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Abstract

A set of planar graphs share a simultaneous embedding if they can be drawn on the
same vertex set V of n vertices in the plane without crossings between edges of the
same graph. Fixed edges are common edges between graphs that share the same
Jordan curve in the simultaneous drawing. We give a necessary condition for when
pairs of graphs can have a simultaneous embedding with fixed edges (SEFE). This
allows us to determine for which (outer)planar graphs always have a SEFE with all
(outer)planar graphs with O(n2 lg n) time drawing algorithms. This allows us to
decide in O(n) time whether a pair of biconnected outerplanar graphs has a SEFE.

1 Introduction

While the union of any pair of edge sets may be nonplanar, a planar drawing of
each layer may be possible. Crossings between edges of distinct edge sets are
allowed. This is the problem of simultaneous embedding (SE) that generalizes
the notion of planarity among multiple graphs [1]. While any number of planar
graphs can be drawn on the same fixed set of vertex locations, difficulties arise
once straight-line edges are required. This is the problem of simultaneous
geometric embedding (SGE). If edge bends are allowed, then having common
edges drawn in the same way preserves the “mental map”. Such edges are
fixed edges leading to the problem of simultaneous embedding with fixed edges
(SEFE). Since straight-line edges between a pair of vertices are also fixed,
any graph that has a SGE also has a SEFE, but the converse is not true, i.e,
SEFE ⊂ SGE ⊂ SE. Deciding if two graphs have a SGE is NP-hard [2], whereas,
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Fig. 1. Graphs (a)–(c) have a SEFE with any planar graph, whereas, (d)–(e) have a
SEFE with any outerplanar graph.

deciding if three graphs have a SEFE is NP-complete [4]. However, deciding if
two graphs have a SEFE in polynomial time remains open.

1.1 Our Contribution

We omit proofs of claims, but details can be found in the technical report [3].

(i) While most pairs of graphs whose union forms a subdivided K5 or K3,3

share a SEFE, we provide 16 minimal forbidden pairs that do not. This
leads to a necessary condition for when two graphs can have a SEFE.

(ii) We show that the only graphs that always have a SEFE with any pla-
nar graph are (i) forests, (ii) circular caterpillars, and (iii) K4 subgraphs.
Likewise, we show that the only outerplanar graphs that always have a
SEFE with any outerplanar graph are (i) biconnected such that the end-
points of each chord are at a distance 2 along the outerface (a K3-cycle)
or (ii) have a cubic K3-cycle for each biconnected subgraph; see Fig. 1.

(iii) Using a forbidden outerplanar pair, we give a linear time decision algo-
rithm for deciding if two biconnected outerplanar graphs have a SEFE.

2 Forbidden SEFE Pairs

Suppose G1(V, E1) and G2(V,E2) have no SEFE as in Fig. 2(a). If deleting
any edge allows a SEFE, then G1 and G2 are edge minimal as in Fig. 2(b).
If vertex v (adjacent to u and w) is degree-2 in the union G1 ∪ G2, but not
degree-1 in G1 or G2, then we can unsubdivide v by replacing edges (u, v) and
(v, w) with (u, w). A pair for which this cannot be done is vertex minimal as in
Fig. 2(c). A minimal forbidden pair is edge and vertex minimal and does not
have a SEFE. An alternating edge is a u ; v path in which the edges strictly
alternate between being in either G1 or G2, but not both. An exclusive edge
is an edge (u, v) that is only in G1 or G2, while an inclusive edge is a fixed
edge (u, v) in the intersection G1 ∩G2.

Claim 2.1 Any pair G1(V, E1) and G2(V, E2) is reducible to a pair where
every u ; v path is either an incident, an exclusive or an alternating edge.
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G1 ∪ G2 G1 ⊎ G2G1 ∩ G2 G1 \ G2 G2 \ G1

Fig. 2. Removing edges and vertices from (a) gives (b) and (c) with subgraphs (d)–(g).

A pair G1 and G2 in which all u ; v paths have been reduced is called a
reduced pair. We define G1]G2 as the G1∪G2 subgraph of alternating edges,
and G1 \G2 as the G1 subgraph of exclusive edges.

Lemma 2.2 Suppose the union of reduced pair G1 and G2 is homeomorphic
to K5 or K3,3. Let u ; v and x ; y be nonincident paths in G1 ∪G2 but not
in G1 ∩G2. G1 and G2 share a SEFE if either path belongs to G1 ]G2 or one
belongs to G1 \G2 and the other belongs to G2 \G1.

This allows us to determine when a pair forming K5 or K3,3 has a SEFE.

Corollary 2.3 Suppose the union of reduced pair G1 and G2 is homeomorphic
to K5 or K3,3. G1 and G2 have no SEFE if and only if (i) every nonincident
edge of an alternating edge in G1]G2 is in G1∩G2 and (ii) every nonincident
edge of an exclusive edge in G1 \G2 is in G1.

From this we can produce a necessary, but insufficient, condition for SEFE.

Theorem 2.4 There are 16 minimal forbidden pairs with a union homeomor-
phic to K5 or K3,3.
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Fig. 3. Sixteen minimal forbidden pairs. The dashed edges are in G1 ]G2.



3 Characterizing and Deciding SEFE

Next we determine which (outer)planar graphs always have a SEFE with any
(outer)planar graph. Let P be the set of planar graphs and PSEFE ⊂ P be the
subset of P consisting of forests, circular caterpillars, and subgraphs of K4.

Theorem 3.1 PSEFE are the only planar graphs that always have a SEFE with
any planar graph. Each planar graph in PSEFE can be drawn in O(n2 lg n) time.

A K3-cycle is a biconnected outerplanar graph such that the endpoints
of each chord are at a distance 2 along the outerface. Let O be the set of
outerplanar graphs and OSEFE ⊂ O be the subset of O consisting of K3-cycles
and outerplanar graphs with cubic K3-cycles for each biconnected subgraph.

Theorem 3.2 OSEFE are the only outerplanar graphs that always have a SEFE
with any outerplanar graph. Each outerplanar graph in OSEFE can be drawn
in O(n2 lg n) time.

While Theorem 2.4 is not sufficient in general, we can show sufficiency for
the more restrictive case of pairs of biconnected outerplanar graphs.

Theorem 3.3 Let (G1, G2) be a pair of biconnected outerplanar graphs. Pair
(G1, G2) has a SEFE if and only if the pair does not have the minimal forbidden
pair (G13,1, G13,2). This can be decided in O(n) time.
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M. Schulz. Simultaneous geometric graph embeddings. In S.H. Hong and
T. Nishizeki, editors, 15th Symposium on Graph Drawing, GD 2007, volume
4875 of LNCS, pages 280–290. Springer, Heidelberg, 2008.
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