the strongest known result.

As geometric simultaneous embedding turns out to be very restrictive, it is natural to relax some
of the constraints of the problem. Not insisting on straight-line edges led to positive results such
as a linear time algorithm by Erten and Kobourov for embedding any pair of planar graphs with at
most three bends per edge, or any pair of trees with at most twobends per edge [6]. In such results
it is allowed for an edge connecting a pair of vertices to be represented by different Jordan curves
in different drawings, something not possible when edges are straight-line segments. As this can be
detrimental to the readability of the drawings, several papers considered a slightly more constrained
version of this problem, namely,simultaneous embedding with fixed edges. In this version of the
problem bends are allowed, however, an edge connecting the same pair of vertices must be drawn
in exactly the same way in all drawings. Di Giacomo and Liotta[4] showed that outerplanar graphs



can be simultaneously embedded with fixed edges with paths orcycles using at most one bend per
edge. Frati [9] showed that a planar graph and a tree can also be simultaneously embedded with fixed
edges.

The problem of simultaneous graph embedding is related to the problem of computing graph
thickness. In particular, by showing that unions of disjoint cycles have a geometric simultaneous
embedding, Duncanet al. [5] proved that graphs of maximum degree four have geometricthickness
two. Using a similar relationship between simultaneous embedding with fixed edges and the weak
realizability problem, Gassneret al.[10] showed that testing whether three graphs have simultaneous
embedding with fixed edges is an NP-Complete problem. In a slightly different setting, Erten and
Kobourov [7] showed how to simultaneously embed a planar graph and its dual.

Studying the existing variants of simultaneous embedding has led to practical embedding algo-
rithms for some classes of graphs and techniques for simultaneous embedding have been used in
visualizing evolving and dynamic graphs [2]. However, froma theoretical point of view, many prob-
lems remain open, while in practice algorithms that attemptto apply these ideas to evolving and
dynamic graphs do not provide any guarantees on the quality of the resulting layouts. With this in
mind, we consider three further variants of the geometric simultaneous embedding problem.

Graph Classes Geometric No Shared Fixed EmbeddingNo Shared, Fixed Embedding

path + path YES [1] YES [1] YES [1] YES [1]
star + path YES [1] YES [1] YESSec. 4.1 YESSec. 4.1

double-star+ path YES [1] YES [1] ? YESSec. 4.1
caterpillar + path YES [1] YES [1] ? ?

caterpillar + caterpillar YES [1] YES [1] NO Sec. 4.2 NO Sec. 4.2
3 paths NO [1] ? NO [1] ?

tree + path ? ? ? ?
tree + cycle ? ? ? ?

tree + caterpillar ? ? NO Sec. 4.2 NO Sec. 4.2
outerplanar + path ? ? NO Sec. 4.3 NO Sec. 4.3

outerplanar + caterpillar ? ? NO Sec. 4.2 NO Sec. 4.2
outerplanar + cycle ? ? NO Sec. 4.3 NO Sec. 4.3

tree + tree NO [11] ? NO [11] NO Sec. 4.2
outerplanar + tree NO [11] ? NO [11] NO Sec. 4.2

outerplanar + outerplanar NO [1] ? NO [1] NO Sec. 4.2
planar + path NO [6] NO Sec. 3 NO [6] NO Sec. 3
planar + tree NO [6] NO Sec. 3 NO [6] NO Sec. 3

planar + planar NO [6] NO Sec. 3 NO [6] NO Sec. 3

Fig. 1.A summary of the known results and contributions of this paper. In particular, we survey results
in geometric simultaneous embedding (Geometric), geometric simultaneous embedding assuming
the graphs do not share common edges (No Shared), geometric simultaneous drawing with fixed em-
bedding (Fixed Embedding), geometric simultaneous drawing with fixed embedding and no common
edges (No Shared, Fixed Embedding).

Most of the proofs about the non-existence of simultaneous embeddings exploit the presence of
common edges between the graphs that have to be drawn. Hence,it is natural to ask whether larger
classes of graphs have geometric simultaneous embeddings if no edges are shared by input graphs. In
Section 3 we answer in the negative for planar graph-path pairs, generalizing the result in [6], where
it is shown that a planar graph and a path that share edges do not admit a geometric simultaneous
embedding.
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In Section 4 we consider the problem of geometric simultaneous embedding where the individual
embeddings for the input graphs are fixed. We call this setting geometric simultaneous embedding
with fixed embeddings. This is a more restrictive variant than geometric simultaneous embedding
and therefore the negative results for geometric simultaneous embedding remain valid here. We
show that some classes of graphs that have geometric simultaneous embeddings do not admit one
with individually fixed embeddings. In particular, we provesuch a negative result for caterpillar-
caterpillar pairs. Moreover, in the fixed embedding settingwe are able to solve problems that are
still open for geometric simultaneous embedding. Namely, we provide an outerplanar-path pair that
has no geometric simultaneous drawing with fixed embedding.All the negative results claimed are
still valid if the input graphs are assumed to not share edges. In the aim of establishing which classes
of graphs admit geometric simultaneous drawings with fixed embedding, we also partially cover the
known positive results for geometric simultaneous embedding, by showing that a star and a path can
always be realized and that a double-star and a path can always be realized if they do not share edges.

In the quest for more practical setting where we can still guarantee some properties of the result-
ing embeddings, we study a variant we callgeometric near-simultaneous embedding. In this setting
(Section 5), edges are drawn as straight-line segments but vertices that represent the same entity in
different input graphs can be placed not exactly in the same point but in points that are just near each
other. We show that even this version is restrictive. Namely, assuming that vertices are placed on the
integer grid, we show that there exist pairs ofn-vertex planar graphs in which vertices that represent
the same entity in different graphs must be placed in points that are at distanceΩ(n). We finally
consider input graphs that are “similar” in their combinatorial structure, and we describe algorithms
which guarantee that vertices representing the same entityare displaced only by a constant distance
from one drawing to the next. Such algorithms can be used to guarantee limited displacement in
dynamic graph drawings.

2 Preliminaries

Here we summarize some of the basic terminology used in this paper; further graph drawing defini-
tions can be found in the surveys by Di Battistaet al. [3] and by Kaufmann and Wagner [14].

A straight-line drawingof a graph is a mapping of each vertex to a unique point in the plane
and of each edge to a segment between the endpoints of the edge. A planar drawingis one in which
no two edges intersect. Aplanar graphis a graph that admits a planar drawing. It is a well-known
result [8] that every planar graph admits a planar straight-line drawing. Agrid drawing is one in
which every vertex is placed at a point with integer coordinates in the plane. Anembeddingof a
graph is a circular ordering of the edges incident on each vertex of G. An embedding of a graph
specifies the faces in any drawing respecting such an embedding, even though the embedding does
not determine which one is theexternal face. A graph istriconnectedif for every pair of distinct
vertices there exist three vertex-disjoint paths connecting them. A triconnected graph has an unique
embedding, up to a reversal of its adjacency lists.

An outerplanar graphis a graph that admits a drawing in which all the vertices are incident
to the same face. The embedding of the outerplanar graph in anouterplanar drawing is called an
outerplanar embedding.Treesare connected acyclic graphs and they are a subclass of the outerplanar
graphs. Thedegreeof a vertex is the number of its neighbors. Aleaf is a vertex of a tree with degree
1. A path is a tree in which every vertex, other than the leaves, has degree2. A caterpillar is a tree
in which the removal of all the leaves and their incident edges yields a path. Astar (double-star) is
a caterpillar with only one vertex (two vertices) of degree greater than one.

Let G1 = (V1, E1) andG2 = (V2, E2) be twon-vertex planar graphs with a bijective mapping
γ : V1 → V2 between their vertices. Ageometric simultaneous embeddingof two graphs exists if
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a pair of straight-line drawingsΓ1 andΓ2 of G1 and ofG2 can be found, such that: (i) each ofΓ1

andΓ2 is planar, and (ii) each vertexv2 = γ(v1), with v1 ∈ V1 andv2 ∈ V2, is mapped inΓ2 to the
same point wherev1 is mapped inΓ1.

3 Simultaneous Embedding without Common Edges

In this section we consider the geometric simultaneous embedding of graphs that do not share com-
mon edges. We show that a planar graph and a path cannot be drawn simultaneously even if they do
not share common edges, thus extending an earlier result [6]for a planar graph and a path that do
share edges. We revisit the problem of embedding simultaneously graphs not sharing edges in the
conclusions (Section 6).

Let G∗ be the triconnected planar graph on nine verticesv1, v2, . . ., v9 shown in Fig. 2(a).
SinceG∗ is triconnected, it has the same faces in each of its planar embeddings. LetF ∗ denote the
triangular face∆v1v3v9 andP ∗ be the path(v1, v2, v3, v4, v5, v6, v7, v8, v9).

v3

v8

v6

v4v2

v7

v5

v1v9

v2

v4

v3

v9 v1

T*

F*

v3

v2

lv9
v1v4

T*

F*

G*1 G*2

u2

u1u3

v1
3 v2

3

v1
9v1

1 v2
9v2

1

(a) (b) (c) (d)

Fig. 2. (a) Triconnected planar graph G∗ drawn with solid edges and path P ∗ drawn with dashed
edges; (b) Embedding vertex v4 inside T ∗ creates a crossing between the subpath of P ∗ connecting
v1 and v3 and the subpath of P ∗ connecting v4 and v9; (c) Embedding vertex v4 outside T ∗ creates a
crossing between edges (v1, v2) and (v3, v4) of P ∗; (d) Triconnected planar graph G drawn with solid
edges and path P drawn with dashed edges.

Lemma 1. There does not exist a geometric simultaneous embedding ofG∗ andP ∗ in which the
external face ofG∗ is F ∗.

Proof: Note that all vertices ofG∗, other thanv1, v3 andv9, are contained insideF ∗ asF ∗ is the
external face ofG∗. Consider the triangleT ∗ formed by the edges(v1, v2), (v2, v3) of P ∗, and by
the edge(v1, v3) of G∗. Since vertexv9 is incident toF ∗, it must lie outsideT ∗. Let l be the line
passing throughv2 andv3; l separates the plane in two open half-planes, one containingv9, called
the exterior partof l, and one not containingv9, called theinterior part of l. We show that every
placement ofv4 leads to a crossing in the drawing of the path if the planarityof the drawing ofG∗

is preserved. Ifv4 is placed insideT ∗ then the subpath ofP ∗ composed of the edges(v1, v2) and
(v2, v3) crosses the subpath ofP ∗ connectingv4, that lies insideT ∗, andv9, that lies outsideT ∗;
see Fig. 2(b). Supposev4 is placed outsideT ∗. Since vertexv4 (vertexv2) must lie inside triangle
∆v1v3v5 (inside triangle∆v3v5v9), the clockwise order of the edges(v3, v1), (v3, v5), (v3, v9) of G∗

and the edges(v3, v4), (v3, v2) of P ∗ aroundv3 must be(v3, v1), (v3, v4), (v3, v5), (v3, v2), (v3, v9).
Thereforev4 is in the interior part of l and hence edge(v1, v2) crosses edge(v3, v4) in P ∗; see
Fig. 2(c). �
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Theorem 1. There exist a planar graphG, a pathP , and a mapping between their vertices such
that: (i) G andP do not share edges, and (ii)G andP have no geometric simultaneous embedding.

Proof: We will construct graphG and pathP out of two copies ofG∗ andP ∗ described above. In
particular, letG∗

1
andG∗

2
be two copies of the planar graphG∗. G∗

1
andG∗

2
have nine vertices each,

and we denote byvj
i the vertex ofG∗

j that corresponds to the vertexvi in G∗, wherej = 1, 2 and
i = 1, . . . , 9.

Let G be the graph composed ofG∗
1 andG∗

2 together with three additional verticesu1, u2, and
u3 and eight additional edges(u1, u2), (u1, u3), (u2, u3), (u1, v

2

1
), (u2, v

1

3
), (u2, v

2

3
), (u3, v

1

9
), and

(v1

1
, v2

9
); see Fig. 2(d). It is easy to see thatG is a triconnected planar graph. ThereforeG has exactly

one planar embedding and it has the same faces in each of its plane drawings.
Let F ∗

1
andF ∗

2
denote the cycles(v1

1
, v1

3
, v1

9
) and(v2

1
, v2

3
, v2

9
); note that these cycles are faces of

G∗
1 andG∗

2. LetP be the path(u1, v
1
9 , v

1
8 , v

1
7 , v1

6 , v
1
5 , v

1
4 , v1

3 , v
1
2 , v

1
1 , u2, v

2
9 , v2

8 , v
2
7 , v2

6 , v
2
5 , v

2
4 , v2

3 , v
2
2 , v

2
1 , u3).

It is easy to see thatG andP do not share edges. Note that the subpaths ofP induced by the vertices
of G∗

1
and by the vertices ofG∗

2
play the same role that pathP ∗ plays for graphG∗ in Lemma 1.

We now show that every plane drawingΓ of G determines a non-planar drawing ofP . Consider
the particular embeddingEG of G obtained by choosing∆u1u2u3 as external face; see Fig. 2(d).
Note that choosing any face internal toF ∗

1 (F ∗
2 ) in EG as external face ofΓ leavesG∗

2 (G∗
1) embedded

with external faceF ∗
2

(F ∗
1

) and that choosing any face external to bothF ∗
1

andF ∗
2

in EG as the
external face ofΓ leavesG∗

1 andG∗
2 embedded with external faceF ∗

1 or F ∗
2 , respectively. Hence,

we can apply Lemma 1 and conclude that there does not exist a simultaneous embedding ofG and
P . �

4 Simultaneous Drawing with Fixed Embedding

Next, we examine the possibility of embedding graphs simultaneously with straight-line edges and
with fixed embeddings for the input graphs. In this setting weshow that star-path pairs and double-
star-path pairs not sharing edges can be drawn simultaneously, while there are caterpillar-caterpillar
pairs that cannot. We also give an outerplanar graph and a path that cannot be drawn simultaneously
given a fixed embedding.

4.1 Simultaneous Drawing of Stars, Double-Stars and Paths with Fixed Embedding

Let P be ann-vertex path and letS be ann-vertex star with fixed embeddingE andcenterc. Note
thatS andP share at least one and at most two edges. LetP = (a1, a2, . . . , al, c, b1, b2, . . . , bm),
where one among the sequences(a1, a2, . . . , al) and(b1, b2, . . . , bm) could be empty. DrawS with
c as the leftmost point and all of the edges in an order aroundc consistent withE and so that edge
(c, b1), if it exists, is theuppermostedge ofS. It is easy to ensure that thex-coordinate of a vertexbi

is greater than thex-coordinate of a vertexaj , with 1 ≤ i ≤ m and1 ≤ j ≤ l, that thex-coordinate
of a vertexbi is greater than thex-coordinate of a vertexbj , with 1 ≤ j < i ≤ m, and that the
x-coordinate of a vertexai is greater than thex-coordinate of a vertexaj , with 1 ≤ i < j ≤ l; see
Fig. 3(a). The resulting drawing ofS is clearly planar. It is also easy to see that the pathP is not self
intersecting as it is realized by twox-monotone curves joined by an edge that is higher than every
other edge ofP . This yields the following result:

Theorem 2. An n-vertex star and ann-vertex path admit a geometric simultaneous embedding in
which the star has a fixed prescribed embedding.
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Fig. 3.(a) Simultaneous embedding of a star and a path; (b) Simultaneous embedding of a double-star
and a path not sharing edges.

Now letP be ann-vertex path and letD be ann-vertex double-star with a prescribed embedding
E and withcentersc1 andc2. Suppose thatD andP do not share edges. LetP = (a1, a2, . . . , al, c1, b1,
b2, . . . , bm, c2, d1, d2, . . . , dn). Note that the sequences(a1, a2, . . . , al) and(d1, d2, . . . , dn) could
be empty, whilem ≥ 2. Observe also thatb1 is a neighbor ofc2 andbm is a neighbor ofc1 in
D; see Fig. 3(b). The edges incident onc1 (incident onc2), except for(c1, c2), are grouped into
two bundlesB1(c1) andB2(c1) (resp.B1(c2) andB2(c2)). B1(c1) is made up of the edges start-
ing from (c1, bm) until, but not including,(c1, c2) in the clockwise order of the edges incident on
c1. B2(c1) is made up of the edges starting from(c1, c2) until, but not including,(c1, bm) in the
clockwise order of the edges incident onc1. The other two bundlesB1(c2) andB2(c2) are defined
analogously.P is divided into three subpaths: a subpathP1 = (c1, al, al−1, . . . , a2, a1), a subpath
P2 = (c1, b1, b2, . . . , bm, c2), and a subpathP3 = (c2, d1, d2, . . . , dn).

Draw (c1, c2) as an horizontal line segment, withc1 on the left.B1(c1) andB2(c1) (B1(c2) and
B2(c2)) are drawn insidewedgescentered atc1 (resp. centered atc2) and directed rightward (resp.
directed leftward), withB1(c1) above(c1, c2) andB2(c1) below(c1, c2) (resp. withB1(c2) above
(c2, c1) andB2(c2) below(c2, c1)). Such wedges are disjoint and have the further property that there
exists an interval[x1, x2] of thex-axis that is common to all the wedges.[x1, x2] is a sub-interval
of thex-extension of the edge(c1, c2). Draw each edge inside the wedge of its bundle, respecting
E and so that the following rules are observed: thex-coordinate of a vertexbi is greater than the
x-coordinate of a vertexaj , with 1 ≤ i ≤ m and1 ≤ j ≤ l; the x-coordinate of a vertexdk is
greater than thex-coordinate of a vertexbi, with 1 ≤ k ≤ n and1 ≤ i ≤ m; the vertices ofP1

have increasingx-coordinates; the vertices ofP2 have increasingx-coordinates; and the vertices of
P3 have decreasingx-coordinates. Each vertex has anx-coordinate in the open interval(x1, x2).
Edge(c1, bm) (edge(c2, b1)) of D is drawn so high (resp. so low) that edge(c2, bm) (resp(c1, b1))
of P does not create crossings with the other edges of the path. The absence of crossings in the
drawing ofD follows from the fact that its edges are drawn inside disjoint regions of the plane. The
absence of crossings in the drawing ofP follows from (1) the absence of crossings in the drawings
of its subpaths, which in turn follows from the strictly increasing or decreasingx-coordinate of its
vertices; and (2) from the fact that the subpaths occupy disjoint regions, except for edges(c1, b1) and
(c2, bm) which do not create crossings, as already discussed. Thus, we have the following result:

Theorem 3. An n-vertex double-star and ann-vertex path not sharing edges admit a geometric
simultaneous embedding in which the double-star has a fixed prescribed embedding.
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4.2 Simultaneous Drawing of Two Caterpillars with Fixed Embedding

Insisting on a fixed embedding when simultaneously embedding planar graphs is a very restrictive
requirement as shown by the following theorem:

Theorem 4. It is not always possible to find a geometric simultaneous embedding for two caterpil-
lars with fixed embeddings.

Proof: Let C1 andC2 be the two caterpillars with fixed embeddingsE1 andE2 and a bijective
mappingγ(x) = x between their vertices; see Fig. 4(a-b). We now show that there does not exist a
geometric simultaneous embedding ofC1 andC2 in whichC1 andC2 respectE1 andE2, respectively.

1 2 3 4 5 6 7 8 9
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15
16
17 18

r
x 1

2

3 4

5

6 7

8

9 10
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1516

17

18

r x
k+1

k k+2

k+3

k+4
k+5

r

k+1
k

k+2
k+3

k+4
k+5

r

k+1

k k+2

k+3

k+4

k+5

r

(a) (b) (c) (d) (e)

Fig. 4. (a) Caterpillar C1; (b) Caterpillar C2; (c) A placement of the vertices of CS not respecting the
embedding constraints of E2. The polygon P is drawn with dotted segments, the edges of C1 (of C2)
are drawn as solid (dashed) segments; (d) Placing vertices k + 1 and k + 4 inside P leads to an
intersection between edges (k + 1, k + 3) and (k + 2, k + 4) of CS ; (e) Placing vertices k + 1 and
k + 4 outside P leads to an intersection between edges (k + 2, k + 4) and either (k + 1, k + 3) or
(k + 3, k + 5) of CS .

Construct a straight-line drawingΓ1 of C1. The embeddingE1 of C1 forces the vertices1, 2, . . . , 18
to appear in this order aroundr in Γ1. Consider the subtrees ofC1 induced by the verticesr, 1, 2, . . . , 6,
by the verticesr, 7, 8, . . . , 12, and by the verticesr, 13, 14, . . . , 18. Since such subtrees appear con-
secutively aroundr, then at least one of them must be drawn in a wedge rooted atr and with angle
less thanπ. LetCS be such a subtree and letk, k + 1, . . . , k + 5 be the vertices ofCS , with k = 1, 7
or 13. Without loss of generality, letr be the uppermost point of this wedge. It follows thatCS must
be drawndownward. Denote byP the polygon composed of the edges(r, k) and(r, k + 5) of C1

and of the edges(k, k+2), (k+2, k+3), and(k+3, k+5) of C2. Note that verticesk+1 andk+4
must be either both inside or both outsideP . In fact, placing one of these vertices inside and the
other outsideP is not consistent with the embedding constraints ofE2; see Fig. 4(c). If both vertices
k+1 andk+4 are placed insideP , then the embedding constraints ofE1 andE2 and the upwardness
of CS imply that edge(k + 2, k + 4) must cut edge(r, k + 3) and that edge(k + 1, k + 3) must cut
edge(r, k+2). It follows that there is an intersection between edges(k+2, k+4) and(k+1, k+3),
both belonging toCS ; see Fig. 4(d). Similarly, if both verticesk +1 andk +4 are placed outsideP ,
then by the embedding constraints ofE1 andE2 vertexk + 2 is placed inside the polygon formed by
the edges(r, k + 1), (r, k + 5) of C1 and by the edges(k + 1, k + 3), (k + 3, k + 5) of C2. Hence,
edge(k + 2, k + 4) cuts such a polygon either in edge(k + 1, k + 3) or in edge(k + 3, k + 5); see
Fig. 4(e) and this concludes the proof. �

4.3 Simultaneous Drawing of Outerplanar Graphs and Paths with Fixed Embedding

Let O∗ be the outerplanar graph on seven verticesv1, v2, . . ., v7 shown in Fig. 5(a) andE∗ be the
embedding ofO∗ shown in Fig. 5(b). LetF ∗ be the face ofE∗ with incident verticesv1, v3, andv7
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and letP ∗ be the path(v1, v2, v3, v4, v5, v6, v7). The proof of the following lemma can be found in
the Appendix.

v3
v5

v2

v7 v1

v4

v6

v3

v5

v2

v7 v1

v4

v6

v1
7v1

2

v1
5

v1
3

v1
6

v1
4v1

1

v2
1 v2

4

v2
6

v2
5

v2
2v2

7

v2
3 O*1

v1
3

v2
3

v2
1

v2
7

v1
7

v1
1

O*2

(a) (b) (c) (d)

Fig. 5. (a) Outerplanar graph O∗, drawn with solid edges, and path P ∗, drawn with dashed edges.
(b) Embedding E

∗ of O∗. (c) Outerplanar graph O, drawn with solid edges, and path P , drawn with
dashed edges. (d) Embedding E of O.

Lemma 2. There does not exist a geometric simultaneous embedding ofO∗ andP ∗ in which the
embedding ofO∗ is E∗ and the external face ofO∗ is F ∗.

Theorem 5. There exist an outerplanar graphO, an embeddingE of O, a pathP , and a mapping
between their vertices such that: (i)O andP do not share edges, and (ii)O andP have no geometric
simultaneous embedding.

Proof: Let O∗
1 andO∗

2 be two copies of the outerplanar graphO∗ defined above.O∗
1 andO∗

2 have
seven vertices each, and we denote byvj

i , with j = 1, 2 andi = 1, . . . , 7, the vertex ofO∗
j that

corresponds to vertexvi of O∗ in O. LetE∗
1

andE∗
2

be the embeddings ofO∗
1

andO∗
2

that correspond
to the embeddingE∗ of O∗. Let O be the graph composed ofO∗

1 , of O∗
2 , and of the edges(v1

7 , v2
1),

(v1

1
, v2

7
); see Fig. 5(c). Let the embeddingE for O be defined as follows: (i) each vertex ofO∗

1
(of O∗

2
)

but forv1

1
andv1

7
(but forv2

1
andv2

7
) has the same adjacency list as inE∗

1
(in E∗

2
); (ii) the adjacency

lists of the remaining vertices are as follows:v1

1 → (v1

7 , v1

6 , v
1

4 , v1

3 , v
2

7), v1

7 → (v2

1 , v1

3 , v
1

2 , v1

5 , v
1

1),
v2

1
→ (v2

7
, v2

6
, v2

4
, v2

3
, v1

7
), v2

7
→ (v1

1
, v2

3
, v2

2
, v2

5
, v2

1
).

As the embedding ofO is fixed, the faces of a planar drawing ofO with embeddingE are
fully determined up to the choice of the outerface. LetF ∗

1
andF ∗

2
denote the cycles(v1

1
, v1

3
, v1

7
)

and (v2
1 , v2

3 , v
2
7), respectively. Note that these cycles are faces ofO∗

1 andO∗
2 . Let P be the path

(v1

7
, v1

6
, v1

5
, v1

4
, v1

3
, v1

2
, v1

1
, v2

1
, v2

2
, v2

3
, v2

4
, v2

5
, v2

6
, v2

7
). It is easy to verify thatO andP do not share

edges. Further, the subpaths ofP induced by the vertices ofO∗
1 (O∗

2) play forO∗
1 (O∗

2) the same role
that pathP ∗ plays for graphO∗ in Lemma 2.

We now show that every plane drawingΓE of O with embeddingE determines a non-planar
drawing ofP . Consider a particular plane embeddingEO of O obtained by choosing(v1

1
, v1

7
, v2

1
, v2

7
)

as external face; see Fig. 5(d). Now observe that choosing any face internal toF ∗
1

(F ∗
2

) in EO as
the external face ofΓE leavesO∗

2 (O∗
1) embedded with external faceF ∗

2 (F ∗
1 ) and that choosing any

face external to bothF ∗
1

andF ∗
2

in EO as the external face ofΓE leavesO∗
1

andO∗
2

embedded with
external facesF ∗

1 andF ∗
2 , respectively. Hence, we can apply Lemma 2 and conclude thatthere is no

simultaneous embedding ofO andP . �
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5 Near-Simultaneous Embedding

In this section we study the variation of geometric simultaneous embedding in which vertices that
represent the same entity in different graphs are allowed tobe placed in different points in the dif-
ferent drawings. The relaxation of the constraint that forces vertices to be placed exactly in the same
point should allow us to near-simultaneously embed larger classes of graphs. However, in order to
preserve the viewer’s “mental map” corresponding verticesshould be placed as close as possible.
This turns out to be impossible for general planar graphs, asthe first lemma of this section shows.
First, define thedisplacementof a vertexv between two drawingsΓ1 andΓ2 as the distance between
the location ofv in Γ1 and the location ofv in Γ2. Second, we show that there exist twon-vertex
planar graphsG1 andG2 with a bijectionγ between their vertices such that for any two planar
straight-line grid drawingsΓ1 andΓ2 of G1 andG2, respectively, there exists a vertexv that has a
displacementΩ(n) betweenΓ1 andΓ2.

1

2 3

4

5 6

7

n-2

nn-1

8 9

1

2 3

n/2+1

n/2+2 n/2+3

5 6

4

n-2

nn-1

(a) (b)

Fig. 6. (a) Nested triangle graph G1; (b) Nested triangle graph G2.

Let G1 andG2 be twonested trianglegraphs, each onn vertices; see Fig. 6. A nested triangle
graphG is a triconnected planar graph with triangular faceF (G) such that removing the vertices of
F (G) and their incident edges leaves a smaller nested triangle graph or an empty vertex set. Suppose
the mappingγ(v1) = v2 between verticesv1 ∈ V (G1) and verticesv2 ∈ V (G2) is the one shown
in Fig. 6. Formally, the mapping can be defined by the following procedure: embedG1 andG2 with
external facesF (G1) andF (G2), respectively. Starting fromG1 (G2), for i = 1, . . . , n/3, remove
from the current graph the three vertices of the external face and label them3i − 2, 3i − 1, and3i
(3(i + 1)/2 − 2, 3(i + 1)/2 − 1, and3(i + 1)/2 if i is odd, or(n + 3i)/2 − 2, (n + 3i)/2 − 1, and
(n + 3i)/2 if i is even). Then, for any two planar straight-line grid drawingsΓ1 of G1 andΓ2 of G2

andG2, we have:

Lemma 3. There exists a vertex representing the same entity inG1 andG2 that has displacement
Ω(n) betweenΓ1 andΓ2.

Due to space constraints we leave the proof of the previous lemma in the Appendix. The lower
bound in Lemma 3 concerning the distance between two consecutive placements of a vertex in two
different drawings is easily matched by an upper bound obtained by independently drawing each
planar graph inO(n) × O(n) area: Each vertex is displaced by at most the length of the diagonal of
the drawing’s bounding box. Clearly, such a diagonal has lengthO(n).

The above result shows that we cannot hope to guarantee near-simultaneous embeddings for
arbitrary pairs of planar graphs. It is possible, however, that for graphs that are “similar”, near-
simultaneous embeddings might exist. Similarity between graphs could be defined and regarded in
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several different ways, by minding both the combinatorial structure of the graphs and the mapping
between the vertices of the graphs. With this in mind, in the following we look for near-simultaneous
embeddings of similar paths and similar trees.

5.1 Near-simultaneous drawings of similar paths

Recall that two arbitrary paths always have a geometric simultaneous embedding, while three of
them might not have one [1]. Therefore, in order to representa sequence of paths using a sequence
of planar drawings, vertices that are in correspondence under the mapping must be displaced from
one drawing to the next.

Observing that a path induces an ordering of the vertices, call two n-vertex pathsP1 andP2 with
orderingsπ1 andπ2 of their vertices and with a fixed bijective mappingγ between their vertices
k-similar if for each vertexv1 ∈ P1 the position ofv1 in π1 differs by at mostk positions from the
position ofv2 = γ(v1) in π2. Then a simple drawing of the paths as parallel horizontal polygonal
lines with uniform horizontal distances between adjacent vertices gives a near-simultaneous drawing.
As any vertexvi if P1 occurs withink positions inP2 (compared with its position inP1) then the
extent of the displacement of the vertex from one drawing to the next is limited by exactlyk units.
More generally, this idea can be summarized as follows:

Theorem 6. A sequence ofn-vertex pathsP0, P1, ..., Pm, where each two consecutive paths arek-
similar, can be drawn so that the displacement of any vertex in a pair of paths that are consecutive
in the sequence is at mostk.

5.2 Near-simultaneous drawings of similar trees

Generalizing the idea ofk-similarity to trees, call two (rooted) treesT1 andT2 with vertex setsV1

andV2 and with a fixed bijective mappingγ between their vertices,k-similar if:

– The depths of any vertexv1 ∈ V1 and of its corresponding vertexγ(v1) ∈ V2 differ by at most
k;

– The positions of any two corresponding vertices in any pre-established kind of traversal of the
trees in which a parent is encountered before its children (for instance in pre-, post-, in-order, or
breadth-first-search) differ by at mostk.

Given two treesT1 andT2 that arek-similar with respect to a pre-established traversal order
π, we can draw each ofT1 andT2 as follows: (1) Assign to each vertexvi its positionπ(vi) as an
x-coordinate; (2) Assign to each vertexvi its depth as ay-coordinate.

Such an algorithm produces layouts that are planar andlayered. A drawing is layered if (i)
each vertex is assigned to alayer, (ii) for each layer an order of its vertices is specified, and(iii)
there are only edges joining vertices on consecutive layersor joining vertices on the same layer
that are consecutive in that layer’s ordering. Since subsequent trees arek-similar, the depth of any
vertex and its position in a tree traversal changes only byk in two consecutive trees; hence, we
have that the displacement of a vertex representing the sameentity in different drawings is given
by

√
k2 + k2 = k

√
2. This result implies that the described algorithm can be used to visualize a

sequence ofk-similar trees by a sequence of planar drawings, displacingeach vertex by at most
k
√

2 units from a layout to the next, giving us the following theorem.

Theorem 7. A sequence ofn-vertex treesT0, T1, ..., Tm, where each two consecutive trees arek-
similar, can be drawn such that the displacement of any vertex in a pair of trees that are consecutive
in the sequence is at mostk

√
2.
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Observe that an analogous definition of similarity between two graphs and the same layout al-
gorithm work more generally forlevel planar graphs[12,13], which are graphs that admit a planar
layered drawing, by only replacing the depth of a vertex withthe depth of a vertex in a spanning
tree of the graph. Notice that the class ofouterplanar graphsis enclosed in that of the level pla-
nar graphs. Finally, the area requirement of the drawings produced by the described algorithm is
worst-case quadratic in the number of vertices of a tree (or of a level planar graph).

6 Conclusions

In this paper we have considered some variations of the well-known problem of embedding graphs
simultaneously. Namely, we have studied the setting in which no edges are shared by the input
graphs, the setting in which the input graphs have fixed embeddings, and the setting in which vertices
are allowed to be placed in near points in different drawings.

Concerning the geometric simultaneous embedding without common edges, we provided a neg-
ative result that seems to show that the geometric simultaneous embedding is not more powerful by
assuming the edge sets of the input graphs to be disjoint. Further, we believe that there exist two trees
not sharing common edges that do not admit a geometric simultaneous embedding. This would ex-
tend the result in [11] where two trees that do not admit a simultaneous embedding and that do share
edges are shown. Consider two isomorphic rooted treesT1(h, k) andT2(h, k) that do not have any
edges in common and a mappingγ between their vertices, shown in Fig. 7 and defined as follows:

Fig. 7. Trees T1(3, 3) and T2(3, 3) with the mapping γ between their vertices. T1(3, 3) has solid edges
and T2(3, 3) has dashed edges.

– the root ofT1(h, k) (of T2(h, k)) hask children;
– each vertex ofT1(h, k) (of T2(h, k)) at distancei from the root, with1 ≤ i < h, has a number of

children one less than the number of vertices at distancei from the root inT1(h, k) (in T2(h, k));
– one vertex ofT1(h, k) (of T2(h, k)) at distanceh from the root has one child;
– each child of the root ofT1(h, k) is mapped to a distinct child of the root ofT2(h, k);
– for each pair of verticesv1 of T1(h, k) andv2 of T2(h, k) that are at distancei from the root of

their own tree and that are such thatv2 6= γ(v1), there exists a child ofv1 that is mapped to a
child of v2;

– the only vertex ofT1(h, k) (of T2(h, k)) that is at distanceh + 1 from the root is mapped to the
root ofT2(h, k) (to the root ofT1(h, k)).
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Conjecture 1.For sufficiently largeh andk, T1(h, k) andT2(h, k) do not admit a geometric simul-
taneous embedding with mappingγ between their vertices.

For the problem of drawing graphs simultaneously with fixed embedding, we provided more
negative results than in the usual setting for geometric simultaneous embedding, while providing
only two positive results partially covering the ones already known for geometric simultaneous em-
bedding. We believe that understanding the possibility of obtaining a simultaneous embedding of a
tree and a path in which the tree has a fixed embedding could be useful for the same problem in the
non-fixed embedding setting.

Even in the more relaxed near-simultaneous setting, we haveshown that without assuming a
similarity in the sequence of graphs to be drawn, it is difficult to limit the displacement of a vertex
from a drawing to the next. We have shown that for paths, for trees, and for level planar graphs there
exist reasonable similarity measures that allow us to obtain near-simultaneous drawings. However,
in the case of general planar graphs it is not yet clear what kind of similarity metric can be defined
and how well can such graphs be drawn.
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Appendix: Proofs of Lemmas 2 and 3

Proof of Lemma 2

Lemma 2. There does not exist a geometric simultaneous embedding ofO∗ andP ∗ in which the
embedding ofO∗ is E∗ and the external face ofO∗ is F ∗.

v3
v5

v2

v7 v1

v4

v6

v3

v5

v2

v7 v1

v4

v6

v3

v2

l

l

T*

F*

v7 v1

(a) (b) (c)

v3

v4
v2

v7 v1

v3

v5

v2

v7 v1

v4

v6

v3

v2

lv7 v1

v4

(d) (e) (f)

Fig. 8. (a) Outerplanar graph O∗, drawn with solid edges, and path P ∗, drawn with dashed edges. (b)
Embedding E

∗ of O∗; (c) Triangle T ∗, face F ∗, and line l. (d) Embedding vertex v4 inside T ∗ creates
a crossing between the subpath of P ∗ connecting v1 and v3 and the subpath of P ∗ connecting v4 and
v7; (e) Order of the edges incident on vertex v3; (f) Embedding vertex v4 outside T ∗ and in the interior
part of l creates a crossing between edges (v1, v2) and (v3, v4) of P ∗.

Proof: We begin by observing that sinceF ∗ is the external face ofE∗ then all vertices ofO∗, other
thanv1, v3, andv7, are contained insideF ∗. Consider the triangleT ∗ formed by the edges(v1, v2),
(v2, v3) of P ∗, and by the edge(v1, v3) of O∗; see Fig. 8(c). As vertexv7 belongs to the external
face ofE∗ it must be outsideT ∗. Let l be the line passing throughv2 andv3; l separates the plane
in two open half-planes, one containingv7, called theexterior partof l, and one not containingv7,
called theinterior part of l. We show that every placement ofv4 leads to a crossing in the drawing
of the path, if the drawing ofO∗ respects the given embedding and has no crossings.

If v4 is placed insideT ∗, then the subpath ofP ∗ composed of the edges(v1, v2) and(v2, v3)
crosses the subpath ofP ∗ connectingv4, that lies insideT ∗, andv7, that lies outsideT ∗; see Fig. 8(d).
Supposev4 is placed outsideT ∗. By the embedding constraints ofE and by the observation that
vertexv4 (vertexv2) must lie inside triangle∆v1v3v6 (inside triangle∆v3v5v7), the clockwise order
of the edges ofO∗ and ofP ∗ incident inv3 is (v3, v1), (v3, v4), (v3, v6), (v3, v5), (v3, v2), (v3, v7);
see Fig. 8(e). Therefore,v4 must be in theinterior part of l and this implies that edge(v1, v2) crosses
edge(v3, v4) in P ∗; see Fig. 8(f). �
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Proof of Lemma 3

Lemma 3. There exists a vertex representing the same entity inG1 andG2 that has displacement
Ω(n) betweenΓ1 andΓ2.
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Fig. 9. (a) Nested triangle graphG1. (b) Nested triangle graphG2.

Proof: A nested triangle graph is triconnected, so the only degree of freedom for obtaining a plane
embedding of such a graph is given by the choice of its external face. By choosing any external face
f for a nested triangle graphG that is formed byt nested triangles, two nested triangles structures
T1(G) andT2(G) with triangular external face are present, one witht1 and the other witht2 triangles,
with 0 ≤ t1, t2 ≤ t and witht1 + t2 = t. In a plane embedding ofG with external facef , T1(G)
andT2(G) cover disjoint portions of the plane. Hence,Γ1 (Γ2) has two nested triangles structures
T1(G1) and T2(G1) (resp.T1(G2) and T2(G2)). Note thatT1(G1) or T2(G1) (resp.T1(G2) or
T2(G2)) might be without vertices. It is easy to see that there existindicesi andj, with i, j ∈ {1, 2},
such thatTi(G1) andTj(G2) share a linear number of vertices.

In a grid drawing of a nested triangle graph in which the external face is chosen to be a triangular
face, if two verticesv1 andv2 belong to two different triangles that are separated byt triangles
in the nested structure, then thex-coordinate or they-coordinate of the two vertices differs by at
leastt units. Consider the sub-drawing ofΓ2 corresponding to the subgraphT ∗ of Tj(G2) made of
k = an+b most deeply nested triangles ofTj(G2), with a andb constants. Note that such a subgraph
has a fixed plane embedding with outer faceO. Choosea andb so that the vertices incident onO
belong also toTi(G1). Now consider the three most deeply nested trianglesT1, T2, andT3 of T ∗,
such thatT1 is nested insideT2 that is nested insideT3. We now have two cases to consider:

– If there is a vertexv of T1, of T2, or of T3 that does not belong toTi(G1), then it will be
embedded outsideT ∗ in Γ1. SinceT ∗ is made ofO(n) nested triangles,v is mapped inΓ2 into
a point at distanceΩ(n) from the point wherev is mapped inΓ1.

– Otherwise every vertex ofT1, T2, andT3 belongs toTi(G1). Note that the labels of the vertices
of T1 (of T2) differ from the labels of the vertices ofT2 (resp. ofT3) by at leastn

2
− 5 units

and that inTi(G1) there areO(n) triangles separatingT1 andT2. This implies that either the
position of the vertices ofT1, or the position of the vertices ofT2, or the position of the vertices
of T3 in Γ1 and inΓ2 is at distanceΩ(n).

�
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