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Abstract. A set of planar graphs share a simultaneous embedding if they
can be drawn on the same vertex set V' in the Euclidean plane without
crossings between edges of the same graph. Fized edges are common edges
between graphs that share the same simple curve in the simultaneous
drawing. Determining in polynomial time which pairs of graphs share a
simultaneous embedding with fixed edges (SEFE) has been open.

We give a necessary and sufficient condition for when a pair of graphs
whose union is homeomorphic to K5 or K33 can have an SEFE. This
allows us to determine which (outer)planar graphs always an SEFE with
any other (outer)planar graphs. In both cases, we provide efficient al-
gorithms to compute the simultaneous drawings. Finally, we provide an
linear-time decision algorithm for deciding whether a pair of biconnected
outerplanar graphs has an SEFE.

1 Introduction

In many practical applications including the visualization of large graphs and
very-large-scale integration (VLSI) of circuits on the same chip, edge crossings
are undesirable. A single vertex set can be used with multiple edge sets that
each correspond to different edge colors or circuit layers. While the pairwise
union of all edge sets may be nonplanar, a planar drawing of each layer may
be possible, as crossings between edges of distinct edge sets are permitted. This
is the problem of simultaneous embedding (SE) that generalizes the notion of
planarity among multiple graphs.

Without restrictions on the types of edges, any number of planar graphs can
be drawn on the same fixed set of vertex locations [16]. However, difficulties arise
once straight-line edges are required. Moving one vertex to reduce crossings in
one layer can introduce additional crossings in other layers. This is the problem of
simultaneous geometric embedding (SGE). If edge bends are allowed, then having
common edges drawn the same way using the same simple curve preserves the
“mental map”. Such edges are fized edges leading to the problem of simultaneous
embedding with fized edges (SEFE). Since straight-line edges between a pair of
vertices are also fixed, any graph that has an SGE also has an SEFE, but the
converse is not true; see Fig. 1 that shows SGE C SEFE C SE.
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Fig.1. The path and planar graph in (a) do not have an SGE with straight-line edges [2],
but have an SEFE in (b). The two outerplanar graphs in (c) do not have an SEFE, but
have an SE in (d) if edge (b, €) is not fixed.

Deciding whether two graphs have an SGE is NP-hard [9], whereas, decid-
ing whether three graphs have an SEFE is NP-complete [13]. However, deciding
whether two graphs have an SEFE in polynomial-time remains open. We give
a necessary condition in terms of forbidden minors for when pairs of graphs
can have an SEFE. While this does not yet lead to a polynomial-time decision
algorithm in the general case, it does in the more restricted case of pairs of bicon-
nected outerplanar graphs. Additionally, we determine which planar graphs and
which outerplanar graphs always have an SEFE with any planar or outerplanar
graph, respectively. We provide simultaneous drawings when possible.

1.1 Related Work

Any number of stars, two caterpillars (trees whose removal of all leaves gives
a path) and two cycles always have an SGE, whereas three paths [2] and two
trees [14] may not. Which trees and which graphs always have an SGE with a
path, a caterpillar, a tree, or a cycle remains unknown.

The closest that any of these questions have been answered is for unlabeled
level planar (ULP) graphs. A graph has an SGE with any path drawn in a strictly
y-monotone fashion if and only if the graph is ULP [8]. ULP trees and graphs
were recently determined and characterized in terms of two forbidden trees and
five other forbidden graphs [7,11]. If O(1) bends per edge are allowed, three
bends per edge suffice for pairs of planar graphs [6], while one bend per edge
suffices for an outerplanar graph and a straight-line path [4].

For the case of SEFE, a planar graph and a tree can always be done, whereas
two outerplanar graphs cannot [12]. This shows that the topological problem of
SEFE is less restricted than the geometric problem of SGE. This is unlike stan-
dard planarity in which the sets of topological and geometric planar graphs are
identical [3]. Planar graphs are characterized in terms of the forbidden graphs,
K5 and K33 [15,17]. These form two minimum examples of nonplanarity. No
similar description for SEFE, even for restricted pairs of planar graphs, in terms
minimal forbidden pairs has been given until now.

A related problem is finding the thickness of a graph G, which is the minimum
number of planar subgraphs whose union is G. If vertices are co-located and
straight-line edges are used as in SGE, the minimum number of subgraphs is
the geometric thickness of G. Using simultaneous embedding techniques, it was
shown that graphs with degree at most 4 have geometric thickness 2 [5].
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Fig. 2. Forests in (a), circular caterpillars in (b), K4 in (c) and subgraphs of K3-multiedges
in (d) have an SEFE with any planar graph. Outerplanar graphs whose biconnected com-
ponents form K3-cycles in (e) have an SEFE with any outerplanar graph.

1.2 Our Contribution

1. We show there exist three paths without an SEFE. We provide a necessary
and sufficient condition in terms of 17 minimal forbidden pairs for when a
pair of graphs whose union forms a subdivided K5 or K33 has an SEFE.

2. Using this condition we show that the only graphs that always have an
SEFE with any planar graph are either (i) forests, (ii) circular caterpillars
(removal of all degree-1 vertices yields a cycle), (iii) K4, or (iv) subgraphs of
Ks-multiedges (any number of K3’s that all share an edge); see Fig. 2(a)—(d).

3. We show that this condition also implies that the only outerplanar graphs
that always share an SEFE with any outerplanar graph are ones in which
for each chord (x,y) there is a vertex z whose incident edges are (z, z) and
(y, z). The biconnected components of these outerplanar graphs are called
Ks5-cycles; see Fig. 2(e). For each, we provide efficient drawing algorithms.

4. Using a forbidden outerplanar pair as a necessary and sufficient condition,
we give a linear-time decision algorithm for deciding if two biconnected out-
erplanar graphs have an SEFE. Table 1 summarizes our results.

SGE SEFE

Path| Tree | Forest| Circular Ky Ks- biconnected

caterpillar | subgraph | multi-edge | K3-cycles
Path v 2 ? v [12 v [12 v [12 v (12 v (12
Caterpillar ||v' [2 ? v [12 v [12 v [12 v [12 v [12
Tree ? X [14] || v [12 v [12 v [12 v (12 v [12
Outerplanar || 7 X [14 v v v v v
Planar X [2][X [2,14] v v v v X

Table 1. Old and new results for SGE and SEFE pairs. The shaded pairs are new.

1.3 Preliminaries

Let P be a set of n distinct points in the zy-plane. A planar drawing of G(V, E)
consists of a bijection o : V — P with a simple curve for each edge (u,v) € E
drawn in the xy-plane connecting the points o(u) and o(v) with curves only
intersecting at endpoints. Let G be a set of planar graphs {G1(V, E1), G2(V, E2),
..o, Gi(V, Ex)}. G has a simultaneous embedding if there exist planar drawings
of G;(V, E;) with the same bijection o : V — P. If each edge is composed of one
straight-line segment, then G has a simultaneous geometric embedding (SGE).
If every common edge in G connecting a pair of vertices uses the same simple
curve, then G has a simultaneous embedding with fized edges (SEFE).




Two vertices u and v are adjacent if (u,v) € E. A vertex u and edge (v, w)
are incident if u = v or u = w, and nonincident, otherwise. Likewise, two edges
e and f are incident if they have a common endpoint. The degree of a vertex v,
deg(v), is the number of edges incident to v.

In a graph G(V, E), subdividing an edge (u,v) € E replaces edge (u,v) with
the pair of edges (u,w) and (w,v) in F by adding w to V. A subdivision of
G is obtained through a series of edge subdivisions. Contraction of edge (u,v)
replaces the vertices v and v with the vertex w that is adjacent to all the vertices
that were adjacent to either v or v. A minor H of G is obtained through a series
of edge contractions and deletions. A pair (G1,G2) consists of two graphs with
the same set of vertices. A minor pair (Hy, Ha) of the (G1,G3) consists of the
minors H; of G; and Hs of G5 each obtained by simultaneously contracting an
edge in both graphs or deleting an edge from either graph. A graph G(V, E) is
isomorphic to a graph é(f/, E’) if there exists a bijection f : V — V such that
(u,v) € E if and only if (f(u), f(v)) € E. A graph G(V, E) is homeomorphic to a
graph G (f/, E’) if a subdivisions of G and G are isomorphic. The induced subgraph
of G of the subset V' C V is the subgraph given by the edge set EN (V' x V).

2 Forbidden Simultaneous Embeddings with Fixed Edges

We begin with Kuratowski’s and Wagner’s planar graph theorems [15,17].

Theorem 1 (Kuratowski, Wagner) A graph is nonplanar if and only if it
has a subgraph homeomorphic or has a minor isomorphic to Ks or Kz 3.

2.1 Forbidden Triples of Paths and Cycles

Next we show the triples without an SGE of three paths [2] and three cycles [1]
extend to SEFE.

Theorem 2 There exist three paths on 9 vertices and three cycles on 6 vertices

without an SEFE.

Proof. Consider the three paths g—d—h—c—e—a— f=b—i, h=d—i—b—e—c—f—a—g, and
I=d—=g—a—e=b—f—c=h and the three cycles a—d—c—f-b—e—a, a—e—c—d-b—f-a,
and a—f-c—e=b-d—a shown in Fig. 3. In both cases, the union forms a subdi-
vided K3 3 and must have a crossing by Theorem 1 in any drawing. Each edge in
the union belongs to two paths (or cycles). Such a crossing must then be between
two pairs of paths (or cycles). Since there are only three paths (or cycles) and
fixed edges are being used, one path (or cycle) must self-intersect. O

(a) 3 paths on 9 vertices (b) 3 cycles on 6 vertices

Fig. 3. Two graph triples without an SEFE.



G1UG2 GlﬂGQ G1 WGy Gl\G2 G2\G1

(a) (b) (c) (e) (f) (g)

Fig.4. Removing extraneous edges from (a) gives (b) Unsubdividing vertices gives (c)
with four subgraphs, (d)-(g).

2.2 Minimal Forbidden Pairs

Suppose a pair of graphs G1(V, E1) and G3(V, E3) does not have an SEFE as
in Fig. 4(a). If deleting any edge from either graph allows an SEFE, then G,
and Gy are edge minimal as in Fig. 4(b). If a degree-2 vertex v (adjacent to u
and w) in the union is not a degree-1 vertex in either G; or Ga, then we can
unsubdivide the vertex by deleting v and replacing edges (u,v) and (v, w) with
the edge (u,w) in Gy and/or Ga. A pair of graphs for which this can no longer
be done is vertex minimal as in Fig. 4(c). A minimal forbidden pair does not
have an SEFE and is edge and vertex minimal.

We define the union G1 U G2 and the intersection G1 N G2 with edge sets
EyUE5 and EyN Es, respectively; see Fig. 4(¢)—(d). Suppose then that G1 UG is
homeomorphic to a graph G with no degree-2 vertices. Let u ~» v in G; U G2 be
the path corresponding to the subdivided edge (u, v) in G. Path u ~ v is incident
to x ~ y if and only if (u,v) and (x,y) are incident in G. An alternating edge
is a u ~» v path in which the edges strictly alternate between being in either G
and G, but not both; see Fig. 4(e). An exclusive edge is a u ~» v path composed
of the edge (u,v) that is only in G; or Ga; see Fig. 4(f)—(g), while an inclusive
edge is composed of the fixed edge (u,v) in G1 N Ga; see Fig. 4(c).

Claim 3 Any pair of graphs G1(V, E1) and Ga(V, Es) can be reduced to a pair
i which every u ~> v path is either an inclusive, exclusive, or alternating edge.

Proof. We examine each u ~» v path p in G; U Gs. If path p is in G; N G2, we
replace p with a single inclusive edge (u,v) in both G; and Gs. If p is in G; but
is missing edges in G, for ¢ # j, we replace it with the single exclusive edge (u,v)
in G;. If p is missing an edge from each graph, we make p into an alternating
edge by deleting edges from p in either GGy or G2 until each edge along p is no
longer in G; NG2. Then we unsubdivide p until it is strictly alternating. We can
always avoid crossings along edges of u ~» v paths contained in G; NG reduced
in this way. Hence, neither operation changes whether the pair has an SEFE. O

Suppose G and G4 are a reduced pair, a pair of graphs in which all u ~» v
paths have been reduced. The alternating edge subgraph, G1WG2, is the subgraph
of G1 U Gy consisting only of alternating edges. The exclusive edge subgraph of
G1, G1\ Ga, is the subgraph of G1UG?3, of exclusive edges from G, where G2\ Gy
is defined analogously. Hence, edges of G; U G2 are partitioned into G W G,
G1\ G2, G2\ G1, and G1 N Gy; see Fig. 4(c)—(g). Next we see why we only need
to consider crossings between nonincident edges.



Observation 4 Crossings in a nonplanar drawing between incident edges can
be removed without affecting the number of crossings of nonincident edges.

This can be done by swapping the simple curves from the incident vertex to
the first intersection point p. Separating the curves at p by a distance ¢ eliminates
the crossing without affecting the rest of the drawing. Repeating this process
removes all crossings of incident edges. Hence, we only need to consider crossings
of nonincident edges in a simultaneous drawing with fixed edges. Applying this
observation to the minimal examples of Theorem 1 gives the next corollary.

Corollary 5 (a) Every drawing of K5 or K33 has a crossing between noninci-
dent edges. (b) K5 or K33 can be drawn with only one crossing between any pair
of nonincident edges.

We use this corollary to produce a sufficient condition for SEFE.

Lemma 6 Suppose the union of reduced pair Gy and Go is homeomorphic to
K5 or K33. Let u ~ v and x ~ y be nonincident paths in G1 U Gy but not in
G1 N Gy. Gy and Gy share an SEFE if either path belongs to G1 W Go or one
belongs to Gy \ G2 and the other belongs to Ga \ Gi.

Proof. By Corollary 5(b), a K5 or K3 3 can always be drawn so that only (u,v)
and (z,y) cross. Hence, there is an SEFE in which an alternating edge in G1 WG>
only crosses an edge in either G1 \ G2 or G2 \ G;. Likewise, an edge in G1 \ Ga
can cross any nonincident edge in G \ G. O

With Lemma 6 we determine when a K5 or a K33 pair has an SEFE.

Corollary 7 Suppose the union of reduced pair G1 and Gs is homeomorphic to
K5 or K3 3. G1 and Gy have no SEFE if and only if (i) every nonincident edge
of an alternating edge in G1 W& Gy is in Gy NGy and (ii) every nonincident edge
of an exclusive edge in Gy \ G is in G1.

Proof. For necessity, suppose G; and G2 do not have an SEFE. If there is a
nonincident edge = ~~ y of an alternating edge u ~~ v that is not in G; N G,
by Lemma 6, G; and G2 would have an SEFE since v ~~ v is in G7 W G2 and
neither path is in G; N Ga. If there is a nonincident edge = ~» y of an edge
(u,v) € G1 \ Ga that is not in Gp, then again by Lemma 6, G; and G5 would
have an SEFE since x ~~ y is either in G; W Ga or G2 \ G1.

For sufficiency, suppose conditions (i) and (ii) hold. Since the union forms a
subdivided K5 or K33, by Corollary 5(a) at least one pair of nonincident paths
u ~» v and x ~» y cross. If either is in G; N Ga, then there must be a crossing
in G1 or Gy. If either is in G; W Go, then by (i) the other would be in G; N Ga,
again giving a crossing in G; or Go. If both are in G; \ G; for i # j, then there
is a crossing in G;. Finally, (ii) prevents one edge being in G; \ G2 and the other
edge being in G2 \ G1. Hence, G and G5 do not have an SEFE. O

Theorem 8 There are 17 minimal forbidden pairs with a union homeomorphic
to K5 or K3)3.



Fig.5. Eleven K5 minimal forbidden pairs.

Proof. Let G; ; denote the 17 pairs of graphs for i € {1,...,17} and j € {1,2}
in Figs. 5 and 6. One can verify that all the nonincident edges of any alternating
edge are in the intersection and every edge nonincident to an exclusive edge of
G, 1 is also in G; 1. This satisfies Corollary 7 implying that none of these pairs
has an SEFE. Removing any edge means either (i) the union no longer forms a
K5 or a K3 3 or (ii) the intersection does not contain all the nonincident edges of
Gi1WG; 2 or of Gi1\ G, 2 (other than those already in G; 1) so that Corollary 7
is no longer satisfied. This implies that all 17 forbidden pairs are minimal.

We next show that our set of 17 pairs are the only minimal forbidden pairs
homeomorphic to K5 or K3 3. Assume w.l.o.g. (G1,G2) are a reduced minimal
forbidden pair whose union forms a K5 or K33 where Gy has at least as many
edges as G1. We consider all the possibilities for edges to be in G1\ G2 or G1WGs.

Pairs (G171, G172), (Gg,l, G272), (Glg,l, Glg,g), and (Glg,l, G1372) are the only
possibilities in which there is one exclusive edge in (G; or one alternating edge
in G1 W G2. Two nonincident alternating edges would violate Corollary 7. The
other case for a pair of nonincident edges are two exclusive edges in G given by
pairs (G,1,Ge,2) and (G14,1,G14,2). Three nonincident edges are only possible
in a K33, but including all nonincident edges implies G is the whole K3 3.

For the case of G U G2 homeomorphic to K, the (Gs1,G32), (Ga,1,G4.2),
and (G5.1,G5,2) pairs give the three distinct possibilities of two incident edges
that are exclusive and/or alternating. Two incident exclusive edges with a third
exclusive or alternating edge, incident or not, is not possible for the following
reason: (3,1 with two incident exclusive edges has seven edges. Adding another
exclusive or alternating edge along with its nonincident edge, would leave only
one edge for G5 \ G1, contradicting our assumption of G \ G2 being no larger.

Two nonincident exclusive edges with a third nonincident alternating edge
is given by the pair (G7,1,G72). Three alternating edges that are all incident
with another exclusive edge in G5 or alternating edge in G; W G5 are given by
pairs (Go1,Go2) and (G101, G10,2), respectively. The last possibility of three
alternating edges that are only pairwise incident is given by pair (G111, G11,2)
in which all the nonincident edges of each alternating edge is in the intersection.



Fig. 6. Six K33 minimal forbidden pairs.

For G1 UG5 homeomorphic to K3 3, if there are two incident exclusive and/or
alternating edges, then all remaining edges except for one must be in G;. This
edge u ~~ v is the one incident to both in the union. Edges nonincident to u ~» v
are also in G, so G\ G can only contain the edge u ~~ v. Hence, G \ G2 has at
most one edge by assumption. Pairs (G151, G15,2) with one exclusive edges and
one alternating edge and (G161, G16,2) with two alternating edges are the only
possibilities for two incident edges. Thus, a third edge can only be an alternating
edge. However, G6,2 already has one exclusive edge with two incident alternating
edges leaving three incident alternating edges that are all incident given by pair
(G17,1,G17,2) as the final possibility. a

Unlike a single planar graph that has the same forbidden minors as forbidden
subdivisions by Theorem 1, the same is not true for SEFE. Fig. 7 shows three
pairs with the same minor pair (G7,1,G72) in Fig. 7(a). Each pair is obtained
by “uncontracting” vertex d to form the fixed edge (dy,ds) in Figs. 7(b)—(d).
Fig. 7(b)—(c) are forbidden pairs, whereas, Fig. 7(d) is not.

Figs. 7(c)—(d) are examples in which a new fixed edge (a,d) is created from
the exclusive edges (a,d;) in G1 \ G2 and (a,dz) in G2\ G; by contracting edge
(dq,d2) to vertex d in Fig. 7(a). To avoid this, we define a fized edge minor
pair as a minor pair (Hy, Hs) of (G1,G2) that is obtained by only contracting
edges in which no new fixed edges are created. Fig. 7(b) is an example in which
Fig. 7(a) forms a fixed edge minor pair. This leads to following corollary.

Corollary 9 Pair (G1,G2) has no SEFE if the pair has a fixed edge minor pair
(Hy, Hs) isomorphic to one of the 17 minimal forbidden pairs of Theorem 8.

This forms a necessary condition for SEFE, but is not a sufficient given that
Fig. 7(c) without an SEFE does not have any of the 17 fixed edge minor pairs.

(b) () (d)
Fig. 7. (G7,1,G7z2) in (a) is a minor pair of the two forbidden pairs in (b) and (c) without
an SEFE as well as the pair in (d) with the given SEFE.



3 Characterizing SEFE with Planar Graphs

Next, we determine the graphs that always have an SEFE with any planar graph
and produce simultaneous drawings. Let P be the set of planar graphs and Psggg
be the subset of P containing forests, circular caterpillars (removal of all degree-1
vertices leaves a cycle), K4, and the subgraphs of Ks-multiedges (graphs with
vertex set {x,y, z1, ..., 2} and edge set {(z,y), (z,z), (y,2) : 1 <i<k}).
Lemma 10 Psgee are the only graphs that may always have an SEFE with any
planar graph.
Proof. Let G € Psgpe and G2 € P. Both graphs of all the 17 pairs of Theorem 8
have a subgraph homeomorphic to Gy 1, a K3 and a disjoint edge; see Fig. 8(a).
First, we show that G; does not contain a subgraph homeomorphic to G ;.
A forest has no cycles unlike GG1,;. While a circular caterpillar has a cycle, all
other edges are incident to the cycle. A K4 has four vertices while G1; has
five. Finally, every subgraph of a Ks-multiedge with a cycle, either has a 3-cycle
T~y ~ 2~ xorad-cycle x ~» 21 ~» y ~ 29 ~» x (if there is no edge (z,v)).
In either case, every other edge is part of the cycle or is incident to one of the
cycle edges. This implies (G, G2) cannot have an SEFE with G2 by Corollary 9.
Next, we show that any graph G € P \ Psgre contains a subgraph home-
omorphic to Gy 1, preventing an SEFE with the set of all planar graphs that
includes the graph G 2. The graph G must have a cycle since otherwise it would
be a forest. Let C' be a cycle in G with maximum length and e be any edge in
G\ C. Clearly, e is incident to C' or G would contain a subgraph homeomorphic
to G1,1. If the edge e forms a chord of C' where C' has length greater than four,
then there a cycle C” formed by a path in C' and the edge e that would have a
nonincident edge ¢’ in C such that C’ and ¢’ would be homeomorphic to Gy 1.
Hence, all cycles in G have length 4 or less. Assume C' is a 3-cycle with
another cycle C’ in G. Either C' and C’ share an edge giving a longer cycle
(contradicting the maximality of C') or C’ would have an edge nonincident to
C. Hence, C is a 4-cycle if G has multiple cycles. If two 4-cycles C' and C’ only
share a vertex or an single edge, then C' would have a nonincident edge in C”.
Hence, C' and C’ must share two edges. If they are nonincident, then C; and Cs
forms a K4. This implies that G either forms a K, or that all the 4-cycles share
a common path consisting of the two incident edges (z,z) and (y, z) implying
that all 3-cycles share the common edge (z,y), if it exists. Any non-cycle edge
e must be incident to all the cycles implying that e is either (z,w) or (y,w) for
some degree-1 vertex w. This implies that if G has multiple cycles, but is not a
K4, then it is a subgraph of some K3-multiedge. Finally, if C' is the only cycle,
then all the Vertices not in C have degree-1 giving a circular caterpillar. O

G? 1
(a) (c)
Fig. 8. Planar drawings for the pairs (G171,G172), (G7,1,G7,2), and (G14,1, G14,2).




Lemma 10 provides a necessary condition for the graphs that may have an
SEFE with any planar graph. This condition also suffices by the following lemma
whose omitted proof appears in [10]. The key idea is to compute a SEFE algo-
rithm with Euclidean shortest paths to draw each edge not in the intersection.
Such a path always exists since (i) a forest only has one face, (ii) a circular cater-
pillar only has one cycle with all other edges are incident, (iii) a Ky is a 4-cycle
C' with two chords (with one drawn outside of C' and the other inside) and (iv) a
subgraph of K3-multiedge that is not a circular caterpillar has a 4-cycle in which
all other edges are incident to one of the two vertices = and y of the 4-cycle.

Lemma 11 An SEFE exists for any graph in Psgpe with any planar graph.
Lemmas 10 and 11 together imply the following theorem.

Theorem 12 A graph G always has an SEFE with any planar graph if and only
G € Psere.

4 Characterizing SEFE with Outerplanar Graphs

We next determine which outerplanar graphs always have an SEFE with any
other outerplanar graph. A Kj3-cycle is a biconnected outerplanar graph such
that for every chord (z,y), there is a vertex z whose incident edges are (z, z)
and (y, z). Let O be the set of outerplanar graphs and Osgre C O be the set
of outerplanar graphs in which each biconnected component is a K3-cycle. Note
that the condition on each vertex z (adjacent to endpoints of a chord (x,y)) still
applies in that no edges from other components can be incident to z.

The following Lemma provides an analogous result for outerplanar graphs
that Lemma 10 does for planar graphs. The omitted proof found in [10] uses
an approach similar used to prove Lemma 10 in which G1; served as forbidden
graph. The set Osgpe is shown to be the set of outerplanar graphs that do not
contain either (G71,Gr2) or (Gia,1,G14,2) as a fixed edge minor pair, which are
the only forbidden pairs from Theorem 8 in which both graphs are outerplanar.

Lemma 13 Osgre are the only outerplanar graphs that may always have an
SEFE with any outerplanar graph.

The condition of Lemma 13 also suffices for outerplanar graphs by the follow-
ing lemma whose omitted also proof appears in [10]. Euclidean shortest paths
are again used to draw each edge not in the intersection. The cycles along the
outerface for each biconnected component in Osggg are each completed (in depth
first order) so as not to contain any other by routing the final cycle edge in a
clockwise direction around the boundary of what has been drawn so far. Any
remaining chords can always be drawn inside the outerface since each has a
degree-2 vertex z on the outerface that is adjacent to both endpoints.

Lemma 14 An SEFE exists for any graph in Osgre with any outerplanar graph.
Lemmas 13 and 14 together give the following theorem.

Theorem 15 An outerplanar graph G always has an SEFE with any outerplanar
graph if and only G € Osgrk.

10



5 Deciding SEFE for Biconnected Outerplanar Graphs

While Corollary 9 is not sufficient in general, we can show sufficiency for the
more restrictive case of pairs of biconnected outerplanar graphs.

Lemma 16 The outerplanar pair (G1,G2) has an SEFE if and only if the pair
does not have the fized edge minor pair (G141, G14,2).

The omitted proof found in [10] provides an algorithm to compute a SEFE
in which all homeomorphic subgraphs of each outerplanar pair that match the
outerplanar graphs of (G14,1,G14,2) (but do not match the forbidden labeling)
are drawn using an approach similar to the drawing algorithm for Lemma 14 in
which cycles are closed in such a way as not to prevent other cycles from being
closed.

Theorem 17 Deciding whether a pair of biconnected outerplanar graphs (G1,G2)
on n vertices has an SEFE can be done in O(n) time.

The omitted proof found in [10] uses the conditions on each chord in the
intersection given by the drawing algorithm in the proof of Lemma 16. This
condition can be checked in constant time, which yields a linear-time decision
algorithm.

6 Conclusion

We gave a necessary condition, which is not sufficient, for two graphs to have an
SEFE in terms of 17 forbidden fixed edge minor pairs. This allows us to determine
which (outer)planar graphs always have an SEFE with any (outer)planar graphs
closing several open questions from Table 1.

We showed sufficiency for the restricted case of two biconnected outerplanar
graphs that only has one forbidden minor pair, namely (G14,1,G14,2), allowing
us to produce a polynomial time decision algorithm, the first polynomial-time
decision algorithm (of which we are aware) for any SEFE pair.

Future work includes includes finding all fixed edge minor pairs of planar
graphs, which would give a sufficient condition for their SEFE. This may lead
to a polynomial time decision algorithm demonstrating a fundamental difference
between the the topological problem of SEFE and geometric problem of SGE for
which such a decision algorithm is NP-hard [9].
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