
An Interactive Multi-User System for

Simultaneous Graph Drawing?

(System Demo)

Stephen G. Kobourov1 and Chandan Pitta2

1 Department of Computer Science
University of Arizona

kobourov@cs.arizona.edu
2 Department of Electrical and Computer Engineering

University of Arizona
chandanp@ece.arizona.edu

Abstract. In this paper we consider the problem of simultaneous draw-
ing of two graphs. The goal is to produce aesthetically pleasing drawings
for the two graphs by means of a heuristic algorithm and with human
assistance. Our implementation uses the DiamondTouch table, a multi-
user, touch-sensitive input device, to take advantage of direct physical
interaction of several users working collaboratively. The system can be
downloaded at http://dt.cs.arizona.edu where it is also available as
an applet.

1 Introduction

Simultaneous drawings of multiple graphs are a useful visualization technique
when different relationships are defined on the same set of objects, or when a
relationship evolves through time. The objects are represented by graph nodes
and the relationships are represented by graph edges. In simultaneous drawings,
the placement of the graph nodes is the same in all the drawings, in order to
preserve the viewer’s mental map. Thus, it is more difficult to obtain good node
placement for simultaneous drawings of two or more graphs, compared to the
case when only one graph is to be displayed.

Even in the case when only two graphs are given, and individually they are
planar, it is not always possible to find consistent node positions that realize
plane drawings for each graph. It is not known whether pairs of graphs from a
large number of classes allow simultaneous, straight-line, crossing-free embed-
dings. To aid in the design of algorithms for simultaneous plane drawings for
certain classes of graphs and also to help in finding counter-examples (pairs of
graphs that cannot be realized) we designed an interactive, multi-user system
for manipulating simultaneous drawings of pairs of graphs.

? This work is partially supported by the NSF under grant ACR-0222920 and by
ITCDI under grant 003297.

Motivation for this problem comes from applications where it is often neces-
sary to visually compare two relationships. Evolutionary trees on the same set of
species are often constructed in computational biology. Biologists spend count-
less hours pouring over tree drawings to determine the most likely evolutionary
branches. The problem is particularly difficult when the drawings of different
trees are laid out independent of each other.

1.1 Related Work

The problem of simultaneous embedding of planar graphs was introduced in [2],
where it is shown that pairs of paths, cycles, and caterpillars can always be re-
alized, while for general planar graphs and even outerplanar graphs this is not
always possible. Modified force-directed methods are used to visualize general
graphs simultaneously such that the mental map is preserved up in [7]. Con-
ceptually, the problem of simultaneously embedding graphs is the reverse of the
geometric thickness problem [5].

The TreeJuxtaposer is a system designed to support the comparison task for
large trees [14]. A tool for visualizing large numbers of evolutionary trees on the
same set of species is presented in [11].

Traditional informal definitions of aesthetically pleasing graph drawings in-
clude features such as straight-line segments for edges, few if any crossings, and
display of symmetries. In crossing minimization, the problem is to find a draw-
ing with the minimum number of crossings. The problem is NP-Complete [8]
but there has been a great deal of research on heuristic algorithms [9]. Graph
planarization [13] is often used together with careful reinsertion of edges.

The Human Guided Search (HuGS) framework described in [1, 10] is an inter-
active, or human-in-the-loop, optimization system. It leverages people’s abilities
in areas in which they outperform computers, such as visual and strategic think-
ing. Users can steer interactive optimization systems towards solutions which
satisfy real-world constraints. HuGS has been applied to graph drawing prob-
lems in [12]. The DiamondTouch table is introduced in [4] and it has been used
for an interactive, multi-player game [3] and for gestural interaction [15].

1.2 Our Contributions

We present an interactive multi-user system for simultaneous graph drawing.
The system uses the DiamondTouch table, and allows for collaborative work
of up to four users. We also provide a heuristic algorithm that attempts to
minimize the number of crossings. The algorithms can be used on the entire
graphs or on subsets of nodes. The users can stop the algorithm, move nodes
around and restart it with the updated positions. Thus, the users can help the
algorithm move out of a local minimum, or guide the algorithm towards a more
aesthetically appealing solution. Alternatively, if the users get stuck in a local
minimum, the algorithm can be started from a random position that may lead
to a better solution. Finally, our system works not only with the DiamondTouch

2

Fig. 1. Conceptual DiamondTouch table setup.

table, but also as a Java desktop application, or as a Java applet. The system is
operational at http://dt.cs.arizona.edu.

2 The DiamondTouch Table

The DiamondTouch table [4] from Mitsubishi Electric Research Laboratories
(MERL) is a desktop device that allows up to four users to simultaneously ma-
nipulate virtual objects. Users can move objects around on the table by touching
and dragging them with their fingers. The purpose of the table is to allow sev-
eral people to interact with a program at the same time and to do so using their
hands rather than more common input devices such as mice. The conceptual
setup is shown in Fig. 1.

The DiamondTouch table not only detects multiple users, but also identifies
which user is touching where on the table. The table is physically large at 32” x
24” and allows several users to work together comfortably; see Fig. 2. Under the
surface of the table, there is a grid of antennae. Each antenna transmits a signal
to the computer that corresponds to the strength of the capacitance between the
user and table. The capacitance is greatest when the user is in direct contact
with a particular antenna: a circuit is completed from the antenna, through the
user’s body, through the receiver pad on which the user is sitting or standing,
and back into the table.

The table is designed to be used with an ordinary desktop PC or laptop. It
sends the data from the antennae to the DiamondTouch SDK drivers through
the USB port, allowing the software to examine the data and to determine where

3

Fig. 2. Physical setup of the DiamondTouch table setup with two users untangling graphs.

on the table the user’s fingers are located. The table is not a touch-screen: it has
no ability to display output. Instead all images which would normally appear on
the display monitor are routed to a video projector which projects them onto the
surface of the table with the aid of a mirror and some painstaking calibration.

3 Our System

The input to the system consists of two graphs G1 = (V1, E1) and G2 = (V2, E2)
defined on the same set of nodes, V1 = V2, or a subset of a larger common set,
V1 ⊆ V and V2 ⊆ V . The goal is to obtain aesthetically pleasing simultaneous
layouts for both graphs.

In the case where G1 and G2 are planar, the goal is to obtain a node config-
uration that realizes plane drawings for each graph. That is, we are looking for
a point set P and bijective function m : V → P , that maps the set of nodes to

4

Fig. 3. System interface with split view.

points in R2 such that in a straight-line drawing of G1 on P using the mapping
m there are no crossings, and independently in a straight-line drawing of G2 on
P using the mapping m there are no crossings; see Fig. 4.

In the case when the two graphs cannot be realized simultaneously as plane
drawings, the goal is to obtain symmetric straight-line drawings with as few edge
crossings as possible. Note that edge crossings are acceptable if in each pairwise
edge crossing one of the edges is from E1 and the other from E2.

The system overview is shown in Fig. 3. The system requires an input file,
which contains node and edge information about the two graphs. The graphs
are then displayed on the table and users can interact with the system in various
ways. Some of the interactions possible are:

– loading and storing graphs via input/output files;

– selecting single-view or split-view;

– selecting drawings to show in the view (G1, G2, or both);

– calling a heuristic crossing-minimization algorithm on both graphs;

– calling the same algorithm on selected parts of the graphs;

– interrupting the algorithm and manually repositioning nodes;

– zooming in and out, or scrolling across larger areas;

– changing colors and sizes of nodes and edges.

5

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a-b) Initial drawings of G1 G2 with crossings in G1; (c) Combined view of both
drawings; (e-f) Crossing-free drawings of G1 and G2; (f) Combined view of both drawings.

3.1 Examples

If the union graph, G = (V1 ∪ V2, E1 ∪ E2), of the input pair of graphs, G1 =
(V1, E1) and G2 = (V2, E2) is a planar graph, then our problem has a trivial
solution. Since G is planar, there exists a plane drawing of it, and hence for
each of G1 and G2 independently. However, if the union graph G is not a planar
graph, a solution may or may not exist.

Consider the pair of graphs in Fig. 4(a-b). Both G1 and G2 are simple cycles
on 5 nodes. Their union is K5 as seen in Fig. 4(c). However, it is easy to find node
locations that realize each of the two graphs with straight-lines and no-crossings;
see Fig. 4(d-e). The only crossing in Fig. 4(f) is between edges of different graphs.

While pairs of paths, cycles, and caterpillars are easy to simultaneously draw
without crossings and using straight-line edges, this is not the case for all pairs of
planar graphs. In fact, it is not known whether two trees can be simultaneously
drawn without crossings and using straight-line edges. With this in mind, we
experimented with different classes of trees. The pair of trees in Fig. 5 is defined
in such a way, that the union of the two graphs contains a subdivision of Kn for
any n. For the cases when n ≤ 4 it is fairly straight-forward to obtain by hand
straight-line, crossing-free simultaneous drawings. The pen-and-paper solution is

6

1 2 k

0

.

.

1 2 k

0

1 2 k

0

1,2 1,3 1,k 2,1 2,3 2,k k,1 k,2 k,k−1. 2,1 3,1 k,1 1,2 3,2 k,2 1,k 2,k k−1,k

1 2 k

0

Fig. 5. A class of pairs of trees on n2
− 2n + 2 nodes whose union contains a subdivision

of Kn.

(a) (b) (c)

Fig. 6. The union of two trees contains a subdivision of K5. (a-b) Crossing-free drawings
of G1 and G2; (c) Combined view of both drawings.

difficult to find for K5 and K6. For these two cases our system helped us greatly;
see Fig. 6-7.

It is also known that there exist pairs of outerplanar graphs that cannot be
realized simultaneously [2]; see Fig. 11. Thus, while it is not possible to design
an algorithm for simultaneously realizing pairs of general planar graphs, in many
cases solutions do exist. Moreover, no polynomial time algorithms are known for
determining whether two planar graphs have a simultaneous embedding or not.
Our system can be helpful in gaining insight into the problem and in bridging
the gap between the classes of graphs for which algorithms for simultaneous
embeddings exist and those for which such embeddings are not possible.

3.2 Different Graph Views

Our system offers several different ways to view the input graphs. The main
choice in selecting a view is whether it will be a single-view or a split-view.
Regardless of the choice, the views can show graph G1, or graph G2, or both

7

(a) (b) (c)

Fig. 7. The union of two trees contains a subdivision of K6. (a-b) Crossing-free drawings
of G1 and G2; (c) Combined view of both drawings.

graphs at the same time. The split-view with G1 in one and G2 in the other
seems the most useful for the purpose of untangling graphs. This view is useful
when two groups of people simultaneously work on untangling the two graphs.
When a node (and its adjacent edges) is moved in one of the drawings, it also
moves in the other drawing. Showing both drawings at the same time allows a
user to see the impact of the move in both drawings. A counter keeps track of
the current number of crossings. To aid the user in identifying the two graphs,
the edges of G1 are colored red and the edges of G2 are colored blue.

3.3 Heuristic Crossing Removal

Given a crossing pair of edges from the same graph, e1 = (p, q) and e2 = (r, s)
we employ a crossing removal strategy consisting of three node-manipulating
operations: flip, shrink, and rotate (FSR strategy). We briefly describe the
three operations in the FSR strategy below.

The flip operation consists of flipping the positions of two nodes that are
not endpoints of the same edge. This implies that given crossing pair of edges
e1 = (p, q) and e2 = (r, s) , there are 4 possible flips. Without loss of generality,

q

r

s

p

s q

r p

Fig. 8. The flip(e1, e2) operation.

8

q

r

s

p r

s q

p
d1

d2

p’

Fig. 9. The shrink(e1, e2) operation.

consider the case where p and r are flipped; see Fig. 8. It is easy to see that flip-
ping the position of two nodes that are not endpoints of the same edge removes
the crossing.

The shrink operation is performed on edges. It is attempted for each end-
point of each of the edges in the crossing edge pair e1 = (p, q) and e2 = (r, s).
Without loss of generality, consider the case where the operation is performed
on node p; see Fig. 9. Let d1 (d2) be the distance from p (q) to the intersection
point of e1 and e2. The shrink operation for e1 at node p results in moving p

along the edge e1 in the direction of q for a of distance d1 + k ∗ d2 to its new
position p′, where k is a parameter in the range 0 < k < 1.

The rotate operation is attempted for each node in the crossing edge pair
e1 = (p, q) and e2 = (r, s). Again, consider the case when the operation is
performed on node p. Let θ be the angle determined by the intersection of the
lines passing thorough the points (p, q) and (p, r); see Fig. 10. We rotate p around
q at an angle θ + ε to its new position p′, where θ ≤ ε ≤ 2π.

Each of the operations in the FSR strategy can be executed a number of
times on a particular crossing. Some of them are also parametrized by k and ε

for shrink and rotate, respectively. The three operations are attempted on all

q

r

s

p r

s q

p

θ

p’

Fig. 10. The rotate(e1, e2) operation.

9

Fig. 11. An example of two outerplanar graphs with no simultaneous embedding.

of the undesirable crossings until either they are all removed or we have reached
a local minimum.

4 Conclusion and Future Work

We have presented an interactive multi-user system for drawing graphs simul-
taneously. While the system is designed for the DiamondTouch table, it is also
available as a Java application, and as a Java applet at http://dt.cs.arizona.
edu. With the aid of our system we were able to untangle many pairs of graphs
that had stumped us in the past. We also used the system successfully, to come
up with counter-examples for the cases where simultaneous embedding is not
possible. Formal proofs that the pairs of graphs in Fig. 11 and Fig. 12 can be
found in [2] and [6], respectively. However, there are many other examples that
we have neither been able to realize simultaneously, nor prove that it cannot be
done. Some of them are available at the URL above and can be experimented
with.

Currently the heuristic algorithm for minimizing the crossings in the simul-
taneous drawings of the two graphs relies on simple heuristics. We would like to
explore better heuristic algorithms, or leverage algorithms and heuristics from
traditional crossing-minimization. Finally, we would like to design a brute-force
algorithm which can be used to implement a fully functioning HuGS system.

5 Acknowledgments

We would like to thank Joe Marks and Kathy Ryall of MERL for supplying us
with the DiamondTouch table and for their great help with all the information
we needed about it. We would also like to thank Christian Duncan, for coming
up with a challenging class of trees (Fig. 5) for our system, and Yuhong Liu,
Quanfu Fan, and Joe Schlecht for countless hours of untangling graphs.

10

References

1. D. Anderson, E. Anderson, N. Lesh, J. Marks, K. Perlin, D. Ratajczak, and
K. Ryall. Human-guided simple search: Combining information visualization and
heuristic search. In Proceedings of the Workshop on New Paradigms in Information
Visualization and Manipulation, pages 21–25, 1999.

2. P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous graph embedding.
In 8th Workshop on Algorithms and Data Structures, pages 243–255, 2003.

3. C. Collberg, S. G. Kobourov, S. Kobes, B. Smith, S. Trush, and G. Yee. Tetratetris:
An application of multi-user touch-based human-computer interaction. In 9th
International Conference on Human-Computer Interaction (INTERACT), pages
81–88, 2003.

4. P. Dietz and D. Leigh. Diamondtouch: A multi-user touch technology. In Proceed-
ings of the 14th annual ACM symposium on User interface software and technology,
2001.

5. M. B. Dillencourt, D. Eppstein, and D. S. Hirschberg. Geometric thickness of
complete graphs. Journal of Graph Algorithms and Applications, 4(3):5–17, 2000.

6. C. Erten, S. Kobourov, and P. Moravsky. Simultaneous drawing of planar graphs
with relaxed constraints. Technical Report TR2004-014, Univeristy of Arizona,
2004.

7. C. Erten, S. G. Kobourov, A. Navabia, and V. Le. Simultaneous graph draw-
ing: Layout algorithms and visualization schemes. In 11th Symposium on Graph
Drawing (GD), pages 437–449, 2003.

8. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J.
Algebraic Discrete Methods, 4(3):312–316, 1983.

9. C. Gutwenger and P. Mutzel. An experimental study of crossing minimization
heuristics. In Proceedings of the 11th Symposium on Graph Drawing (GD), pages
13–24, 2003.

10. G. W. Klau, N. B. Lesh, J. W. Marks, M. Mitzenmacher, and G. T. Schafer. The
hugs platform: A toolkit for interactive optimization. In Advanced Visual Interfaces
(AVI), 2002.

11. J. Klingner and N. Amenta. Case study: Visualization of evolutionary trees. In
IEEE Symposium on Information Visualization (INFOVIS), pages 71–74, 2002.

12. N. Lesh, J. Marks, and M. Patrignani. Interactive partitioning. In Proceedings of
the Symposium on Graph Drawing (GD), pages 31–36, 2000.

13. A. Liebers. Planarizing graphs - a survey and annotated bibliography. Journal of
Graph Algorithms and Applications, 5(1):1–74, 2001.

14. T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou. Treejuxtaposer:
scalable tree comparison using focus+context with guaranteed visibility. ACM
Transactions on Graphics, 22(3):453–462, 2003.

15. M. Wu and R. Balakrishnan. Multi-finger and whole hand gestural interaction
techniques for multi-user tabletop displays. In ACM UIST Symposium on User
Interface Software and Technology, pages 192–202, 2003.

11

Fig. 12. An example of a planar graph and a path with no a simultaneous embedding.

Fig. 13. Single view of the two trees in Fig. 7.

12

