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Abstract. A geometric simultaneous embeddiofjtwo graphsG: = (Vi, E1) andGs: =
(V2, E2) with a bijective mapping of their vertex sets: Vi — V4 is a pair of planar straight-
line drawingsl'y of G;1 andI» of G2, such that each vertex = ~(v1) is mapped in to the
same point where; is mapped i, wherev, € Vi andvs € V.

In this paper we examine several constrained versions gfgbmetric simultaneous embedding
problem as well as a more relaxed version in which insteackaétyy simultaneous we look
for near-simultaneous embeddings. We show that if the igpaphs are assumed to share no
common edges this does not seem to yield large classes digythat can be simultaneously
embedded. Further, we show that if a prescribed combirstembedding for each input graph
must be preserved, then we can answer some of the probletrex¢hstill open for geometric
simultaneous embedding. Finally, we present some positiebnegative results on the near-
simultaneous embedding problem, in which vertices are oraefl to be placed exactly in the
same, but just in “near” points in different drawings.

1 Introduction

Graph drawing techniques are commonly used to visualizgioelships between objects, where
the objects are the vertices of the graph and the relatipashie captured by the edges in the graph.
Simultaneous embedding is a problem that arises when @gugtwo or more relationships defined
on the same set of objects. If the graphs that corresponcese ttelationships are planar, the aim
of simultaneous embedding is to find point locations in trenplfor the vertices of the graphs, so
that each of the graphs can be realized on the same poinfteetivedge crossings. To ensure good
readability of the drawings, it is preferable if the edges drawn as straight-line segments. This
problem is known ageometric simultaneous embedditihas been shown that only a few classes
of graphs can be embedded simultaneously with straigbtsigments. In particular, Brasisal.[1],
Erten and Kobourov [6], and Geyet al.[11] showed that three paths, a planar graph and a path,
and two trees do not admit geometric simultaneous embesgdg the positive side, an algorithm
for geometric simultaneous embedding of two caterpillatsq the strongest known result.

As geometric simultaneous embedding turns out to be vetsictige, it is natural to relax some
of the constraints of the problem. Not insisting on strailjie edges led to positive results such
as a linear time algorithm by Erten and Kobourov for embegdiny pair of planar graphs with at
most three bends per edge, or any pair of trees with at mosbénds per edge [6]. In such results
it is allowed for an edge connecting a pair of vertices to asented by different Jordan curves
in different drawings, something not possible when edgesaaight-line segments. As this can be
detrimental to the readability of the drawings, severalgagonsidered a slightly more constrained
version of this problem, namelgimultaneous embedding with fixed eddesthis version of the
problem bends are allowed, however, an edge connectingathe pair of vertices must be drawn
in exactly the same way in all drawings. Di Giacomo and Liptlasshowed that outerplanar graphs



can be simultaneously embedded with fixed edges with patbgobes using at most one bend per
edge. Frati [9] showed that a planar graph and a tree can aelsiolultaneously embedded with fixed
edges.

The problem of simultaneous graph embedding is relatedeégthblem of computing graph
thickness. In particular, by showing that unions of disjaigicles have a geometric simultaneous
embedding, Duncaet al. [5] proved that graphs of maximum degree four have geomihiigkness
two. Using a similar relationship between simultaneouseading with fixed edges and the weak
realizability problem, Gassnet al.[10] showed that testing whether three graphs have simadian
embedding with fixed edges is an NP-Complete problem. Inghthji different setting, Erten and
Kobourov [7] showed how to simultaneously embed a plangrlgeand its dual.

Studying the existing variants of simultaneous embeddagyléd to practical embedding algo-
rithms for some classes of graphs and techniques for simadtzss embedding have been used in
visualizing evolving and dynamic graphs [2]. However, frartheoretical point of view, many prob-
lems remain open, while in practice algorithms that attetopply these ideas to evolving and
dynamic graphs do not provide any guarantees on the qudltheaesulting layouts. With this in
mind, we consider three further variants of the geometnmtaneous embedding problem.

| Graph Classes |Geometric| No Shared|Fixed EmbeddingNo Shared, Fixed Embedding

path + path YES[1]| VYES[1] YES [1] YES [1]
star 4 path YES[1]| YESI1] YESSec. 4.1 YESSec. 4.1
double-star + path YES[1]| YESI1] ? YESSec. 4.1
caterpillar + path YES[1]| VYESI1] ? ?
caterpillar + caterpillar YES[1]| YESI1] NO Sec. 4.2 NO Sec. 4.2
3 paths NO [1] ? NO [1] ?
tree 4 path ? ? ? ?
tree + cycle ? ? ? ?
tree + caterpillar ? ? NO Sec. 4.2 NO Sec. 4.2
outerplanar + path ? ? NO Sec. 4.3 NO Sec. 4.3
outerplanar + caterpillar ? ? NO Sec. 4.2 NO Sec. 4.2
outerplanar + cycle ? ? NO Sec. 4.3 NO Sec. 4.3
tree 4 tree NO [11] ? NO [11] NO Sec. 4.2
outerplanar + tree NO [11] ? NO [11] NO Sec. 4.2
outerplanar + outerplanar| NO [1] ? NO [1] NO Sec. 4.2
planar + path NO[6] | NO Sec. 3 NO [6] NO Sec. 3
planar + tree NO[6] | NO Sec. 3 NO [6] NO Sec. 3
planar + planar NO[6] | NOSec.3 NO [6] NO Sec. 3

Fig. 1. A summary of the known results and contributions of this paper. In particular, we survey results
in geometric simultaneous embedding (Geometric), geometric simultaneous embedding assuming
the graphs do not share common edges (No Shared), geometric simultaneous drawing with fixed em-
bedding (Fixed Embedding), geometric simultaneous drawing with fixed embedding and no common
edges (No Shared, Fixed Embedding).

Most of the proofs about the non-existence of simultaneousegldings exploit the presence of
common edges between the graphs that have to be drawn. Hieisagtural to ask whether larger
classes of graphs have geometric simultaneous embedtiirmedges are shared by input graphs. In
Section 3 we answer in the negative for planar graph-patis,ggneralizing the result in [6], where
it is shown that a planar graph and a path that share edgest@amit a geometric simultaneous
embedding.



In Section 4 we consider the problem of geometric simultasembedding where the individual
embeddings for the input graphs are fixed. We call this getfgometric simultaneous embedding
with fixed embedding§ his is a more restrictive variant than geometric simwdtars embedding
and therefore the negative results for geometric simuttaseembedding remain valid here. We
show that some classes of graphs that have geometric sitaalia embeddings do not admit one
with individually fixed embeddings. In particular, we prosech a negative result for caterpillar-
caterpillar pairs. Moreover, in the fixed embedding settigare able to solve problems that are
still open for geometric simultaneous embedding. Namegypvwovide an outerplanar-path pair that
has no geometric simultaneous drawing with fixed embeddiighe negative results claimed are
still valid if the input graphs are assumed to not share edgeke aim of establishing which classes
of graphs admit geometric simultaneous drawings with fixabedding, we also partially cover the
known positive results for geometric simultaneous emhegidiy showing that a star and a path can
always be realized and that a double-star and a path cansabeagalized if they do not share edges.

In the quest for more practical setting where we can stilkrgotee some properties of the result-
ing embeddings, we study a variant we @g@bmetric near-simultaneous embeddilmgthis setting
(Section 5), edges are drawn as straight-line segmentsebiites that represent the same entity in
different input graphs can be placed not exactly in the sapiv@ put in points that are just near each
other. We show that even this version is restrictive. Nanasguming that vertices are placed on the
integer grid, we show that there exist pairswe¥ertex planar graphs in which vertices that represent
the same entity in different graphs must be placed in pohws are at distanc(n). We finally
consider input graphs that are “similar” in their combin&bstructure, and we describe algorithms
which guarantee that vertices representing the same anéitglisplaced only by a constant distance
from one drawing to the next. Such algorithms can be used &wagtee limited displacement in
dynamic graph drawings.

2 Preliminaries

Here we summarize some of the basic terminology used in #gep further graph drawing defini-
tions can be found in the surveys by Di Battistaal. [3] and by Kaufmann and Wagner [14].

A straight-line drawingof a graph is a mapping of each vertex to a unique point in thael
and of each edge to a segment between the endpoints of thefegtamar drawingis one in which
no two edges intersect. planar graphis a graph that admits a planar drawing. It is a well-known
result [8] that every planar graph admits a planar strdligletdrawing. Agrid drawing is one in
which every vertex is placed at a point with integer coorthean the plane. Armbeddingf a
graph is a circular ordering of the edges incident on eactexaf G. An embedding of a graph
specifies the faces in any drawing respecting such an emimgdelien though the embedding does
not determine which one is thexternal face A graph istriconnectedif for every pair of distinct
vertices there exist three vertex-disjoint paths conngdtiem. A triconnected graph has an unique
embedding, up to a reversal of its adjacency lists.

An outerplanar graphis a graph that admits a drawing in which all the vertices aoédient
to the same face. The embedding of the outerplanar graph gutmplanar drawing is called an
outerplanar embeddingreesare connected acyclic graphs and they are a subclass oftdmplamar
graphs. Thelegreeof a vertex is the number of its neighborsle¥af is a vertex of a tree with degree
1. A pathis a tree in which every vertex, other than the leaves, hased@gA caterpillar is a tree
in which the removal of all the leaves and their incident exdgjelds a path. Atar (double-stay is
a caterpillar with only one vertex (two vertices) of degreeager than one.

Let Gy = (V1, E1) andGsy = (V4, E») be twon-vertex planar graphs with a bijective mapping
~v : Vi — V5 between their vertices. eometric simultaneous embeddinfggwo graphs exists if



a pair of straight-line drawings; andI; of G; and of G2 can be found, such that: (i) each bf
andI3 is planar, and (i) each vertex = ~(v1), with v; € V; andv, € V4, is mapped in; to the
same point where; is mapped in’;.

3 Simultaneous Embedding without Common Edges

In this section we consider the geometric simultaneous ddibg of graphs that do not share com-
mon edges. We show that a planar graph and a path cannot be siraulitaneously even if they do
not share common edges, thus extending an earlier resdtiff@] planar graph and a path that do
share edges. We revisit the problem of embedding simultesstggraphs not sharing edges in the
conclusions (Section 6).

Let G* be the triconnected planar graph on nine verticgsvs, ..., v9 shown in Fig. 2(a).
SinceG* is triconnected, it has the same faces in each of its planbeddings. LetF™* denote the
triangular faceAv; vsvg and P* be the pativy, ve, vs, v4, v5, vg, U7, Vs, Vg ).

Fig. 2. (a) Triconnected planar graph G* drawn with solid edges and path P* drawn with dashed
edges; (b) Embedding vertex v4 inside T creates a crossing between the subpath of P* connecting
v1 and vz and the subpath of P* connecting v4 and ve; () Embedding vertex v4 outside T creates a
crossing between edges (v1,v2) and (vs, v4) of P*; (d) Triconnected planar graph G drawn with solid
edges and path P drawn with dashed edges.

Lemma 1. There does not exist a geometric simultaneous embeddi6f ehd P* in which the
external face o&* is F™*.

Proof: Note that all vertices of7*, other tharw,, v3 andvg, are contained insidé™ asF™* is the
external face of7*. Consider the triangl&™* formed by the edge@n, v2), (ve, v3) of P*, and by
the edgg(vy, v3) of G*. Since vertexy is incident toF™, it must lie outsidel™. Let! be the line
passing throughy andwvs; [ separates the plane in two open half-planes, one contaiginzalled
the exterior partof [, and one not containingy, called theinterior part of [. We show that every
placement of4 leads to a crossing in the drawing of the path if the planaritthe drawing ofG*
is preserved. I, is placed insidg™* then the subpath aP* composed of the edgé€s; , v2) and
(v2, v3) crosses the subpath &f* connectinguy, that lies insidel™, andwy, that lies outsidg™;
see Fig. 2(b). Supposg is placed outsidd™*. Since vertex, (vertexvs) must lie inside triangle
Awyvsvs (inside triangledvsvsvg), the clockwise order of the edgés, v1), (vs, vs), (vs, vg) Of G*
and the edge@}3, ’04), (1)3, ’02) of P* arOUndl}g must be(l)g, ’Ul), (’03, 1)4), (1)3, ’05), (1)3, ’02), (’03, 1)9).
Thereforeuv, is in theinterior part of [ and hence edgé, v2) crosses edgévs,vs) in P*; see
Fig. 2(c). O



Theorem 1. There exist a planar grapltr, a path P, and a mapping between their vertices such
that: (i) G and P do not share edges, and (i and P have no geometric simultaneous embedding.

Proof: We will construct graphtz and pathP out of two copies ofz* and P* described above. In
particular, letG} andG; be two copies of the planar gragh'. G} andG?3 have nine vertices each,
and we denote by! the vertex ofG; that corresponds to the vertexin G*, wherej = 1,2 and
i=1,...,9.

Let G be the graph composed 6f; andG% together with three additional vertices, us, and
ug and eight additional edg€®, us), (u1,us), (uz,us), (u1,v?), (uz,vi), (uz,v3), (us,v$), and
(vi,v2); see Fig. 2(d). Itis easy to see tiats a triconnected planar graph. Theref6rdas exactly
one planar embedding and it has the same faces in each ddiits gtawings.

Let F; andF; denote the cyclegi, vi, vd) and(v?, v3, v3); note that these cycles are faces of
G% andG3. Let P be the patiiuy, vd, vi, vl vd, vi, vl vl vd, vl ug, v3, 02, 02, V2, V2,03, V3, v3, V3, uz).
Itis easy to see that and P do not share edges. Note that the subpatt3 ioiduced by the vertices
of G} and by the vertices di} play the same role that path* plays for graptG* in Lemma 1.

We now show that every plane drawifgof G determines a non-planar drawing®Bf Consider
the particular embeddin§; of G obtained by choosing\u;usus as external face; see Fig. 2(d).
Note that choosing any face internalfy (F5) in £ as external face df leaves; (G7) embedded
with external facef’; (F7") and that choosing any face external to béth and F5 in £ as the
external face of " leavesG; andG; embedded with external fadg® or F, respectively. Hence,
we can apply Lemma 1 and conclude that there does not existudtaheous embedding 6f and
P. O

4 Simultaneous Drawing with Fixed Embedding

Next, we examine the possibility of embedding graphs siamdbusly with straight-line edges and
with fixed embeddings for the input graphs. In this settingsivew that star-path pairs and double-
star-path pairs not sharing edges can be drawn simultalyeainile there are caterpillar-caterpillar
pairs that cannot. We also give an outerplanar graph anchalpatcannot be drawn simultaneously
given a fixed embedding.

4.1 Simultaneous Drawing of Stars, Double-Stars and Pathsith Fixed Embedding

Let P be ann-vertex path and le§ be ann-vertex star with fixed embeddirggandcenterc. Note
that.S and P share at least one and at most two edges.R et (a1, a2, ...,a;,¢,b1,b2,...,bpy),
where one among the sequences as, ..., ;) and(by, ba, ..., by, ) could be empty. Drav$ with

c as the leftmost point and all of the edges in an order arawrwhsistent withf and so that edge
(¢,b1), if it exists, is theuppermosedge ofS. It is easy to ensure that thecoordinate of a vertel;
is greater than the-coordinate of a vertex;, with 1 < ¢ < m andl < j </, that thez-coordinate
of a vertexb; is greater than the-coordinate of a vertek;, with 1 < j < i < m, and that the
z-coordinate of a vertey; is greater than the-coordinate of a vertex;, with 1 < i < j < [; see
Fig. 3(a). The resulting drawing ¢f is clearly planar. Itis also easy to see that the gath not self
intersecting as it is realized by twemonotone curves joined by an edge that is higher than every
other edge ofP. This yields the following result:

Theorem 2. An n-vertex star and am-vertex path admit a geometric simultaneous embedding in
which the star has a fixed prescribed embedding.
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Fig. 3.(a) Simultaneous embedding of a star and a path; (b) Simultaneous embedding of a double-star
and a path not sharing edges.

Now let P be ann-vertex path and leb be ann-vertex double-star with a prescribed embedding
£ and withcenters:; andc,. Suppose thab andP do not share edges. LBt= (a1, as, . .., a;, c1, b1,
b, ... bm,ca,d1,do,...,dy,). Note that the sequencés, , as, .. .,qa;) and(dy, ds,...,d,) could
be empty, whilem > 2. Observe also thdt; is a neighbor of, andb,, is a neighbor of; in
D; see Fig. 3(b). The edges incident on(incident oncs), except for(cy, c2), are grouped into
two bundlesB;(c1) and Ba(c1) (resp.Bi(c2) and Ba(c2)). Bi(c1) is made up of the edges start-
ing from (¢1, by,) until, but not including(c;, ¢2) in the clockwise order of the edges incident on
¢1. Ba(c1) is made up of the edges starting frdim, c2) until, but not including,(c1, b,,) in the
clockwise order of the edges incident on The other two bundleB; (c2) and Bz (c2) are defined
analogouslyP is divided into three subpaths: a subp&th= (c1, a;,a;—1,...,a2,a1), a subpath
Py, = (Cl7 bl, bQ, e ,bm, CQ), and aSpratW:,) = (02, dl, dg, . ,dn)

Draw (c1, c2) as an horizontal line segment, withon the left.B; (¢;) and Bz (c1) (Bi(c2) and
Bs(c9)) are drawn insidevedgesentered at; (resp. centered at) and directed rightward (resp.
directed leftward), withB; (c;) above(c, c2) and Ba(c1) below (c1, ¢2) (resp. withBj(c) above
(c2,c1) andBs(c2) below(ea, ¢1)). Such wedges are disjoint and have the further propertylieee
exists an intervalz, 23] of the z-axis that is common to all the wedgés; , x-| is a sub-interval
of the z-extension of the edgg:, c2). Draw each edge inside the wedge of its bundle, respecting
£ and so that the following rules are observed: theoordinate of a vertek; is greater than the
x-coordinate of a vertex;, with 1 < i < m andl < j < [; thez-coordinate of a vertex, is
greater than the-coordinate of a vertek;, with 1 < k < n andl1 < i < m; the vertices ofP;
have increasing-coordinates; the vertices ¢ have increasing-coordinates; and the vertices of
P; have decreasing-coordinates. Each vertex has astoordinate in the open intervét;, x2).
Edge(c1, b,,) (edge(cs, b1)) of D is drawn so high (resp. so low) that ed@se, b.,,) (resp(ci, b1))
of P does not create crossings with the other edges of the pathabbence of crossings in the
drawing of D follows from the fact that its edges are drawn inside digjobgions of the plane. The
absence of crossings in the drawingffollows from (1) the absence of crossings in the drawings
of its subpaths, which in turn follows from the strictly ieersing or decreasingcoordinate of its
vertices; and (2) from the fact that the subpaths occupyidisjegions, except for edgés,, b;) and
(ca, by) Which do not create crossings, as already discussed. Tleusave the following result:

Theorem 3. An n-vertex double-star and an-vertex path not sharing edges admit a geometric
simultaneous embedding in which the double-star has a fisestpbed embedding.



4.2 Simultaneous Drawing of Two Caterpillars with Fixed Embedding

Insisting on a fixed embedding when simultaneously embeglianar graphs is a very restrictive
requirement as shown by the following theorem:

Theorem 4. It is not always possible to find a geometric simultaneousestdimg for two caterpil-
lars with fixed embeddings.

Proof: Let C; andCs be the two caterpillars with fixed embeddingsand&; and a bijective
mappingy(xz) = = between their vertices; see Fig. 4(a-b). We now show thaéttiees not exist a
geometric simultaneous embeddinggfandCs in whichC; andCs respect; and&s, respectively.

(d)

Fig. 4. (a) Caterpillar C1; (b) Caterpillar C5; (c) A placement of the vertices of C's not respecting the
embedding constraints of £2. The polygon P is drawn with dotted segments, the edges of C; (of C-)
are drawn as solid (dashed) segments; (d) Placing vertices k£ + 1 and k + 4 inside P leads to an
intersection between edges (k + 1,k + 3) and (k + 2,k + 4) of Cs; (e) Placing vertices k£ + 1 and
k + 4 outside P leads to an intersection between edges (k + 2, k + 4) and either (k + 1,k + 3) or
(k+3,k+5) of Cs.

Construct a straight-line drawing of C;. The embedding; of C; forcesthe vertices, 2, ..., 18
to appearin this order aroumdn I';. Consider the subtrees©f induced by the vertices 1,2, . .., 6,
by the vertices, 7,8, ...,12, and by the vertices 13,14, ..., 18. Since such subtrees appear con-
secutively around, then at least one of them must be drawn in a wedge rootedrad with angle
less thanr. LetC's be such a subtree and letk + 1, ..., k + 5 be the vertices of s, with & = 1,7
or 13. Without loss of generality, let be the uppermost point of this wedge. It follows tliat must
be drawndownward Denote byP the polygon composed of the edgesk) and(r, k + 5) of Cy
and of the edge@:, k+2), (k+2,k+3), and(k +3, k+5) of C5. Note that vertices + 1 andk + 4
must be either both inside or both outsifte In fact, placing one of these vertices inside and the
other outsideP is not consistent with the embedding constraintsofsee Fig. 4(c). If both vertices
k+1andk+4 are placed insid®, then the embedding constraintsfand&, and the upwardness
of Cg imply that edgek + 2, k + 4) must cut edgér, k + 3) and that edgék + 1, k& + 3) must cut
edge(r, k+2). It follows that there is an intersection between edges2, k+4) and(k+1, k+3),
both belonging ta’s; see Fig. 4(d). Similarly, if both verticés+ 1 andk + 4 are placed outsid#,
then by the embedding constraintséiafand&, vertexk + 2 is placed inside the polygon formed by
the edgesr, k + 1), (r, k + 5) of C; and by the edge@: + 1, k + 3), (k + 3,k + 5) of Cs. Hence,
edge(k + 2, k + 4) cuts such a polygon either in ed@fe+ 1, k + 3) or in edge(k + 3,k + 5); see
Fig. 4(e) and this concludes the proof. O

4.3 Simultaneous Drawing of Outerplanar Graphs and Paths wh Fixed Embedding

Let O* be the outerplanar graph on seven vertiegs, . . ., v7 shown in Fig. 5(a) and* be the
embedding ofD* shown in Fig. 5(b). Lef™ be the face oE* with incident vertices,, v3, andv;



and letP* be the patHvy, va, v3, v4, v5, Vg, v7). The proof of the following lemma can be found in
the Appendix.

V3
v 1 V2
Vs R~ Vs 7 J
vl
%
A%y o
12) v, / \ V=2
1 2
v; v, 12 vy V' v
(a) (b) (d)

Fig.5. (a) Outerplanar graph O*, drawn with solid edges, and path P*, drawn with dashed edges.
(b) Embedding £* of O*. (c) Outerplanar graph O, drawn with solid edges, and path P, drawn with
dashed edges. (d) Embedding £ of O.

Lemma 2. There does not exist a geometric simultaneous embeddig ahd P* in which the
embedding o©O* is £* and the external face @* is F™*.

Theorem 5. There exist an outerplanar gragh, an embedding of O, a path P, and a mapping
between their vertices such that: ())and P do not share edges, and (i) and P have no geometric
simultaneous embedding.

Proof: Let OF andO3 be two copies of the outerplanar graph defined aboveO; andOj have
seven vertices each, and we denotevpywith j = 1,2 andi = 1,...,7, the vertex ofO; that
corresponds to vertex of O* in O. Let&S and&; be the embeddings 6F; andO3 that correspond
to the embedding* of O*. Let O be the graph composed 6f;, of O3, and of the edgeg&?, v?),
(v}, v2); see Fig. 5(c). Let the embeddiéidor O be defined as follows: (i) each vertex@f (of O})
but forv{ andv? (but forv? andv?) has the same adjacency list asgin(in £3); (ii) the adjacency
lists of the remaining vertices are as follows:— (vi, v, v}, v, v2), v} — (v?,vd, 03,08 0}),
02— (v2,02, 03,03, 01), v2 — (v}, 03, 03,2, v).

As the embedding oD is fixed, the faces of a planar drawing 6f with embeddingt are
fully determined up to the choice of the outerface. gt and F; denote the cyclegv], v, vl)
and (v?,v2,v2), respectively. Note that these cycles are face®pfand O;. Let P be the path
(vi,vg,ve, vk, 03,03, 0l vf 03 03 Vi vE 0E v2). Itis easy to verify thaD and P do not share
edges. Further, the subpathsfoinduced by the vertices @7 (O3) play for O (O3) the same role
that pathP* plays for grapfO* in Lemma 2.

We now show that every plane drawid@ of O with embedding determines a non-planar
drawing of P. Consider a particular plane embedd&igof O obtained by choosingi, v1, v%, v2)
as external face; see Fig. 5(d). Now observe that choosipdeae internal toF;* (£5) in £o as
the external face of ¢ leavesO; (O7) embedded with external fadg (F;) and that choosing any
face external to botlt’* and F5 in £o as the external face dfe leavesO7 andO3 embedded with
external faced’* and Fi, respectively. Hence, we can apply Lemma 2 and concludéttbet is no
simultaneous embedding 6fand P. O



5 Near-Simultaneous Embedding

In this section we study the variation of geometric simuauns embedding in which vertices that
represent the same entity in different graphs are allowdxtplaced in different points in the dif-
ferent drawings. The relaxation of the constraint thatdsreertices to be placed exactly in the same
point should allow us to near-simultaneously embed lartgsses of graphs. However, in order to
preserve the viewer’'s “mental map” corresponding vertslesuld be placed as close as possible.
This turns out to be impossible for general planar graphthedirst lemma of this section shows.
First, define thelisplacementf a vertexv between two drawings; and/s; as the distance between
the location ofv in I'1 and the location of in I';. Second, we show that there exist twevertex
planar graphg7; and G, with a bijection~ between their vertices such that for any two planar
straight-line grid drawingg’ and > of G; andGs,, respectively, there exists a vertexhat has a
displacement?(n) betweenl; andl.

(b)
Fig. 6. (a) Nested triangle graph G1; (b) Nested triangle graph G-.

Let G; andG4 be twonested triangleggraphs, each on vertices; see Fig. 6. A nested triangle
graphG is a triconnected planar graph with triangular fao@=) such that removing the vertices of
F(G) and their incident edges leaves a smaller nested triangfghgr an empty vertex set. Suppose
the mappingy(vi) = vy between vertices; € V(G1) and vertices, € V(G») is the one shown
in Fig. 6. Formally, the mapping can be defined by the follaypnocedure: embed; andG» with
external faced'(G1) and F(G,), respectively. Starting fror; (G2), fori = 1,...,n/3, remove
from the current graph the three vertices of the externa faw label then3i — 2,3 — 1, and3:
B(i+1)/2-2,3(t+1)/2—1,and3(i + 1)/2if ¢ is odd, or(n + 3i)/2 — 2, (n + 3i)/2 — 1, and
(n + 3i)/2if i is even). Then, for any two planar straight-line grid draggf; of G; andl» of G
andGs, we have:

Lemma 3. There exists a vertex representing the same entityhirand G5 that has displacement
2(n) between; and Is.

Due to space constraints we leave the proof of the previguskein the Appendix. The lower
bound in Lemma 3 concerning the distance between two cotige@lacements of a vertex in two
different drawings is easily matched by an upper bound nbthby independently drawing each
planar graph irO(n) x O(n) area: Each vertex is displaced by at most the length of trgodia of
the drawing’s bounding box. Clearly, such a diagonal hagtle®(n).

The above result shows that we cannot hope to guaranteesinealtaneous embeddings for
arbitrary pairs of planar graphs. It is possible, howeveat for graphs that are “similar”, near-
simultaneous embeddings might exist. Similarity betwesplys could be defined and regarded in



several different ways, by minding both the combinatoriaicure of the graphs and the mapping
between the vertices of the graphs. With this in mind, in tlleWing we look for near-simultaneous
embeddings of similar paths and similar trees.

5.1 Near-simultaneous drawings of similar paths

Recall that two arbitrary paths always have a geometric kimeous embedding, while three of
them might not have one [1]. Therefore, in order to repreaesgquence of paths using a sequence
of planar drawings, vertices that are in correspondenceruhe mapping must be displaced from
one drawing to the next.

Observing that a path induces an ordering of the verticdigywaan-vertex pathg’; and P, with
orderingsm; andm, of their vertices and with a fixed bijective mappingoetween their vertices
k-similar if for each vertexs; € P the position ofv; in 7, differs by at mosk positions from the
position ofvy = ~(v1) Iin m2. Then a simple drawing of the paths as parallel horizontbigmmal
lines with uniform horizontal distances between adjaceniees gives a near-simultaneous drawing.
As any vertexy; if P; occurs withink positions inP, (compared with its position i) then the
extent of the displacement of the vertex from one drawindnéortext is limited by exactly units.
More generally, this idea can be summarized as follows:

Theorem 6. A sequence ot-vertex paths, P, ..., P,,, where each two consecutive paths are
similar, can be drawn so that the displacement of any vertexpair of paths that are consecutive
in the sequence is at masst

5.2 Near-simultaneous drawings of similar trees

Generalizing the idea df-similarity to trees, call two (rooted) tred§ andT;, with vertex set3/;
andV; and with a fixed bijective mappingbetween their verticeg-similar if:

— The depths of any vertex, € V; and of its corresponding vertexv,) € V5 differ by at most
k;

— The positions of any two corresponding vertices in any tedgished kind of traversal of the
trees in which a parent is encountered before its childmriritance in pre-, post-, in-order, or
breadth-first-search) differ by at madst

Given two treesl; andT; that arek-similar with respect to a pre-established traversal order
m, we can draw each df; andT> as follows: (1) Assign to each vertex its positionr(v;) as an
z-coordinate; (2) Assign to each vertexits depth as a-coordinate.

Such an algorithm produces layouts that are planarlayered A drawing is layered if (i)
each vertex is assigned tdayer, (ii) for each layer an order of its vertices is specified, &iiiy
there are only edges joining vertices on consecutive lagejsining vertices on the same layer
that are consecutive in that layer's ordering. Since sulesaitrees aré-similar, the depth of any
vertex and its position in a tree traversal changes only: by two consecutive trees; hence, we
have that the displacement of a vertex representing the satitg in different drawings is given
by V&2 + k2 = k+/2. This result implies that the described algorithm can bel usevisualize a
sequence ok-similar trees by a sequence of planar drawings, displaeaah vertex by at most
k+/2 units from a layout to the next, giving us the following thewor.

Theorem 7. A sequence of-vertex treesly, 11, ..., T,,, where each two consecutive trees &re
similar, can be drawn such that the displacement of any xénta pair of trees that are consecutive
in the sequence is at mast/2.

10



Observe that an analogous definition of similarity betweem graphs and the same layout al-
gorithm work more generally fdevel planar graph$12,13], which are graphs that admit a planar
layered drawing, by only replacing the depth of a vertex wlith depth of a vertex in a spanning
tree of the graph. Notice that the classoafterplanar graphds enclosed in that of the level pla-
nar graphs. Finally, the area requirement of the drawingdywred by the described algorithm is
worst-case quadratic in the number of vertices of a treef(adevel planar graph).

6 Conclusions

In this paper we have considered some variations of the kmeivn problem of embedding graphs
simultaneously. Namely, we have studied the setting in Wwino edges are shared by the input
graphs, the setting in which the input graphs have fixed enibhgd, and the setting in which vertices
are allowed to be placed in near points in different drawings

Concerning the geometric simultaneous embedding withmmieon edges, we provided a neg-
ative result that seems to show that the geometric simwi@embedding is not more powerful by
assuming the edge sets of the input graphs to be disjoirthéniwe believe that there exist two trees
not sharing common edges that do not admit a geometric simedius embedding. This would ex-
tend the result in [11] where two trees that do not admit a kKBneous embedding and that do share
edges are shown. Consider two isomorphic rooted tfeés, k) andT»(h, k) that do not have any
edges in common and a mappifndpetween their vertices, shown in Fig. 7 and defined as fotlows

Fig. 7. Trees T1(3, 3) and T2(3, 3) with the mapping -y between their vertices. T3 (3, 3) has solid edges
and T3(3, 3) has dashed edges.

— the root ofT; (h, k) (of T (h, k)) hask children;

each vertex of; (h, k) (of Tz (h, k)) at distance from the root, withl < i < h, has a number of
children one less than the number of vertices at distafroen the root inTy (h, k) (in Ta(h, k));
one vertex ofl; (b, k) (of Tz (h, k)) at distance: from the root has one child;

— each child of the root dl (h, k) is mapped to a distinct child of the root 8% (h, k);

for each pair of vertices; of T3 (h, k) andwv, of T»(h, k) that are at distancefrom the root of
their own tree and that are such that# ~(v;), there exists a child of; that is mapped to a
child of vy;

— the only vertex ofly (h, k) (of T (h, k)) that is at distancé + 1 from the root is mapped to the
root of T» (h, k) (to the root ofT; (h, k)).

11



Conjecture 1.For sufficiently large: andk, Ty (h, k) andTx(h, k) do not admit a geometric simul-
taneous embedding with mappindetween their vertices.

For the problem of drawing graphs simultaneously with fixetbedding, we provided more
negative results than in the usual setting for geometrizibaneous embedding, while providing
only two positive results partially covering the ones atigknown for geometric simultaneous em-
bedding. We believe that understanding the possibilityltéiming a simultaneous embedding of a
tree and a path in which the tree has a fixed embedding coulddfaldor the same problem in the
non-fixed embedding setting.

Even in the more relaxed near-simultaneous setting, we Slagen that without assuming a
similarity in the sequence of graphs to be drawn, it is diffiba limit the displacement of a vertex
from a drawing to the next. We have shown that for paths, &@drand for level planar graphs there
exist reasonable similarity measures that allow us to nbtaar-simultaneous drawings. However,
in the case of general planar graphs it is not yet clear whnat &f similarity metric can be defined
and how well can such graphs be drawn.
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Appendix: Proofs of Lemmas 2 and 3

Proof of Lemma 2

Lemma 2. There does not exist a geometric simultaneous embeddiay @nd P* in which the
embedding oD* is £* and the external face @¥* is F™*.

12
v, 3
Vs Vg
N AN
V7 V; V7 vy
(a) (b)
V3 Vs
Vs Vg
|27 Vv, Vs Vi
(d) (e)

Fig. 8. (a) Outerplanar graph O™, drawn with solid edges, and path P*, drawn with dashed edges. (b)
Embedding £ of O*; (c) Triangle T*, face F'*, and line I. (d) Embedding vertex v4 inside T* creates
a crossing between the subpath of P* connecting v; and v3 and the subpath of P* connecting v4 and
v7; (e) Order of the edges incident on vertex vs; (f) Embedding vertex v, outside T and in the interior
part of [ creates a crossing between edges (v1,v2) and (vs,vs) of P*.

Proof: We begin by observing that sindé" is the external face of* then all vertices oO*, other
thanv, vs, andvy, are contained inside™. Consider the triangl&* formed by the edge@ , v2),
(va,v3) of P*, and by the edgév;, v3) of O*; see Fig. 8(c). As vertex; belongs to the external
face of£* it must be outsidd™. Let! be the line passing through andws; [ separates the plane
in two open half-planes, one containing called theexterior partof [, and one not containing;,
called theinterior part of [. We show that every placementof leads to a crossing in the drawing
of the path, if the drawing o®* respects the given embedding and has no crossings.

If v, is placed insid&™, then the subpath aP* composed of the edgés;, v2) and (ve, v3)
crosses the subpath Bf connectingy, thatlies insidd™, anduv, that lies outsidd™; see Fig. 8(d).
Supposev, is placed outsidd™. By the embedding constraints 6fand by the observation that
vertexv, (vertexvy) must lie inside triangle\v; vsvg (inside triangleAvsvsvy), the clockwise order
of the edges 0O* and of P* incident invs is (v3, v1), (vs,v4), (vs, v6), (Vs, v5), (V3,v2), (V3,v7);
see Fig. 8(e). Therefore, must be in thénterior part of  and this implies that edge , v2) crosses
edge(vs,v4) in P*; see Fig. 8(f). O
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Proof of Lemma 3

Lemma 3. There exists a vertex representing the same entithirand G that has displacement
2(n) between; and .

(b)
Fig. 9. (a) Nested triangle grapf; . (b) Nested triangle grapfi,.

Proof: A nested triangle graph is triconnected, so the only degiéeedom for obtaining a plane
embedding of such a graph is given by the choice of its extéana. By choosing any external face
f for a nested triangle graph that is formed byt nested triangles, two nested triangles structures
Ty (G) andT>(G) with triangular external face are present, one withnd the other with, triangles,
with 0 < 1,5 < ¢ and witht; + to = t. In a plane embedding @ with external facef, 71 (G)
andT»(G) cover disjoint portions of the plane. Hendg, (I;) has two nested triangles structures
T1(G1) andT»(G4) (resp.T1(G2) andT>(G2)). Note thatT(G4) or To(G1) (resp.T1(G2) or
T>(G2)) might be without vertices. It is easy to see that there émdstesi andj, with i, j € {1, 2},
such thafl;(G,) andT;(G2) share a linear number of vertices.

In a grid drawing of a nested triangle graph in which the endéface is chosen to be a triangular
face, if two verticesy; and v, belong to two different triangles that are separated lijangles
in the nested structure, then thecoordinate or they-coordinate of the two vertices differs by at
leastt units. Consider the sub-drawing 6§ corresponding to the subgrafitf of T;(G2) made of
k = an+b most deeply nested trianglesBf(G- ), with a andb constants. Note that such a subgraph
has a fixed plane embedding with outer fageChoosex andb so that the vertices incident an
belong also tdl;(G1). Now consider the three most deeply nested triangleds, andT; of T*,
such thatl; is nested insid&5 that is nested insid&s;. We now have two cases to consider:

— If there is a vertexv of Ty, of Ty, or of T3 that does not belong t8;(G1), then it will be
embedded outsidE* in I';. SinceT™ is made ofO(n) nested triangles; is mapped i into
a point at distanc&(n) from the point where is mapped in’3.

— Otherwise every vertex dF;, T», andT3 belongs tdl’;(G1). Note that the labels of the vertices
of Ty (of T3) differ from the labels of the vertices @k (resp. of73) by at leasty — 5 units
and that inT;(G,) there areD(n) triangles separatin@, and75. This implies that either the
position of the vertices df?, or the position of the vertices @k, or the position of the vertices
of T3 in I'; and inl% is at distance?2(n).

O
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