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Abstract. A graph is 1-planar if it can be drawn in the plane such that each
edge is crossed at most once. In general, 1-planar graphs do not admit straight-
line drawings. We show that every 3-connected 1-planar graph has a straight-line
drawing on an integer grid of quadratic size, with the exception of a single edge
on the outer face that has one bend. The drawing can be computed in linear time
from any given 1-planar embedding of the graph.

1 Introduction
Since Euler’s Königsberg bridge problem dating back to 1736, planar graphs have pro-
vided interesting problems in theory and in practice. Fáry, Stein and Wagner proved
independently that every planar graph has a straight-line planar drawing [16, 24, 28].
Using the elaborate techniques of a canonical ordering and Schnyder realizers, these
results were improved to straight-line drawing on a grid of quadratic size, and such
drawings can be computed in linear time [9, 23]. The area bound is asymptotically op-
timal, since the nested triangle graphs are planar graphs and require Ω(n2) area [11].
The drawing algorithms were refined to improve the area requirement or to admit con-
vex representations, i.e., where each inner face is convex [5, 8, 19] or strictly convex [1].

However, most graphs are nonplanar and recently, there have been many attempts
to study larger classes of graphs. Of particular interest are 1-planar graphs, which in a
sense are one step beyond planar graphs. These were introduced by Ringel [22] in an
approach to color a planar graph and its dual. Although it is known that a 3-connected
planar graph and its dual have a straight-line 1-planar drawing [27] and even on a grid
of quadratic size [14], little is known about general 1-planar graphs. It is NP-hard to
recognize 1-planar graphs [17, 20] in general, although there is a linear-time testing
algorithm [12] for maximal 1-planar graphs (i.e., where no additional edge can be added
without violating 1-planarity) given the the circular ordering of incident edges around
each vertex. A 1-planar graph with n vertices has at most 4n − 8 edges [4, 15, 21] and
this upper bound is tight. On the other hand straight-line drawings of 1-planar graphs
may have at most 4n − 9 edges and this bound is tight [10]. Hence not all 1-planar
graphs admit straight-line drawings. Unlike planar graphs, maximal 1-planar graphs
can be much sparser with only 2.64n edges [6].

Thomassen [26] refers to 1-planar graphs as graphs with cross index 1 and proved
that an embedded 1-planar graph can be turned into a straight-line drawing if and only if
it excludes B- and W -configurations; see Fig. 2. These forbidden configurations were
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Fig. 1. (a)–(b) A 3-connected 1-planar graph and its straight-line grid drawing (with one bend in
one edge), (c)–(d) another 3-connected 1-planar graph and its straight-line grid drawing.

first discovered by Eggleton [13] and used by Hong et al. [18], who show that the
configurations can be detected in linear time if the embedding is given. They also proved
that there is a linear time algorithm to convert a 1-planar embedding withoutB- andW -
configurations into a straight-line drawing, but without bounds for the drawing area.

In this paper we settle the straight-line grid drawing problem for 3-connected 1-
planar graphs. First we compute a normal form for an embedded 1-planar graphs with
no B-configuration and at most one W -configuration on the outer face. Then, after
augmenting the graph with as many planar edges as possible and then deleting the
crossing edges, we find a 3-connected planar graph, which is drawn with strictly convex
faces using an extension of the algorithm of Chrobak and Kant [8]. Finally the pairs of
crossing edges are reinserted into the convex faces. This gives a straight-line drawing on
a grid of quadratic size with the exception of a single edge on the outer face, which may
need one bend (and this exception is unavoidable); see Fig. 1. In addition, the drawing
is obtained in linear time from a given 1-planar embedding.

2 Preliminaries
We consider simple undirected graphs G = (V,E) with n vertices and m edges. A
drawing of a graph is a mapping of G into the plane such that the vertices are mapped
to distinct points and each edge is a Jordan arc between its endpoints. A drawing is
planar if the Jordan arcs of the edges do not cross and it is 1-planar if each edge is
crossed at most once. Note that crossings between edges incident to the same vertex are
not allowed. For example, K5 and K6 are 1-planar graphs. An embedding of a graph
is planar (resp. 1-planar) if it admits a planar (resp. 1-planar) drawing. An embedding
specifies the faces, which are topologically connected regions. The unbounded face is
the outer face. A face in a planar graph is specified by a cyclic sequence of edges on its
boundary (or equivalently by the cyclic sequence of the endpoints of the edges).

Accordingly, a 1-planar embedding E(G) specifies the faces in a 1-planar drawing
of G including the outer face. A 1-planar embedding is a witness for 1-planarity. In
particular, E(G) describes the pairs of crossing edges and the faces where the edges
cross. Each pair of crossing edges (a, c) and (b, c) induces a crossing point p. Call the
segment of an edge between the vertex and the crossing point a half-edge. Each half-
edge is impermeable, analogous to the edges in planar drawings, in the sense that no
edge can cross such a half-edge without violating the 1-planarity of the embedding.
The non-crossed edges are called planar. A planarization G× is obtained from E(G)
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Fig. 2. (a) An augmented X-configuration, (b) an augmented B-configuration, (c) an augmented
W -configuration. The graphs induced by the solid edges are called an X-configuration (a), a
B-configuration (b), and a W -configuration (c).

by using the crossing points as regular vertices and replacing each crossing edge by
its two half-edges. A 1-planar embedding E(G) and its planarization share equivalent
embeddings, and each face is given by a list of edges and half-edges defining it, or
equivalently, by a list of vertices and crossing points of the edges and half edges.

Eggleton [13] raised the problem of recognizing 1-planar graphs with rectilinear
drawings. He solved this problem for outer-1-planar graphs (1-planar graphs with all
vertices on the outer-cycle) and proposed three forbidden configurations. Thomassen [26]
solved Eggleton’s problem and characterized the rectilinear 1-planar embeddings by the
exclusion ofB- and W-configurations; see Fig. 2. Hong et al. [18], obtain a similar char-
acterization where the B- and W -configurations are called the “Bulgari” and “Gucci”
graphs. They also show that all occurrences of these configurations can be computed in
linear time from a given 1-planar embedding.

Definition 1. Consider a 1-planar embedding E(G):
A B-configuration consists of an edge (a, b) and two edges (a, c) and (b, d) which

cross in some point p such that c and d lie in the interior of the triangle (a, b, p). Here
(a, b) is called the base of the configuration.

An X-configuration consists of a pair (a, c) and (b, d) of crossing edges which does
not form a B-configuration.

A W-configuration consists of two pairs of edges (a, c), (b, d) and (a, e), (b, f)
which cross in points p and q, such that c, d, e, f lie in the interior of the quadrangle
a, p, b, q. Here again the edge (a, b, ), if present is the base.

Observe that for all these configurations the base edges may be crossed by another
edge, whereas the crossing edges are impermeable; see Fig 2.

Thomassen [26] and Hong et al. [18] proved that for a 1-planar embedding to admit
straight-line drawing, B- and W -configurations must be excluded:

Proposition 1. A 1-planar embedding E(G) admits a straight-line drawing with a topo-
logically equivalent embedding if and only if it does not contain aB- or aW -configuration.

Augment a given 1-planar embedding E(G) by adding as many edges to E(G) as
possible so that G remains a simple graph and the newly added edges are planar in
E(G). We call such an embedding a planar-maximal embedding ofG and the operation
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planar-maximal augmentation. (Note that Hong et al. [18] color the planar edges of a 1-
planar embedding as red and call a planar-maximal augmentation a red augmentation.)
The planar skeleton P(E(G))) consists of the planar edges of a planar-maximal aug-
mentation. It is a planar embedded graph, since all pairs of crossing edges are omitted.
Note that the planar augmentation and the planar skeleton are defined for an embedding,
not for a graph. A graph may have different embeddings which give raise to different
configurations and augmentations. The notion of planar-maximal embedding is differ-
ent from the notions of maximal 1-planar embeddings and maximal 1-planar graphs,
which are such that the addition of any edge violates 1-planarity (or simplicity) [6].

The following claim, proven in many earlier papers [6, 15, 18, 25, 26], shows that a
crossing pair of edges induces aK4 in planar-maximal embedding, since missing edges
of a K4 can be added without inducing new crossings.

Lemma 1. Let E(G) be a planar-maximal 1-planar embedding of a graph G and let
(a, c) and (b, d) be two crossing edges. Then the four vertices {a, b, c, d} induce a K4.

By Lemma 1, for a planar-maximal embedding each X-, B, and W -configuration
is augmented by additional edges. Here we define these augmented configurations.

Definition 2. Let E(G) be a planar-maximal 1-planar embedding of a graph G. An
augmentedX-configuration consists of aK4 with vertices (a, b, c, d) such that the edges
(a, c) and (b, d) cross inside the quadrangle abcd. An augmented B-configuration con-
sists of a K4 with vertices (a, b, c, d) such that the edges (a, c) and (b, d) cross beyond
the boundary of the quadrangle abcd. An augmented W-configuration consists of two
K4’s (a, b, c, d) and (a, b, e, f) one of which is in an augmented X-configuration and
the other in an augmented B-configuration.

For an augmented X- or augmented B-configuration, the edges not inducing a
crossing with other edges in the configuration defines a cycle, we call it the skeleton.
In each configuration, the edges on the outer-boundary of the embedded configuration
and not inducing a crossing with other edges in the configuration are the base edges.

Using the results of Thomassen [26] and Hong et al. [18], we can now characterize
when a planar-maximal 1-planar embedding of a graph admits a straight-line drawing:

Lemma 2. Let E(G) be a planar-maximal 1-planar embedding of a graph G. Then
there is a straight-line 1-planar drawing of G with a topologically equivalent embed-
ding as in E(G) if and only if E(G) does not contain an augmented B-configuration.

Proof. Assume that E(G) contains an augmentedB-configuration. Then it must contain
a B-configuration and has no straight-line 1-planar drawing due to Proposition 1. Con-
versely, if E(G) has no straight-line 1-planar drawing then by it contains at least oneB-
or W -configuration. Since Γ is a planar-maximal embedding, by Lemma 1 each cross-
ing edge pair in E(G) induces a K4. Thus the dotted edges in Fig. 2(b)–(c) must be
present in any B- or W - configuration, inducing an augmented B-configuration. ut

The normal form for an embedded 1-planar graph E(G) is obtained by first adding
the four planar edges to form a K4 for each pair of crossing edge while routing them
closely to the crossing edges and then removing old duplicate edges if necessary. Such
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an embedding of a 1-planar graph is a normal embedding of it. A normal planar-
maximal augmentation for an embedded 1-planar graph is obtained by first finding a
normal form of the embedding and then by a planar-maximal augmentation.
Lemma 3. Given a 1-planar embedding E(G), the normal planar-maximal augmenta-
tion of E(G) can be computed in linear time.

Proof. First augment each crossing of two edges (a, c) and (b, d) to a K4, such that the
edges (a, b), (b, c), (c, d), (d, a) are added and in case of a duplicate the former edge
is removed. Then all augmented X-configurations are empty and contain no vertices
inside their skeletons. Next triangulate all faces which do not contain a half-edge, a
crossing edge, or a crossing point. Each step can be done in linear time. ut

3 Characterization of 3-Connected 1-Planar Graphs
Here we characterize 3-connected 1-planar graphs by a normal embedding, where the
crossings are augmented to K4’s such that the resulting augmented X-configurations
have vertex-empty skeletons and there is no augmented B-configuration except for at
most one augmented W-configuration with a pair of crossing edges in the outer face.

Let E(G) be a 1-planar embedding of a graphG. Each pair of crossing edges induces
a crossing point and the crossing edges and their half-edges are impermeable as they
cannot be crossed by other edges without violating 1-planarity. An impermeable path
in E(G) is an internally-disjoint sequence P = v1, p1, v2, p2, . . . , vn, pn, vn+1, where
v1, v2, . . . , vn+1 are (regular) vertices of G, p1, p2, . . . , pn are crossing points in E(G)
and (vi, pi), (pi, vi+1) for each i ∈ {1, 2, . . . , n} are half edges. If vn+1 = v0, then P
is an impermeable cycle. An impermeable cycle is separating when it has vertices both
inside and outside of it, since deleting its vertices disconnects G.
Lemma 4. Let G = (V,E) be a 3-connected 1-planar graph with a planar-maximal
1-planar embedding E(G). Then the following conditions hold.
A. (i) Two augmented B-configurations or two augmented X-configurations cannot

be on the same side of a common base edge.
(ii) Suppose an augmented B-configuration B and an augmented X-configuration

X are on the same side of a common base edge (a, b). Let p and q be the
crossing points for X and B, respectively and let R(X) and R(B) be the
regions inside the skeletons of X and B. Then all vertices of V \ {a, b} are
inside the impermeable cycle apbq if R(X) ⊂ R(B); otherwise all vertices of
V \ {a, b} are outside the impermeable cycle apbq.

B. (i) If two augmented B-configurations are on opposite sides of a common base
edge (a, b), with crossing points p and q, respectively, then all the vertices of
V \ {a, b} are inside the impermeable cycle apbq.

(ii) If two augmented X-configurations are on opposite sides of a common base
edge (a, b), with crossing points p and q, respectively, then all the vertices of
V \ {a, b} are outside the impermeable cycle apbq.

(iii) An augmented B-configuration and an augmented X-configuration cannot share
a common base edge from opposite sides.

Proof. Condition A.(i) and B.(iii) hold because each of these configurations induces a
separating impermeable apbq cycle in E(G) with only two (regular) vertices from G, a
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Fig. 3. Illustration for the proof of Lemma 4.

contradiction with the 3-connectivity of G; see Fig. 3(a)–(b) and (f). Similarly, if any
of the Conditions A.(ii) and B.(i)–(ii) is not satisfied, then the impermeable cycle apbq
becomes separating and hence the pair {a, b} becomes separation pair of G, again a
contradiction with the 3-connectivity of G; see Fig. 3(c)–(d), (e) and (g). ut
Corollary 1. Let G be a 3-connected 1-planar graph with a planar-maximal 1-planar
embedding E(G). Then no three crossing edge-pairs in E(G) share the same base edge.

Proof. Each crossing edge pair induces either an augmented B- or an augmented X-
configuration. This fact along with Lemma 4[A.(i), B.(iii)] yields the corollary. ut

Lemma 5. Let G be a 3-connected 1-planar graph. Then there is a planar-maximal
1-planar embedding E(G∗) of a super-graphG∗ ofG such that E(G∗) contains at most
one augmented W-configuration and no other augmented B-configuration, and each
augmented X-configuration in E(G∗) contains no vertex inside its skeleton.

Proof. Let E(G) be a 1-planar embedding of G. We claim that by a normal planar-
maximal augmentation of E(G) we get the desired embedding of a supergraph of G.
Note that due to the edge-rerouting this operation converts any B-configuration whose
base is not shared with another configuration into an X-configuration; see Fig. 4(a). On
the other hand if a base edge is shared by two B-configurations, they are converted into
one W -configuration and by Lemma 4 this W -configuration must be on the outerface;
see Fig. 4(b). By Corollary 1, a base edge cannot be shared by more than two augmented
B configurations. Furthermore this operation does not create any newB-configurations.
It also makes the skeleton of any augmented X-configuration vertex-empty, since by
Lemma 4 the same base edge can be shared by at most two augmentedX-configurations
from the opposite side and in case it is shared by two augmented X-configuration, the
interior of the induced impermeable cycle is empty; see Fig. 4(c). ut

Lemma 5 together with Proposition 1 implies the following:

Theorem 1. A 3-connected 1-planar graph admits a straight-line 1-planar drawing
except for at most one edge in the outerface.
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4 Grid Drawings
In the previous section we showed that a 3-connected 1-planar graph has a straight-line
1-planar drawing, with the exception of a single edge in the outer face, which comes
from an unavoidable W-configuration. We now strengthen this result and show that
there is straight-line grid drawing with O(n2) area, which can be constructed in linear
time from a given 1-planar embedding.

The algorithm takes an embedding E(G) and computes a normal planar-maximal
augmentation. Consider the planar skeleton P(E(G)) for the embedding. If there is an
augmented W-configuration and a crossing in the outer face, one crossing edge on the
outer face is kept and the other crossing edge is treated separately. Thus the outer face
of P(E((G)) is a triangle and the inner faces are triangles or quadrangles. Each quad-
rangle comes from an augmented X-configuration. It must be drawn strictly convex,
such that the crossing edges can be re-inserted. This is achieved by an extension of the
convex grid drawing algorithm of Chrobak and Kant [8], which itself is an extension of
the shifting method of de Fraysseix, Pach and Pollack [9]. Since the faces are at most
quadrangles, we can avoid three collinear vertices and the degeneration to a triangle by
an extra unit shift. Note that our algorithm achieves O(n2) area, while the general algo-
rithms for strictly convex grid drawings [1, 7] require larger area, since strictly convex
drawings of n-gons need Ω(n3) area [2].

The algorithm of Chrobak and Kant and in particular the computation of a canonical
decomposition presumes a 3-connected planar graph. Thus the planar skeleton of a 3-
connected 1-planar graph must be 3-connected, which holds except for the K4, when
it is embedded as an augmented X-configuration. This results parallels the fact that the
planarization of a 3-connected 1-planar graph is 3-connected [15].

Lemma 6. Let G be a graph with a planar-maximal 1-planar embedding E(G) such
that it has no augmented B-configuration and each augmented X-configuration in E(G)
has no vertex inside its skeleton. Then the planar skeleton P(E(G)) is 3-connected.
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We will prove Lemma 6 by showing that there is no separation pair in P(E(G)).
First we obtain a planar graph H from G as follows. Let (a, c) and (b, d) be a pair
of crossing edges that form an augmented X-configuration X in Γ . We then delete
the two edges (a, c), (b, d); add a vertex u and the edges (a, u), (b, u), (c, u), (d, u)
to triangulate the face abcd. Call v a cross-vertex and call this operation cross-vertex
insertion on X . We then obtain H from G by cross-vertex insertion on each augmented
X-configuration. CallH a planarization ofG and denote the set of all the cross-vertices
by U . ThenP(E(G)) = H\U . Before proving Lemma 6 we consider several properties
of H , the planarization of the 1-planar graph.

Lemma 7. Let G = (V,E) be a graph with a planar-maximal 1-planar embedding
E(G) such that E(G) contains no augmented B-configuration and each augmented X-
configuration in E(G) contains no vertex inside its skeleton. Let H be a planarization
of G, where U is the set of cross-vertices. Then the following conditions hold.
(a) H is a maximal planar graph (except if H is the K4 in an X-configuration)
(b) Each vertex of U has degree 4.
(c) U is an independent set of H .
(d) There is no separating triangle of H containing any vertex from U .
(e) There is no separating 4-cycle of H containing two vertices from U .

Proof. For convenience, we call each vertex in V − U a regular vertex.

(a) Since H is a planar graph, by definition we only need to show that each face of H
is a triangle. Each crossing edge pair in Γ induces an augmented X-configuration
whose skeleton has no vertex in its interior. Therefore each face of H containing
a crossing vertex is a triangle. On the other hand, Hong et al. [18] showed that in
any planar-maximal 1-planar embedding a face containing no crossing vertices is a
triangle. Thus H is a maximal planar graph.

(b)–(c) These two conditions follow from the fact that the neighborhood of each crossing
vertex consists of exactly four regular vertices that form the skeleton of the corre-
sponding augmented X-configuration.

(d) For a contradiction suppose a vertex u ∈ U participates in a separating triangle T of
H . Since the neighborhood of u forms the skeleton of the corresponding augmented
X-configuration X , the other two vertices, say a and b, in T are regular vertices.
The edge (a, b) cannot form a base edge for X , since if it did, then the interior of
the separating triangle T would be contained in the interior of the skeleton for X
and hence would be empty. Assume therefore that a and b are not consecutive on
the skeleton of X . In this case the edge (a, b) is a crossing edge in G and hence has
been deleted when constructing H; see Fig. 5(a).

(e) Suppose two vertices u, v ∈ U participate in a separating 4-cycle of H . Due
to Condition (c), assume without loss of generality that the separating 4-cycle is
T = aubv, where a, b are regular vertices. Assume first that the two vertices a, b
are adjacent in H and also assume without loss of generality that the edge (a, b)
is drawn inside the interior of T . This means that the interior of at least one of
the two triangles abu and abv is non-empty and hence at least one of these two
triangles forms a separating triangle in H , a contradiction with Condition (d). We
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Fig. 5. Illustration for the proof of Lemma 6.

thus assume that the two vertices a and b are not adjacent in H . Then for both
the augmented X-configurations X and Y , corresponding to the two crossing ver-
tices u and v, the two vertices u and v are not consecutive on their skeleton. This
implies that the crossing edge (a, b) participates in two different augmented X-
configurations in Γ , again a contradiction; see Fig. 5(b).

ut

We are now ready to prove Lemma 6

Proof (Lemma 6). Assume for the purpose of obtaining a contradiction that P(E(G))
is not 3-connected. Then there exists some separation pair {a, b} in P(E(G)). Let H be
the planarization of G, where U is the set of cross-vertices. Then S = U ∪ {a, b} is a
separating set for H . Take a minimal separating set S′ ⊂ S such that no proper subset
of S′ is a separating set for H . Since H is a maximal planar graph (from Lemma 7(a)),
S′ must form a separating cycle [3]. As H is a maximal planar graph it must be 3-
connected, which implies that |S′| ≥ 3. On the other hand, since S′ contains at most
two regular vertices a, b and no two cross-vertices can be adjacent in H (Lemma 7(c)),
|S′| < 5. Hence S′ is either a separating triangle or a separating 4-cycle inH containing
at most two regular vertices; we get a contradiction with Lemma 7(d)–(e). ut

Finally, we describe our algorithm for straight-line grid drawings. This drawing
algorithm is based on an extension of the algorithm of Chrobak and Kant [8] for com-
puting a convex drawing of a planar 3-connected graph. For convenience we refer to this
algorithm as the CK-algorithm and we begin with a brief overview. Let G = (V,E) be
an embedded 3-connected graph and let (u, v) be an edge on the outer-cycle of G. The
CK-algorithm starts by computing a canonical decomposition ofG, which is an ordered
partition V1, V2, . . . , Vt of V such that the following conditions hold:

(i) For each k ∈ {1, 2, . . . , t}, the graph Gk induced by the vertices V1 ∪ . . . ∪ Vk is
2-connected and its outer-cycle Ck contains the edge (u, v).

(ii) G1 is a cycle, Vt is a singleton {z}, where z /∈ {u, v} is on the outer-cycle of G.
(iii) For each k ∈ {2, . . . , t− 1} the following conditions hold:

– If Vk is a singleton {z}, then z is on the outerface of Gk−1 and has at least
one neighbor in G−Gk.

– If Vk is a chain {z1, . . . , zl}, each zi has at least one neighbor in G−Gk, z1,
zl have one neighbor each on Ck−1 and no other zi has neighbors on Gk−1.
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For each k ∈ {1, 2, . . . , t}, the vertices that belong to Vk have rank k. We call
a vertex of Gk saturated if it has no neighbor in G − Gk. The CK-algorithm starts
by drawing the edge (u, v) with a horizontal line-segment of unit length. Then for
k = 1, 2, . . . , t, it incrementally completes the drawing of Gk. Let Ck−1 = {(u =
w1, . . . , wp, . . . , wq, . . . , wr = v)} with 1 ≤ p < q ≤ r such that wp and wq are the
leftmost and the rightmost neighbor of vertices in Vk. Then the vertices of Vk are placed
above the vertices wp, . . . , wq . Assume that Vk = {z1, . . . , zl}. Then z1 is placed on
the vertical line containing wp if wp is saturated in Gk; otherwise it is placed on the
vertical line one unit to the right of wp. On the other hand, zl is placed on the negative
diagonal line (i.e., with−45◦ slope) containingwq . If vk is a singleton then z = z1 = zl
is placed at the intersection of these two lines. Otherwise (after necessary shifting of wq

and other vertices), the vertices z1, . . . zl are placed on consecutive vertical lines one
unit apart from each other. In order to make sure that this shifting operation does not
disturb planarity or convexity, each vertex v is associated with an “under-set” U(v) and
whenever v is shifted, all vertices in U(v) are also shifted along with v. Thus the edges
between vertices of any U(v) are in a sense rigid.

Theorem 2. Given a 1-planar embedding E(G) of a 3-connected graph G, a straight-
line drawing on the (2n− 2)× (2n− 3) grid can be computed in linear time. Only one
edge on the outer face may require one bend.

Proof. Assume that E(G) is a normal planar-maximal embedding; otherwise we com-
pute one by a normal planar-maximal augmentation in linear time by Lemma 3. Con-
sider the planar skeleton P(E(G)). If there is no unavoidable W-configuration on the
outerface of the maximal planar augmentation, then the outer-cycle of P(E(G)) is a
triangle. Otherwise we add one of the crossing edges in the outer face to P(E(G)) to
make the outer-cycle triangle. The other crossing edge is treated separately. By Lemma
6, P(E(G)) is 3-connected, its outer face is a triangle (a, b, c) and the inner faces are
triangles or quadrangles, where the latter result from augmented X-configurations and
are in one-to-one correspondence to pairs of crossing edges.

We wish to obtain a planar straight-line grid drawing of P(E(G)) such that all
quadrangles are strictly convex. Although the CK-algorithm draws any 3-connected
planar graph of n vertices on a grid of size (n − 1) × (n − 1) with convex faces, the
faces are not necessarily strictly convex [8]. Hence we must modify the algorithm so
that all quadrangles are strictly convex. Note that by the assignment of the under-sets,
the CK-algorithm guarantees that once a face is drawn strictly convex, it would remain
strictly convex after any subsequent shifting of vertices.

For P(E(G)) each Vk is either a single vertex or a pair with an edge, since the faces
are at most quadrangles. If Vk is an edge (z1, z2) then, by the definition of the canonical
decomposition, exactly one quadrangle face wpz1z2wq is formed and by construction
this face is drawn convex. We thus assume that Vk contains a single vertex, say v. Let
Ck−1 = {(u = w1, . . . , wp, . . . , wq, . . . , wr = v)} with 1 ≤ p < q ≤ r such that
wp and wq are the leftmost and the rightmost neighbor of vertices in Vk. Then the new
faces created by the insertion of v are all drawn strictly convex unless there is some
quadrangle vwp′−1wp′wp′+1 where p < p′ < q and wp′−1, wp′ , wp′+1 are collinear in
the drawing of Gk−1. Note that in this case the vertex wp′ must be saturated in Gk−1.
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This case may occur in the CK-algorithm only when the line containing wp′−1, wp′ ,
wp′+1 is either a vertical line or a negative diagonal (with −45◦ slope). In the former
case, wp−1 should have also been saturated in Gk−1, which is not possible since v is
its neighbor. Thus it is sufficient to make sure that no saturated vertex of Gk is in the
negative diagonal of both its left and right neighbor on Ck. We do this by the following
extension of the CK-algorithm.

Suppose that v is placed abovewq with slope−45 andwq was placed above its right-
most lower neighbor w′q′ with slope−45, and there is the quadrangle (v, wq, w

′
q′ , u) for

some vertex u with higher rank (i.e., which will be placed later). Then shift w′q′ by one
extra unit to the right when v or u is placed. This implies a bend at wq and sets a strictly
convex angle above wq .

The CK-algorithm starts by placing the first two vertices one unit away and it re-
quires a unit shift to the right for each following vertex. On the other hand, a 1-planar
graph has at most n− 2 pairs of crossing edges. Hence, there are g ≤ n− 3 augmented
X-configurations, each of which induces a quadrangle in the planar skeleton. Thus the
width and height are n− 1 + g, which is bounded by 2n− 4. The vertices a, b, c of the
outer triangle are placed at the grid points (0, 0), (0, n− 1 + g), (n− 1 + g, 0).

In case the original graph had an unavoidable W -configuration in the outerface, we
need a post-processing phase to add to the drawing the extra edge (b, d), which induces
a crossing in the outer face with the edge (a, c). Since a is the leftmost lower neighbor
of d when d is placed and d is not saturated, d is placed in the first column at (1, j) for
some j < n− 2+ g. Shift b one unit to the right, insert a bend point at (−1, n+ g) just
one diagonal unit left above c and route the edge (b, d) via the bend point. ut

Figure 6 in the appendix illustrates the operation of the algorithm for computing a
straight-line drawing of a 3-connected 1-planar graph on a (2n− 2)× (2n− 3) grid.

5 Conclusion and Future Work
We have shown that 3-connected 1-planar graphs can be embedded on theO(n)×O(n)
integer grid, so that edges are drawn as straight-line segments (except for at most one
edge on the outerface that requires a bend). Moreover, the algorithm is simple and runs
in linear time. Some 1-planar embedded graphs may require exponential area; see Hong
et al. [18]. As we have shown, this cannot happen with 3-connected 1-planar graphs.
It is not clear whether there exist biconnected 1-planar graphs for which any straight-
line 1-planar drawing requires exponential area. Recognition of 1-planar graphs is NP-
hard [20]. How hard is the recognition of planar-maximal 1-planar graphs?
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Appendix
Illustration of the Algorithm for a 3-Connected 1-planar Graph
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Fig. 6. (a) A 3-connected 1-planar graph G, (b) a normal embedding for G, (c) a planar-maximal
normal embedding E∗(G), (d) a planar skeleton P(E∗(G)) computed from E∗(G) by deleting
the crossing edges except one crossing edge on the outerface, (e) a straight-line strictly-convex
grid drawing Γ ∗ of P(E∗(G)) using an extension of the algorithm in [8], and (f) a grid drawing
Γ of G with straight-line edges except for one edge with one bend.
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