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Abstract. Compound-fisheye views are introduced as a method for the
display and interaction with large graphs. The method relies on a hier-
archical clustering of the graph, and a generalization of the traditional
fisheye view, together with a treemap representation of the cluster tree.

1 Introduction

Many of the challenges in visualization today arise from the volume of data. As
the volume of data grows, so too does our desire to visualize the data. Often the
data contain relationships between objects, and can be represented as a graph.
A great deal of research and investment has gone into developing better display
systems, high-resolution screens, and visualization walls. However, no matter
how good our display systems get and how many pixels per square inch can be
obtained, there will always be graphs that are too large to be fully displayed and
too complex to comprehend as a whole.

Graphs with hundreds of thousands of nodes and millions of edges are com-
monplace in many of today’s applications, such as telecommunications, soft-
ware engineering, and databases. Recent graph drawing algorithms allow us to
compute layouts for large graphs in reasonable times. However, exploring and
interacting with such graphs in their entirety is likely to be ineffective.

A visualization technique that relies on fisheye views, clustering, and treemaps
is introduced in order to provide a way to explore and interact with large graphs.
In this context, clustering implies any hierarchical decomposition of the graph.
The cluster computation in turn yields level-views of the input graph at different
levels of detail. Navigation from one level of the hierarchy to the next is provided
by partial refinement and/or coarsening of different parts of the view. These
operations correspond to zooming in and zooming out. Compound-fisheye views
are introduced as a technique that provides high level of detail in the focus area
while also providing a global view of the graph, through distortion of the view in
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Fig. 1. Different graph views: (a) Multi-level view of a geometrically clustered graph; (b)
Fisheye view of a grid-like graph; (c) Treemap for a small tree.

areas away from the focus. The compound-fisheye view combines clusters from
different levels of the cluster-hierarchy by showing high detail clusters in the
area of interest and progressively lower detail clusters away from the focus. A
treemap view of the cluster tree is also used to provide a global view of the
original graph.

1.1 Related Work

Multi-level display algorithms are described in the context of visualization for
clustered graphs in [9]. Compound and clustered graphs are studied in [10,18].
Multi-level views [8, 9] show large graphs at multiple abstraction levels. A natural
realization of such multiple level representations is a 3D drawing with each level
drawn on a plane at a different z-coordinate, and with the clustering structure
drawn as a tree in 3D; see Fig. 1(a). The related concept of a graph sketch is
introduced in [1] and is used in the MGV system [2].

The above algorithms assume that the clustering of the graph is given. In the
case where the input graph has no clustering information, hierarchical clustering
algorithms based on the structural properties of the graph can be used [4,15].
Alternatively, geometric graph clustering based on binary space partitions can
also be used to display large graphs, as described in [8]. The quality of the
resulting multi-level drawings depends on the initial embedding of the graph in
the plane. Hence, a good initial embedding of a large graph is a prerequisite
for this method. Recently, a number of efficient algorithms for layout of large
graphs have been developed, based on multi-scale, high-dimensional and spectral
methods [12-14,20]. Data structures supporting cluster-graph operations (such
as cluster-expand and cluster-collapse) have been studied in [6, 7].

Fisheye views are introduced in the context of viewing and filtering computer
programs [11]. Fisheye views show one area of interest quite large and in detail
and show other areas successively smaller and in less detail by using a distortion



function; see Fig. 1(b). 2-D fisheye view graph drawings with position and size
distortions are studied in [16]. Finally, treemaps [17] have been studied for over
a decade as an efficient space-filling layout of tree-like structures; see Fig. 1(c).
The nodes of the tree are displayed as nested rectangles in the treemap. The
children of a node are within the rectangle of the parent. Squarified treemaps
ensure good aspect ratio for the rectangles [5] and ordered treemaps keep related
items spatially close to each other in the map [3].

1.2 Owur Contribution

A visualization technique called a compound-fisheye view is described. It makes
possible to extend the effective use of the traditional fisheye view to larger graphs.
The technique relies on creating a clustered graph from the original graph, via
a hierarchical clustering algorithm. The resulting cluster tree is then shown as a
treemap and is also used to navigate the compound-fisheye view.

Compound-fisheye views allow the exploration of an area of interest in detail,
by providing an interactive view of the graph, while still capturing the global
context. When a focus node is selected from the current view, the corresponding
subgraph at the next level is depicted and the view is updated. Similarly, less
details can be requested about a particular node in the current view, which
results in the replacement of the node (and its siblings in the cluster tree) with
its parent, and the subsequent update of the view. These operations provide the
ability to zoom in and out with respect to the current view.

Moreover, the compound-fisheye view has clusters from different levels in the
cluster tree, depending on how close they are to the area of interest. In a way
similar to traditional fisheye views, when more detail is requested in a particular
area, the areas farthest away from the focus are automatically reduced in detail.
Unlike traditional fisheye views, however, the reduction in the detail is achieved
by replacing parts of the graph far away from the focus with coarser represen-
tations from the cluster tree (rather than just shrinking the area allocated to
these parts, via distortion).

To aid the comprehension of the overall structure, a treemap view of the
cluster tree provides global context. A prototype of the visualization system has
been implemented and tested with graphs of varying sizes, up to 10,000 nodes.
The screen-shots in Fig 7 show the system in action.

2 Hierarchical Clustering

A graph clustering algorithm is geometric if nodes are clustered according to
their spacial locality, given an initial embedding of the entire graph. Similarly, a
graph clustering algorithm is structural if nodes are clustered based on structural
features of the original graph (such as connectivity and density). Any clustering
algorithm can be used for the purpose of compound-fisheye view navigation,
provided that the clustering is hierarchical. One structural clustering algorithm



Fig. 2. (a) Input graph G; (b) Cluster-tree T': lettered nodes represent input graph nodes
and numbered nodes represent clusters; (c) Compound-fisheye view of C' = (G, T).

and one geometric clustering algorithm have been implemented as a part of the
prototype.

The structural clustering algorithm implemented in the system is a Markov
clustering algorithm [19]. Markov clustering, also known as MCL, uses a ran-
dom walk in the graph to identify densely connected components. MCL is also
general enough to allow weighted graphs (including negative weights) that can
be directed or undirected.

The geometric clustering algorithm implemented in the system is a Binary
Space Partition (BSP) algorithm, similar to that in [8]. Starting with a 2D layout
of the entire graph, a k-d tree recursive partition is used to obtain the clustering.
The initial embedding is obtained using a high-dimensional multi-level method,
similar to that in [12].

2.1 Clustered Graphs

Whether structural or geometric, the clustering algorithm produces a cluster
tree. A leaf node in this tree represents a node from the original graph. An
internal node represents a cluster of nodes, which consists of all the nodes in its
subtree. A cluster may contain leaf nodes and/or other clusters. The cluster tree
data structure is the interface between the clustering algorithm, the compound-
fisheye view, and the treemap.

Fig. 2(a-b) show an example of an input graph G and the recursive clustering
defined by a tree T'. Together the input graph and the cluster tree make up the
clustered-graph C' = (G, T). All the nodes of T at a given depth ¢ represent the
clusters of that level. A view at level i, G; = (V;, E;), consists of the nodes of
depth ¢ in T and a set of representative edges. The edge (u,v) € E; if there is
an edge between a and b in G, where a is in the subtree of u and b is in the
subtree of v. Fig. 2(c) shows a compound-fisheye view of the clustered graph. The
compound-fisheye view is initialized with the root of the tree and interaction is
accomplished by means of the two clustered-graph operations: cluster-expand
and cluster-collapse. The compound-fisheye view may contain a combination
of nodes from different levels in T'.



Consider the cluster-expand operation. This operation takes a node in the
compound-fisheye view, called a cluster-node, replaces it with its children in
the cluster tree, and performs the necessary updates to the edges in the graph.
Cluster-nodes do not exist in the original graph, but are created as part of a clus-
tering tree. In Fig. 2(c), all numbered nodes are cluster-nodes and all the nodes
from the input graph are leaves in the cluster tree. When expanding a cluster,
determining which nodes need to be added to the graph is straightforward, since
they will always be the children in the clustering tree of the cluster-node being
expanded. The challenge arises when trying to determine what new edges should
be added to the current view. An edge exists between two cluster-nodes only if
some member from one cluster is adjacent to a member of the other cluster in
the original graph. In Fig. 2 an edge exists between cluster nodes 2 and 4 because
nodes ¢ and g are adjacent in the original unclustered graph.

The cluster-collapse operation is simpler. When a cluster is to be col-
lapsed, one of its children in the clustering tree must be selected, since the
cluster-node representing the cluster will not be in the graph. In Fig. 2(b), the
cluster-node 3 can only be collapsed by selecting one of its children, d, e, or f
from the compound-fisheye view in Fig. 2(c). Thus, in order to collapse a cluster,
the children of the cluster-node (siblings of the selected node in the cluster tree)
must be identified. Next, the set of nodes that are adjacent to any of those chil-
dren is identified. Finally, an edge is added between the collapsed cluster-node
and each adjacent node.

3 Compound-Fisheye Views

Fisheye views of graph drawings allow a user to understand the structure of
a graph near a specific set of nodes (local detail), and at the same time they
display the graph’s overall structure (global context). Such views achieve smooth
integration of both local detail and global context by repositioning and resizing
nodes and edges in the graph. However, even for graphs with a few hundred
nodes, the benefits of this approach are lost as the areas away from the focus
become too congested to comprehend.

The fisheye view idea is applied on a hierarchically clustered graph to obtain
a compound-fisheye view; see Fig. 3 (a-b). The compound-fisheye view makes it
possible to extend the effective use of the traditional fisheye view to larger graphs.
Conceptually, the nodes in the compound-fisheye view of a clustered graph can
be obtained by taking the intersection of an inverted cone with the level-views
of the clustered graph; see Fig. 3(c). The cone is centered at the area of interest
in the original graph (at the deepest level in the multi-level view). The farther
away from the point of the cone, the coarser are the views that it intersects.
Thus, parts of the graph that are far away from the focus are represented using
clusters at higher levels in the cluster tree.

The compound-fisheye view allows the user to navigate it, modify it, and in-
teract with it. The underlying representation provides an adaptive view with the
look and feel of a normal graph. Interaction with the compound-fisheye view is
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Fig. 3. Compound-fisheye view of a clustered graph: (a) A multi-level view of a clustered
graph with highlighted nodes that make up the compound-fisheye view at the bottom; (b)
The compound-fisheye view is made of clusters from three different levels of the hierarchy;
(c) Conceptual view: the intersection of the multi-level view with an inverted cone.

accomplished through the cluster-expand and cluster-collapse operations.
These operations correspond to zooming in and out with respect to the current
view. When a focus area is selected, the corresponding subgraph at the next
(higher or lower) level is depicted and the current view is updated.

Once the nodes in the current compound-fisheye view have been identified,
the edges connecting them can be determined. Similar to the edges in the level-
views, the edges in a compound-fisheye view are easily defined: the edge (u,v) is
in the compound-fisheye view if there is an edge between a and b in G, where a is
in the subtree of u and b is in the subtree of v. Unlike in level-views, the nodes in
the compound-fisheye view are made of clusters from different levels in the cluster
tree. This makes the edge computations more challenging, especially for large
graphs. While efficient data structures have been designed for this problem [6,
7], a simple node and edge hashing scheme are employed in the implementation
of the prototype system.

To ensure that the compound-fisheye view does not become too cluttered,
the parts of the view away from the focus are automatically collapsed. With
standard fisheye views, it is not difficult to support more than one focus. This
idea generalizes to compound-fisheye views as well, although this functionality
has not yet been implemented.

4 Treemaps

Treemaps are a space-filling graph visualization technique first introduced in [17].
An important feature of treemaps is that they make very efficient use of display
space. Thus it is possible to display large trees with many hierarchical levels in a
minimal amount of space. Fig. 4(a) shows a sample tree structure and Fig. 4(b)
shows the corresponding treemap. The algorithm used to partition the display
space is known as the “slice-and-dice algorithm” and functions like a k-d tree
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Fig. 4. A cluster tree (a) and its treemap representation (b).

space partition. The positioning of tree nodes in a treemap is a recursive process.
First, the children of the root are placed across the display area horizontally,
where each node’s area is directly proportional to its weight. Then, for each
node n already displayed, each of n’s children is placed across vertically within
n’s display area. This process is repeated, alternating between horizontal and
vertical placement until all nodes have been displayed.

Treemaps can be especially helpful when dealing with large clustered graphs.
While the compound-fisheye view combines detailed local information and a
global context, treemaps lend themselves naturally to showing the information
encapsulated in the clustering tree. When viewing a graph at some level of
abstraction, the viewer is really looking at nodes belonging to some level in the
cluster tree. A treemap can display the whole structure of a cluster tree, thus
allowing the user to place the current view in context.

In the standard treemap of Shneiderman [17] the nodes are represented as
rectangles of various shapes. This makes a visual comparison of their importance
(as determined by area) difficult, especially as the rectangles vary in orienta-
tion as well. In squarified treemaps [5] the aspect ratio (the ratio between the
width and height of a rectangle) is taken into account when placing nodes in the
treemap. The resulting treemaps contains squarish elements, making it easier to
visually compare their areas.

Squarified treemaps with a modified visual appearance are implemented in
the prototype of the compound-fisheye view visualization system. In traditional
treemaps, only the leaf nodes of a tree are displayed as rectangular areas. It is
often difficult to determine the nesting depth of the treemap structure as can
be seen in Fig. 5(a). For the purpose of navigating the compound-fisheye view
it is important to show depth information about the clustering tree, so the first
step is to display the nesting information as shown in Fig. 5(b). In order to
make the nested representation easier to view, progressively thinner borders for
deeply nested elements are used. The thickness of the border around an element
is inversely proportional to its level in the original tree. Thus, the root node has
the thickest border and the leaf nodes have the thinnest borders as shown in
Fig. 5(c).
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Fig. 5. (a) A squarified treemap representation of a 25-node tree; (b) the same tree with
nested rectangles; the same tree with frames.

5 Visualization technique

Our visualization technique provides two views: one of the compound-fisheye
view and another of the treemap defined on the cluster tree. On their own, neither
of these approaches is powerful enough to represent and navigate a large graph.
The treemap algorithm applies only to trees, and while it could be applied to a
spanning tree of the graph, it does not show connectivity well. The compound-
fisheye view abstracts a great deal of the graph information, which can only be
recovered by recursive expansion of clusters. While showing connectivity and
local details well, it only shows an abstraction of the overall structure, making
navigational decisions difficult.

Together, the compound-fisheye view of the graph and the treemap of the
cluster tree offer a better approach to showing both local details and global con-
text. The combined view is shown in Fig. 6. One of the main shortcomings of a
compound-fisheye view is that nodes that are clustered become invisible in the
display and the viewer cannot deduce information about the structure under-
neath the cluster. By using a combined view displaying both the compound-
fisheye view and the treemap, information about the subtree rooted at the
cluster-node can be better conveyed. In Fig. 6, the red node (rightmost node)
has been selected by the user and its corresponding rectangle in the treemap is
highlighted in blue (top left). It is easy to see that the selected cluster-node is
at level 4 in the clustering tree, contains 3 children that are also leaves, and if
the user chooses to expand the cluster-node it will be replaced by 3 nodes in the
current view.

When a user selects a node by placing the mouse pointer over it, it is high-
lighted along with all of its cluster tree siblings. This reveals the branching factor
and permits the user to see the set of nodes that will be collapsed, should he
choose to collapse the cluster (via a right mouse-click). During a collapse opera-
tion, the nodes being collapsed are highlighted in red, and whenever an expand
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Fig. 6. Compound-fisheye view and treemap: the red cluster-node (rightmost) has been
selected and its corresponding representation (top left) is highlighted in the treemap.

operation is performed (via a left mouse-click), the cluster-node being expanded
is marked in green. Once a cluster has been fully expanded, the resulting nodes
are the nodes from the original graph and are colored in black. If all clusters
are expanded, then the resulting graph is identical to the original graph and will
contain only black nodes.

6 Conclusion and Future Work

The technique described in this paper has been implemented in a Java prototype.
Fig. 7 shows snapshots of the exploration of the GD literature topic graph for
the years 1994-2000, with 332 nodes and 1,338 edges. In step 1 the cluster tree
root and its treemap are shown. In step 2 the root is expanded and one of the
cluster-nodes has been selected (highlighting its corresponding treemap region).
In step 3, the selected node has been expanded and labeled leaves of the tree
appear in the view. For this example, the combined computation time needed
for the initial layout, clustering, treemap, and rendering take under 5 seconds.
Interaction with the compound-fisheye view is in real-time.

While the system can deal with larger graphs (with up to 10,000 nodes) the
computation times are not nearly as good. Incorporating this prototype into
a fully functional graph visualization system that can handle large graphs will
be a difficult challenge, but one worth pursuing. Efficient data structures and
algorithms, to support expand/collapse operations will become important if one
requires real-time interaction with graphs with hundreds of thousands of nodes.

The current system uses cluster-node positions that are set by the clustering
algorithm and are never modified. A natural alternative is to apply a layout algo-
rithm to the compound-fisheye view and reapply it after an expand/collapse op-
eration is performed. Since the view changes as nodes are being added /removed
through expand and collapse operations, the layout algorithm must preserve the
mental map between consecutive layouts and make smooth transitions between
such layouts.
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