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Abstract. Bipartite graphs are commonly used to visualize objects and
their features. An object may possess several features and several ob-
jects may share a common feature. The standard visualization of bipar-
tite graphs, with objects and features on two (say horizontal) parallel
lines at integer coordinates and edges drawn as line segments, can of-
ten be difficult to work with. A common task in visualization of such
graphs is to consider one object and all its features. This naturally de-
fines a drawing window, defined as the smallest interval that contains
the x-coordinates of the object and all its features. We show that if both
objects and features can be reordered, minimizing the average window
size is NP-hard. However, if the features are fixed, then we provide an
efficient polynomial time algorithm for arranging the objects, so as to
minimize the average window size. Finally, we introduce a different way
of visualizing the bipartite graph, by placing the nodes of the two parts
on two concentric circles. For this setting we also show NP-hardness for
the general case and a polynomial time algorithm when the features are
fixed.

Keywords: bipartite graphs, NP-hardness, two-layer drawing, circle lay-
out

1 Introduction

Bipartite graphs arise in many applications and are usually visualized with 2-
layer drawings, where vertices are drawn as points at integer coordinates on
two distinct parallel lines, and edges are straight-line segments between their
endpoints. Such drawings occur as components in layered drawings of directed
graphs [19] and also as final drawings, e.g., in tanglegrams for phylogenetic
trees [6,11].

A common task in the exploration of such bipartite graphs G = (P ∪ C,E),
where P is the set of parent (object) vertices and C is the set of child (feature)
vertices, is to identify the neighbors (children) of a parent vertex of interest. A
typical approach is to click on this parent and highlight the edges to its children,
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while hiding/shading the rest of the graph. Naturally, it is desirable that the
highlighted edges fit in the display. This motivates work on placing the vertices
at integer coordinates so as to minimize the maximum window, i.e. the smallest
x-interval that contains a parent and all its children, over all parents. Bekos et
al. [4] show that minimizing the maximum window size can be solved efficiently
when the children C are fixed and the parents P can be placed, and is NP-
hard when the parents are fixed and the children can be placed. Note that this
asymmetry is due to the windows being defined only for parents P . As a side
effect of the underlying greedy approach, the algorithm of Bekos et al. [4] often
results in a much larger than optimal average window size in order to minimize
the max window. So if the max window exceeds the display size, many parents
may have windows that exceed that size. In this paper, we consider the problem
of minimizing the average window size directly.

Unlike our approach, methods for constructing 2-layer drawings often try to
minimize the number of edge crossings, which is an NP-hard problem even when
the order of one layer is fixed [10]. Vertex splitting provides another alternative
approach to reduce the number of crossings, by replacing some vertices on one
layer by multiple copies and distributing incident edges among these copies [9]. In
bipartite graphs arising in domain applications, such as visualizing relationships
between anatomical structures and cell types in the human body [1], vertex
splitting makes sense only on one side of the layout. Several variants of optimizing
such layouts have been recently studied [2,17,3].

Formally, the input consists of a bipartite graphG = (P∪C,E). The output is
a 2-layer drawing of G in which the vertices in P and in C are located at
distinct integer coordinates on two parallel lines ℓP and ℓC , respectively (w.l.o.g.,
ℓP : y = 1 is the parent layer and ℓC : y = 0 is the child layer). The drawing
is specified by a function x : P ∪ C → Z≥0 which defines the x-coordinate of
each vertex in the drawing. No two parents can have the same x-coordinate
and neither can two children; so x is injective when restricted to P or C. The
objective is to minimize the average window size of the parents in the drawing
(defined by) x. The window w(p) of a parent p ∈ P is the smallest x-interval
that contains the locations of p and its neighbors (children) in G. Its size is its
length, i.e., maxa,b∈S |x(a) − x(b)| where S = {c | (p, c) ∈ G} ∪ {p}. Note that
the smallest window size is 0 for a parent with no children or one child that
shares its parent’s x-coordinate. The span s(p) of a parent p ∈ P is the smallest
x-interval that contains the children of p (s(p) ⊆ w(p)). Motivated by common
assumptions in layered graph drawing [8,15] we consider two variants: one when
we can choose the x-coordinates of the vertices of both P and C and the other
when the x-coordinates of one of them is fixed. The Minimum Average Window
Problem takes as input a graph G = (P ∪ C,E) and a value σ and determines
if G has a drawing in which the average window size of the parents is at most
σ. We focus on the equivalent Minimum Window Sum Problem (MWS) which
determines if the sum of the window sizes can be at most some given Σ.

We also consider the same problem when the drawing maps parents and
children to two concentric circles: parents to the inner circle and children to the
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outer circle. A 2-ring drawing of G is specified by an integer size r ≥ 0 and a
function x : P ∪C → Zr (the integers mod r) which determines the locations of
the vertices: The polar coordinates for p ∈ P are (1, 2π

r x(p)) and for c ∈ C are
(2, 2π

r x(c)). Again, we require x to be injective when restricted to P or C (so
|P |, |C| ≤ r). The distance between two vertices a and b with locations specified
by x is d(a, b) = min{|x(a)− x(b)| mod r, |x(b)− x(a)| mod r}, i.e., the smallest
of the clockwise or counter-clockwise distances from x(a) to x(b). The window
w(p) of parent p ∈ P is the smallest interval of the circle that contains the angle
locations of p and its children. Its size is measured in units of 2π

r radians. The
span s(p) of parent p ∈ P is the smallest circle interval that contains the angle
locations of the children of p (s(p) ⊆ w(p)). See Fig. 1 for an example of 2-layer
and 2-ring drawing (with size r = 7) of the same bipartite graph with parents
A,B, . . . ,H and children a, b, . . . , h.
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Fig. 1: An even cycle represented using a 2-layer drawing with minimum total
window sum 14 and using a 2-ring drawing with minimum total window sum 8.

Our Contributions

In this paper we present the following results.

In the 2-layer setting:

– Minimizing the average window size is NP-hard when we can choose the
locations of both parents and children.

– When the children are fixed, determining whether every parent can be placed
in its span can be done in polynomial time.

– When the children are fixed, placing the parents to minimize the average
window size can be done in polynomial time.

In the 2-ring setting:

– Minimizing the average window size is NP-hard when we can choose the
locations of both parents and children.

– When the children are fixed, placing the parents to minimize the average
window size can be done in polynomial time.
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2 The Two Layer Setting

We begin by showing the NP-hardness of minimizing the average window size
when both parents and children can be placed, and then provide two polynomial
time algorithms for the case when the children are fixed.

2.1 Hardness of minimizing average window size.

The Linear Arrangement Problem (LAP) takes as input an undirected graph
G = (V,E) and an integer W and decides whether there is a bijection x : V →
{0, 1, . . . , |V | − 1} such that

∑
(u,v)∈E |x(u) − x(v)| ≤ W . In other words, LAP

decides whether there is a straight-line drawing of G with vertices at integer
coordinates on the x-axis so that the sum of the edge lengths is at most W . LAP
is a classic NP-complete problem [13].

a b c d e

ab d e

c b d a e

(b) The corresponding bipartite graph instance of MWS, drawn to min-
imize the window sum.

(a) A sample input graph to LAP.

pcb pbdpcd pdepda pae

c

(c) The optimal linear arrangement of the original graph.

︸ ︷︷ ︸
k

Fig. 2: Example illustrating the reduction from the linear arrangement problem
to the problem of minimizing the window sum.

Theorem 1. Deciding whether a given a bipartite graph G = (P ∪ C,E) has a
2-layer drawing with average window size σ when vertices in both P and C can
be placed is NP-complete.

Proof. We show the equivalent statement that Minimum Window Sum (MWS)
is NP-complete. MWS is in NP since it takes time polynomial in the size of the
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input graph to verify that, for a given drawing x : P ∪C → Z≥0, the sum of the
window sizes of p ∈ P is at most W .

To show that MWS is NP-hard, we reduce LAP to it. We construct an input
G′ = (P ∪ C,E′), Σ to MWS from an input G = (V,E), W to LAP as follows:

– Let k be an odd number with k ≥ 3|E|2 + |E|+ 2|V |.
– The children C in G′ are the vertices V in G.
– The parents P in G′ are one edge parent puv (which is shorthand for p{u,v})

for each (u, v) ∈ E with edges (puv, u) and (puv, v) in G′; and k block parents
v1, v2, . . . , vk for each vertex v ∈ V , with edges (v1, v), (v2, v), . . . , (vk, v) in
G′.

– Let Σ = |V |k
2−1
4 + |E|2 + kW .

This construction takes time polynomial in the size of G. It remains to show
that G = (V,E) has a linear arrangement of total edge length at most W if and
only if G′ = (P ∪ C,E′) has a drawing with window size sum at most Σ.

We first show that if G has a linear arrangement v(0), v(1), . . . , v(|V |) (where
v(i) is the ith vertex in the arrangement) of total edge length at most W then
G′ has a drawing with window size sum at most Σ.

We construct a bipartite drawing of G′ by placing the k block parents of
v(i), starting with i = 0, consecutively (on line ℓP ) followed (in any order) by
the edge parents pv(i)v(j) for all edges (v(i), v(j)) ∈ E with j > i, and then
repeating this process for i = i+ 1 until all block parents and edge parents are
placed. We place each child v(i) (on line ℓC) below the middle block parent of
v(i). Thus, the sum of the window sizes of the block parents of any child v(i) is
k−1
2 +

(
k−1
2 − 1

)
+ · · ·+1+0+1+ · · ·+

(
k−1
2 − 1

)
+ k−1

2 = k2−1
4 since k is odd.

See Fig. 2.
The window size for an edge parent pv(i)v(j) (with i < j) is at most (j − i)k

for the block parents in the window plus at most |E| for the edge parents in the
window. The total window sum is at most:

|V |k
2 − 1

4
+

∑
{v(i),v(j)}∈E

i<j

((j − i)k + |E|) ≤ |V |k
2 − 1

4
+ |E|2 + kW = Σ

since the sum of (j − i) over all edges is the total edge length of the linear
arrangement v(0), v(1), . . . , v(|V |), which we assumed to be at most W .

We next show that if G′ has a 2-layer drawing with total window sum at
most Σ then G has a linear arrangement with total edge length at most W . This
requires establishing several properties of any optimal drawing x of G′:

Property 1. We may assume, by relabeling block parents if necessary, that if
x(u) < x(v) for u, v ∈ C then x(ui) < x(vj) for all block parents for u and v
where i, j ∈ [k].

Proof. Suppose x(ui) > x(vj) for some i, j ∈ [k]. If we switch ui and vj , the sum
of the window sizes of these two block parents remains the same if ui and vj are
both to the left of u or both to the right of v, and decreases otherwise.
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Property 2. Child v lies strictly within the x-interval of its block parents, i.e.,
for all v ∈ C, x(v1) < x(v) < x(vk), where we have assumed (by renumbering)
that vi is the ith leftmost block parent of v in the realization.

Proof. Suppose x(v) ≤ x(v1) (a symmetric argument applies when x(vk) ≤
x(v)). There must be an empty spot s for v with s ∈ {x(v1) + 1, x(v1) +
2, . . . , x(v1) + |V |} since there are only |V | children in G′ and x(v) is not in
that set. Moving v from x(v) to s can increase the window size of any edge
parent by at most s− x(v). It can increase the window size of any block parent
p with x(v1) ≤ x(p) < s by at most s − x(v) as well. It decreases the window
size of any block parent p with s ≤ x(p) ≤ x(vk) by at least s − x(v). Since
k > |E|+ 2|V |, there are more than |E|+ |V | block parents whose windows de-
crease (by at least s−x(v)) and at most |E| edge parents plus at most |V | block
parents whose windows increase (by at most s−x(v)) as a result of moving child
v to s. Thus the sum of the window sizes decreases and the original realization
cannot be optimal.

P

C u v

puv
P

C u v

puvv1 v1

⇒

w(v1)
w(puv) w′(puv)

w′(v1)

x x′

Fig. 3: Switching edge parent puv with leftmost block parent v1 of v so that puv
lies between u and v.

Property 3. The location x(puv) of edge parent puv lies strictly between the
locations of u and v.

Proof. We may assume by renaming that x(u) < x(v). Suppose x(v) ≤ x(puv) (a
similar symmetric argument applies when x(puv) ≤ x(u)). Switch the locations
of the leftmost block parent v1 of v with puv to obtain a new drawing x′ with
window sizes w′ (see Figure 3). Note that x′ differs from x only in that x′(v1) =
x(puv) and x′(puv) = x(v1). Since (by Properties 1 and 2) v1 lies strictly between
u and v in realization x, the new location of puv in realization x′ lies strictly
between u and v, decreasing the window size of puv by x(puv)− x(v). The new
window size of v1 is at most x(puv)− x(v) and since the original window size of
v1 is at least 1 (by Property 2), the sum of window sizes in realization x′ is less
than in x. Thus, x cannot be optimal.

Property 4. The parents P occupy k|V |+ |E| consecutive locations.

Proof. Suppose there is an empty spot s with parents to the left and right of s.
No child v has x(v) = s otherwise we could move a block parent of v to location
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s and decrease the window size sum. Thus we can decrement the location of all
parents and children located to the right of s by 1 to create a new realization (no
two parents or two children at the same location) with no increase in window
size sum, and a strict decrease if G is connected.

Property 5. The block parents of v are consecutive, i.e., x(v1+i) = x(v1) + i for
all i ∈ [k − 1] and v ∈ V .

Proof. Suppose an edge parent puv is in the x-interval of the block parents of a
vertex t, i.e., x(t1) < x(puv) < x(tk). It can’t be in the x-interval of the block
parents of more than one vertex by Property 1. By Property 3, x(u) ≤ x(puv) ≤
x(v). Swapping puv with t1 or tk thus keeps puv in its span (since at least one
of t1 or tk is in the span of puv), but out of the x-interval of any vertex’s block
parents. It also decreases the window size of the swapped block parent (t1 or tk)
by at least one.

With these properties established, we continue with the proof of the theorem.
Let x be an optimal 2-layer drawing of G′ with window sum at most Σ. We
claim that the order v(0), v(1), . . . , v(|V | − 1) of the children on line ℓC (where
x(v(i)) < x(v(j)) for all i < j) is a linear arrangement of the vertices of G with
total edge length at most W .

By Property 4, we may assume that the parents occupy k|V |+|E| consecutive
locations and, by Property 5, that the block parents of each child v form a
consecutive x-interval in this sequence. Furthermore, by Property 2, child v lies
within the x-interval of its block parents. Thus the window of any edge parent
pv(i)v(j) (i < j) extends from some position in the x-interval of the block parents
of v(i) to some position in the x-interval of the block parents of v(j). To minimize
the sum of the window sizes of the block parents of child v requires placing v in
the middle of the x-interval of its block parents, resulting in a total contribution

of v’s block parents to the window sum of at least k2−1
4 . To minimize the sum

of all window sizes, including the windows of edge parents, an optimal drawing
may place v at a location that is not in the middle of the x-interval of its block
parents. However, if v is placed at distance d from the middle, the sum of the
window sizes of the block parents of v increases by d2 (by symmetry, the edge
lengths after v is moved are the same as the lengths before the move, except for
the lengths to the furthest d block parents after the move, which each increase
by d), while the decrease in the window sum of all |E| edge parents is at most
d|E|. Thus, v must be placed at distance d ≤ |E| from the middle of its block
parents in an optimal drawing. Even with this placement of v, the window size
of pv(i)v(j) is at least

(j − i− 1)k + 2

(
k − 1

2
− d

)
≥ (j − i)k − (2|E|+ 1).

The total contribution of block parents and edge parents to the window sum is
thus at least
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|V |k
2 − 1

4
+

∑
{v(i),v(j)}∈E

i<j

((j − i)k − 2|E| − 1) .

Since this is at most Σ = |V |k
2−1
4 + |E|2 + kW , we know

|V |k
2 − 1

4
+

∑
{v(i),v(j)}∈E

i<j

((j − i)k − 2|E| − 1) ≤ |V |k
2 − 1

4
+ |E|2 + kW

and thus ∑
{v(i),v(j)}∈E

i<j

(j − i)k ≤ 3|E|2 + |E|+ kW.

Since k ≥ 3|E|2 + |E|+ 2|V |,∑
{v(i),v(j)}∈E

i<j

(j − i) ≤ W + 1− 2|V |
k

and since the sum and W are integers,∑
{v(i),v(j)}∈E

i<j

(j − i) ≤ W.

So G has a linear arrangement with total edge length at most W .

2.2 Minimizing average window size for fixed children.

When the children are fixed, the best possible solution to the minimum average
window problem is to place every parent in the span of its children. We first
observe how to efficiently test if such a solution exists. After that, we show that
even when it is not possible to place every parent in the span of its children we
can still find a solution that minimizes the average window size in polynomial
time.

Placing parents in their span. If the children C of a bipartite graph G =
(P ∪ C,E) have already been placed at distinct integer x-coordinates then the
span of every parent p is fixed: s(p) = [lo(p),hi(p)] where lo(p) is the smallest
x-coordinate of a child of p and hi(p) is the largest x-coordinate of a child of p.
Our problem is to determine if it is possible to place each parent at an integer
coordinate within its span without placing two parents at the same location. This
is an instance of a matching problem in a convex bipartite graph A = (P ∪S, F )
where F = {(p, ℓ)|p ∈ P, ℓ ∈ s(p)} and S =

⋃
p∈P s(p) (so S is a set of integers).
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The bipartite graph A = (P ∪ S, F ) is convex (in S) since there is an ordering
of S (the integer order “<” in this case) such that if (p, a) ∈ F and (p, c) ∈ F
then (p, b) ∈ F for b ∈ S with a < b < c. Graph A is defined by the parents P
and the pairs lo(p), hi(p) for p ∈ P , which in our case can be calculated from G
in O(|E|) time.

The problem of finding a maximum matching in a convex (in S) bipartite
graph (P ∪ S, F ) has a long history starting with Glover’s O(|P ||S|) time algo-
rithm from 1967 [14] and ending with the O(|P |) time algorithm of Steiner and
Yeomans [18]. Using the latter algorithm, we observe that:

Observation 1 Given a bipartite graph G = (P ∪C,E) where the x-coordinates
of the children C are fixed, finding a placement of parents p ∈ P where every
parent is in its span, or determining that no such placement exists, takes O(|P |+
|E|) time.

3 3 43345

r

a b c d e f

p q s t u v

(a) Shown above the graph G are the edges
matching parent vertex r to its possible
locations ◦ in an optimal drawing of G.
The weight of edge (r, ℓ) is the size of r’s
window if r were at location ℓ.

rp q s t u v

a b c d e f

(b) The entire bipartite matching graph
shown above the graph G. Black edges
have weight equal to the parent’s window
size. Blue have that weight + 1. Orange:
+ 2. Red: + 3.

rp q s t u v

a b c d e f

1 0 33

13

2

(c) A min-weight maximum size matching
of parents to locations.

r pq s tuv

a b c d e f

(d) The resulting optimal drawing with
window sum 13.

Fig. 4: Using min-weight maximum size matching to find an optimal drawing
when children are fixed.

Minimizing average window size. If we cannot place every parent in its
span, we would like to place parents as close to their span as possible to minimize
their average window size. We adopt a similar technique of finding a matching
in a convex bipartite graph to determine the parents’ locations. However, in this
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case the edges in the matching are weighted and we ask for a minimum weight
maximum matching.

Theorem 2. Minimizing the average window size of a 2-layer drawing of a given
bipartite graph G = (P ∪ C,E), when the locations of the children C are fixed,
but the parents P can be placed, can be accomplished in O(|P |2+o(1) + |E|) time.

Proof. Given the fixed locations of the children C, for each parent p ∈ P , com-
pute the x-coordinate of the midpoint between its children’s smallest and largest
locations, and let M(p) be the set of |P | potential parent locations closest to
this midpoint. We do not need to place p outside of M(p) when minimizing the
average window size for p since M(p) contains the locations that result in the
|P | smallest window sizes for p and we’re guaranteed to find at least one empty
spot among them since there are only |P | − 1 other parents.

We construct a weighted bipartite graph B between parents P and their
possible locations M(P ) =

⋃
p∈P M(p) with edges (p, ℓ) for every parent p and

ℓ ∈ M(p). (See Fig. 4.) There are exactly |P |2 edges in the graph B and each
edge (p, ℓ) has weight corresponding to the size of parent p’s window if p were
placed at location ℓ. The construction of B takes O(|E| + |P |2) time. We then
find a min cost matching in B using the algorithm of Chen et al. [7] in time
O(|P |2+o(1)).

3 The Two Ring Setting

In this setting we are given two concentric circles, with the parents on the inner
circle and the children on the outer circle.

The problems here are similar to the two layer setting, but sufficiently dif-
ferent that neither result in the previous section directly works here. It might
appear that we can extract an optimal 2-layer drawing x of G = (P ∪ C,E)
from an optimal 2-ring drawing x′ of G by simply setting x(v) = x′(v) for all
v ∈ P ∪ C. However, Figure 1 illustrates a difficulty: the 2-ring setting allows
us to measure the distance from a parent to its child in two ways, clockwise or
counter-clockwise around the inner ring. This creates the possibility of a smaller
window sum in the 2-ring setting than in the 2-layer setting. We can do such
an extraction if the 2-ring drawing has a point at which we can “split” the two
circles and straighten them into two parallel lines.

Definition 1. A 2-ring drawing x of a graph G = (P ∪ C,E) of size r is split-
table at s ∈ Zr if s+ 1/2 (and thus the open interval (s, s+ 1 mod r)) is not in
the window w(p) for any p ∈ P .

Remark 1. A 2-ring drawing x′ of G = (P ∪C,E) of size r that is splittable at s
can be converted into a 2-layer drawing x with the same window sum by setting
x(v) = (x′(v)− s) mod r for all v ∈ P ∪ C.

Theorem 3. Deciding whether a given bipartite graph G = (P ∪ C,E) has a
2-ring drawing with average window size σ when vertices in both P and C can
be placed is NP-complete.
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Proof. We show the equivalent statement that the window sum version of the
problem, with target sum Σ, is NP-complete. The problem is in NP since it
takes polynomial time to verify that, for a given drawing x : P ∪ C → Zr, the
sum of the window sizes of p ∈ P is at most Σ. We reduce the 2-layer version,
shown to be NP-complete in the proof of Theorem 1, to this setting by making
every non-splittable 2-ring drawing of G prohibitively expensive. We do this by
adding k = |P |(|P |+ |C|) + 1 independent edges to G.

Given an input G = (P ∪ C,E), Σ to the 2-layer minimum sum problem,
we create a new graph G′ = (P ′ ∪ C ′, E′) where P ′ = P ∪ {u1, u2, . . . , uk},
C ′ = C ∪ {v1, v2, . . . , vk}, and E′ = E ∪ {(ui, vi)|i ∈ [k]}. We claim that G has
a 2-layer drawing with window sum at most Σ if and only if G′ has a 2-ring
drawing with window sum at most Σ.

If G has a 2-layer drawing x with window sum at most Σ then it is safe
to assume by translating that the drawing places vertices at x-coordinates in
[0, 1, . . . , |P | + |C| − 1]. Otherwise, if the drawing x exceeds this interval then
there is a common empty spot s in both the parents and children in x and
decreasing the positions of parents and children to the right of s by one results
in a drawing whose window size sum is at most the original sum. We construct
a 2-ring drawing x′ from x by setting r = |P |+ |C|+ k and x′(v) = x(v) for all
v ∈ P ∪C and x′(ui) = x′(vi) = |P |+ |C|+ i−1 for all i ∈ [k]. Since the window
sum for all parents ui is zero the window sum of the 2-ring drawing is at most
Σ.

If G′ has a 2-ring drawing x′ of size r with window sum at most Σ then if
x′ is splittable at s, Remark 1 implies we can extract a 2-layer drawing x of G
from it with window sum at most Σ by setting x(v) = (x′(v)− s) mod r for all
v ∈ P ∪C. The addition to G of the (many) independent edges (ui, vi) to create
G′ ensures that the optimal drawing of G′ when restricted to the vertices of G
is splittable. Let x∗ be this optimal 2-ring drawing of G. Suppose, for the sake
of contradiction, that x∗ is not splittable, then every interval between adjacent
children in x∗ is contained in the window w∗(p) for some parent p ∈ P . Since the
children of the independent edges lie in these intervals, the sum of the window
sizes in the 2-ring drawing x∗ is at least k. Since x∗ is a subdrawing of x′, the
window sum of drawing x′ of G′ is also at least k. However, k is chosen to be
larger than the window sum of the optimal 2-ring drawing of any graph G with
|P | parents and |C| children along with k independent edges. To see this, note
that one possible 2-ring drawing of such a graph starts with a 2-layer drawing
of G in which every parent has a window of size at most |P |+ |C|; followed by
k independent edges each with window size 0. Placing these vertices, in order
around two concentric circles of size |P |+ |C|+ k creates a 2-ring drawing with
window sum of |P |(|P |+ |C|) < k. Thus the 2-ring drawing x′ of G′ is splittable
and by Remark 1 G has a 2-layer drawing of size Σ.

Theorem 4. Minimizing the average window size of a 2-ring drawing of size r
of a given bipartite graph G = (P ∪ C,E), when the locations of the children C
are fixed, but the parents can be placed, takes O(|P |2+o(1)) time.
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Proof. This is identical to the proof of Theorem 2 with the understanding that
ring size r is large enough to place the parents P and that the window size
associated with a potential location of p ∈ P is measured in the ring setting,
i.e. as the smallest angle of a sector containing that potential location and p’s
children measured in units of 2π

r radians.

4 Conclusions and Open Problems

The visualization of bipartite graphs on displays of limited size is motivated by
real-world applications. Minimizing the largest window size of any parent pro-
vides a reasonable solution but only if that largest size is at most the display size.
We consider minimizing the average window size. Our solution may not obey the
display size limit for all parents (even if such a solution exists), but it produces
smaller parent windows on average, which might be preferable. We showed that
in the general setting the problem is NP-hard, while for more restricted settings
we provide efficient polynomial time algorithms.

The matching re-formulation of the problem is broad enough to be applied
to several related problems in both the 2-layer and 2-ring settings. For example,
in the 2-ring setting when the children are fixed, we can find an optimal solution
using the same graph matching formulation as in Theorem 4 but instead of using
a solution to the min cost matching problem on graph B, we use a solution
technique for the bottleneck matching problem. This, in effect, replaces the min-
average computation with a min-max computation.

Observation 2 In the 2-ring setting, minimizing the maximum window size
over all parents for a given bipartite graph G = (P ∪ C,E), when the size
of the ring r and the children C are fixed, but parents P can be placed, takes
O(|P | log |P |+ |E|) time.

Proof. Let B be the graph defined in the proof of Theorem 2 for the ring size r.
If we restrict this graph to edges of weight at most w, we obtain a circular convex
bipartite graph B(w) for which the neighbors of a parent p ∈ P form a contiguous
interval around the ring. For such graphs, Liang and Blum [16] describe an algo-
rithm to find a maximum matching based on two runs of a maximum matching
algorithm for a regular convex bipartite subgraph of this graph. Using a binary
search technique credited to Bhat [5] by Gabow and Tarjan [12], we can find the
smallest w ∈ [0, |P |] so that B(w) contains a maximum matching (of size |P |
in our case). After a single O(|E|)-time preprocessing step, the running time is
O(|P |) for each test of whether the restricted graph B(w) contains a maximum
matching [16,18]. The total time is thus O(|P | log |P |+ |E|).

We conclude with two natural open problems. First, is there a faster algo-
rithm for minimizing the average window size when children are fixed but parents
can be placed? Second, what is the complexity of minimizing the average window
size when parents are fixed, but children can be placed?
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