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Abstract. Traditional representations of graphs and their duals suggest
the requirement that the dual vertices should be placed inside their cor-
responding primal faces, and the edges of the dual graph should cross
only their corresponding primal edges. We consider the problem of simul-
taneously embedding a planar graph and its dual on a small integer grid
such that the edges are drawn as straight-line segments and the only
crossings are between primal-dual pairs of edges. We provide an O(n)
time algorithm that simultaneously embeds a 3-connected planar graph
and its dual on a (2n − 2) × (2n − 2) integer grid, where n is the total
number of vertices in the graph and its dual.

Key Words. Graph drawing, planar embedding, simultaneous embed-
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1 Introduction

In this paper we address the problem of simultaneously drawing a planar graph
and its dual on a small integer grid. The planar dual of an embedded planar graph
G is the graph G′ formed by placing a vertex inside each face of G, and connecting
those vertices of G′ whose corresponding faces in G share an edge. Each vertex
in G′ has a corresponding primal face and each edge in G′ has a corresponding
primal edge in the original graph G. The traditional manual representations of
a graph and its dual, suggest two natural requirements. One requirement is that
we place a dual vertex inside its corresponding primal face and the other is that
we draw a dual edge so that it only crosses its corresponding primal edge. We
provide a linear-time algorithm that simultaneously draws a planar graph and
its dual using straight-line segments on the integer grid while satisfying these
two requirements.

1.1 Related Work

Straight-line embedding a planar graph G on the grid, i.e., mapping the vertices
of G on a small integer grid such that each edge can be drawn as a straight-line
segment and that no crossings between edges are created, is a well-studied graph
drawing problem. The first solution to this problem was given by de Fraysseix,

? A full version of this extended abstract is at www.cs.arizona.edu/~cesim/dual.ps.



Pach and Pollack [6] who provide an algorithm that embeds a planar graph on
n vertices on the (2n − 4) × (n − 2) integer grid. Later, Schnyder [13] present
another method that requires grid size (n−2)×(n−2). Also, several restrictions
of this problem have been considered. Harel and Sardas [7] provide an algorithm
to embed a biconnected graph on the (2n−4)×(n−2) grid without triangulating
the graph initially. The algorithm of Chrobak and Kant [4] embeds a 3-connected
planar graph on a (n−2)×(n−2) grid so that each face is convex. Miura, Nakano,
and Nishizeki [11] further restrict the graphs under consideration to 4-connected
planar graphs with at least 4 vertices on the outer face and present an algorithm
for straight-line embedding of such graphs on a (dn/2e − 1) × (bn/2c) grid.

In a paper dating back to 1963, Tutte [14] shows that there exists a simul-
taneous straight-line representation of any planar graph and its dual in which
the only intersections are between corresponding primal-dual edges. However, a
disadvantage of this representation is that the area required by the algorithm
can be exponential in the number of vertices of the graph.

Brightwell and Scheinerman [2] show that every 3-connected planar graph G
can be represented as a collection of circles, one circle representing each vertex
and each face, so that, for each edge of G, the four circles representing the two
endpoints and the two neighboring faces meet at a point. Moreover, the vertex-
circles cross the face-circles at right angles. This result implies that one can
represent a 3-connected planar graph and its dual simultaneously in the plane
with straight-line edges so that the primal edges cross the dual edges at right
angles (provided that the vertex corresponding to the unbounded face is located
at infinity). Mohar [12] extends the results of [2] by presenting an approximation
algorithm that given a 3-connected planar graph G = (V, E) and a rational
number ε > 0 finds an ε-approximation for the radii and the coordinates of
the centers for the primal-dual circle representation for G and its dual. Mohar’s
algorithm runs in time polynomial in |E(G)| and log(1/ε) and the angles of the
primal-dual edge crossings are arbitrarily close to π/2.

Bern and Gilbert [1] address a variation of the simultaneous planar-dual
embedding problem: finding suitable locations for dual vertices, given a straight-
line planar embedding of a planar graph, so that the edges of the dual graph
are also straight-line segments and cross only their corresponding primal edges.
They present a linear time algorithm for the problem in the case of convex 4-
sided faces and show that the problem is NP-hard for the case of convex 5-sided
faces.

1.2 Our Results

The simultaneous embedding in [2] guarantees right angles for the primal-dual
edge crossings where the unbounded face needs to be handled in a special way
by creating a vertex at infinity. Even without considering the unbounded face,
the methods in [2] and [12] do not provide bounds on the area required for the
simultaneous embedding and they are less practical than our approach.

In this paper we present an algorithm for embedding a given planar graph G
and its dual simultaneously so that following conditions are met:



Fig. 1. A drawing of K4 and its dual. If the vertex corresponding to the outer face is drawn
explicitly, then one of its adjacent edges must have a bend.

– The primal graph is drawn with straight-line segments without crossings.
– The dual graph is drawn with straight-line segments without crossings.
– Each dual vertex lies inside its primal face.
– A pair of edges cross if and only if the edges are a primal-dual pair.
– Both the primal and the dual vertices are on the (2n − 2) × (2n − 2) grid,

where n is the number of vertices in the primal and dual graphs.
– The running time of the algorithm is O(n).

Similar to most primal-dual representation methods, the unbounded (outer)
face must be treated differently. If the vertex corresponding to the unbounded
face is not explicitly drawn in the plane, then all of the conditions above are
met. However, if it is drawn explicitly, then one of the dual edges emanating
from it cannot be a straight-line segment; see Fig. 1. In our grid-embedding
algorithm, we provide an option for not drawing the vertex representing the
outer face explicitly, or if it is drawn, then one of the edges emanating from it
has one bend (that also is on the grid). Note, that if the embedding is done on
the surface of a sphere, the edges emanating from this vertex are arcs of great
circles and the unbounded face does not require special treatment.

In section 2 we describe the algorithm in detail and in section 3, we briefly
discuss the implementation and present several drawings of primal-dual graphs
produced by our algorithm.

2 Algorithm for Embedding a Graph and Its Dual

Let G1 be a 3-connected planar graph. We construct a new graph G2 that com-
bines information about both the planar graph G1 and its dual. For this construc-
tion we make some changes in G1. We introduce a new vertex vi

′ corresponding
to a face Fi

′ of G1, for all 1 ≤ i ≤ f , where f is the number of faces of G1. We
connect each newly added vertex vi

′ to each vertex vj of Fi
′ with a single new

edge and delete all the edges that originally belonged to G1. Fig. 2 shows a sam-
ple construction. We call the resulting planar graph G2 fully-quadrilateralated
(FQ), i.e., every face of G2 is a quadrilateral. Since the original graph G1 is 3-
connected, the resulting graph G2 is also 3-connected (proven formally in [14]).
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Fig. 2. Creating graph G2: the original 3-connected graph G1 is drawn with solid lines
and filled-in circles; we insert the dual vertices (drawn as empty circles) and add the edges
connecting primal and dual vertices (drawn as dashed lines). To obtain G2 we remove the
original edges of G1 (drawn with solid lines).

Observation: If we can embed the graph G2 on the grid so that each inner
face of G2 is strictly convex and the outer face of G2 lies on a strictly concave
quadrilateral, then we can embed the initial graph G1 and its dual so that we
meet all the problem requirements with the only exception that one edge of the
primal graph G1(or its dual) is drawn with one bend.

The requirement that the edges of the dual graph be straight and cross only
their corresponding primal edges is guaranteed by the strict convexity of the
quadrilateral faces. Let the outer face of the graph G2 be (u, v, w, w′), where
u, w are primal vertices and v, w′ are dual vertices, as shown in Fig. 2. The
exception arises from the fact that we need to draw (u, w) and (v, w′), while
both of these edges can not lie inside the quadrilateral (u, v, w, w′). In order to
get around this problem we embed the quadrilateral (u, v, w, w′) so that it is
strictly concave. This way only one bend for one of the edges (u, w) or (v, w′)
will be sufficient. As a result all the edges in the primal and the dual graph are
straight-line edges, except for one edge. In fact, it is easy to choose the exact
edge we need (either from the primal or from the dual).

Hence, the original problem can be transformed into a problem of straight-line
embedding an FQ-3-connected planar graph G on the grid so that each internal
face of G is strictly convex and the outer face of G lies on a strictly concave
quadrilateral. Note that this problem can be solved by the algorithm of Chrobak
et al. [3]. However, the area guaranteed by their algorithm is O(n3) × O(n3),
whereas our algorithm guarantees a drawing on the (2n − 2) × (2n − 2) grid,
which is stated in the main theorem in this paper:

Theorem 1. Given a 3-connected planar graph G1, we can embed G1 and its
dual on a (2n−2)×(2n−2) grid, where n is the number of vertices in G1 and its
dual, so that each dual vertex lies inside its primal face, each dual edge crosses



only its primal edge and every edge in the overall embedding is a straight-line
segment except for one edge which has a bend placed on the grid. Furthermore,
the running time of the algorithm is O(n).

2.1 Overview of the Algorithm

Given a 3-connected graph G1, we summarize our algorithm to simultaneously
embed G1 and its dual as follows:

• Find a topological embedding of G1 using [8].
• Apply the construction described above to find G2.
• Let G = G2, where G is an FQ-3-connected planar graph.
• Find a suitable canonical labeling of the vertices of G.
• Place the vertices of G on the grid one at a time using this ordering.
• Remove all the edges of G and draw the edges of G1 and its dual.

Note that our method works only for 3-connected graphs. A commonly used
technique for drawing a general planar graph is to embed the graph after fully
triangulating it by adding some extra edges and then to remove the extra edges
from the final embedding. Using the same idea, we could first fully triangulate
any given planar graph. Then after embedding the resulting 3-connected planar
graph and its dual, we could remove the extra edges that were inserted initially.
However, the problem with this approach is that after removing the extra edges
there could be faces with multiple dual vertices inside. Thus the issue of choos-
ing a suitable location for the duals of such faces remains unresolved. In fact,
depending on the drawing of that face, it could as well be the case that no suit-
able location for the dual exists [1]. In the rest of the paper we consider only
3-connected graphs.

2.2 The Canonical Labeling

We present the canonical labeling for the type of graphs under consideration. It
is a simple restriction of the canonical labeling of [9], which in turn is based on
the ordering defined in [6].

Let G be an FQ-3-connected planar graph with n vertices. Let (u, v, w, w′)
be the outer face of G s.t. u, w are primal vertices and v, w′ are dual vertices.
Then there exists a mapping δ from the vertices of G onto vi, 1 ≤ i ≤ m such
that δ maps u and v to v1, w′ to vm and satisfies the following invariants for
every 3 ≤ k ≤ m:

1. The subgraph Gk−1 ⊆ G, induced by the vertices labeled vi, 1 ≤ i ≤ k−1 is
biconnected and the boundary of its exterior face is a cycle Ck−1 containing
the edge (u, v).

2. Either one vertex or two vertices can be labeled vk.
(a) Let z0 be the only vertex labeled vk. Then z0 belongs to the exterior face

of Gk−1, has at least two neighbors in Gk−1 and at least one neighbor
in G − Gk.
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u v

v  =z0

(b)

Gk−1 Gk−1

Fig. 3. (a) One vertex, z0, is labeled vk; (b) Two vertices, z0 and z1, are labeled vk.

(b) Let z0, z1 be the two vertices labeled vk, where (z0, z1) is an edge in
G. Then z0, z1 belong to the outer face of Gk−1, each has exactly one
neighbor in Gk−1 and at least one neighbor in G − Gk.

Since G is FQ, all the faces created by adding vk, 3 ≤ k ≤ m, have to be
quadrilaterals; see Fig. 3.

Note that assigning the mappings onto v1 and vm as above provides us the
embedding where all the edges of both the primal and the dual graph are straight
except for one primal edge, (u, w), which has a bend. Alternatively assigning v
and w to map onto v1, and u to map onto vm would choose a dual edge, (v, w′),
to have a bend.

Lemma 1. Every FQ-3-connected planar graph has a canonical labeling as de-
fined above.

Kant [9] provides a linear-time algorithm to find a canonical labeling of a
general 3-connected planar graph. It is easy to see that the canonical labeling
definition of [9] when applied to FQ-3-connected planar graphs, gives us the
labeling defined above.

2.3 The Placement of the Vertices

The main idea behind most of the straight-line grid embedding algorithms is
to come up with a suitable ordering of the vertices and then place the vertices
one at a time using the given order, while making sure that the newly placed
vertex (or vertices) is (are) visible to all the neighbors. In order to realize this
last goal, at each step, a set of vertices are shifted to the right without affecting
the planarity of the drawing so far. Our placement algorithm is similar to the
algorithm of Chrobak and Kant [4], with some changes in the invariants that we
maintain to guarantee the visibility together with strict convexity of the faces.



Let the canonical labeling, δ, that maps the vertices of G onto v1, v2, ...vm be
defined as in the previous section. Let U(gi) denote the vertices under gi. U(gi)
should be shifted to the right whenever the vertex gi is shifted to the right. U(gi)
is initialized to {gi} for every vertex gi of G. Let δ(gi) = vi′ and δ(gj) = vj′ .
Then we define Low(gi, gj) = i if i′ < j′, Low(gi, gj) = j if j′ < i′. If i′ = j′ then
let Low(gi, gj) be the one that is placed to the left. Let x(gi), y(gi) respectively
denote the x and y coordinates of the vertex gi.

•Embed the First Quadrilateral Face: We begin by placing the vertices
mapped onto v1 and v2. The ones that are mapped onto v1 are u and v. We
place u at (0, 0) and v at (3, 0). Note that two vertices should be mapped to v2.
We place the vertex that is mapped to v2 and that has an edge with u at (1, 1)
and the other at (2, 1).

Then, for every k, 3 ≤ k ≤ m, we do the following:

•Update U(gi): Let Ck−1 = (u = c1, c2, ..., cr = v). Let cp, cq ∈ Ck−1,
respectively be the first and the last neighbor of the vertex(vertices) mapped to
vk. If only one vertex, z0, is mapped to vk, we update U(cp), U(cq) and U(z0) as
follows:

Low(cp, cp+1) = p + 1 =⇒ U(cp) = U(cp) ∪ U(cp+1)

Low(cq−2, cq−1) = q − 2 =⇒ U(cq) = U(cq) ∪ U(cq−1)

U(z0) = U(z0) ∪
Low(cq−2,cq−1)⋃

i=Low(cp,cp+1)+1

U(ci)

We do not change U(gi) if two vertices, z0 and z1, are mapped to vk.

•Shift to the right: We then perform the necessary shifting. We shift each
vertex gi ∈

⋃r
i=q U(ci) to the right by one if only one vertex is mapped to vk, by

two otherwise.

•Locate the New Vertices: Finally we locate the vertex(vertices) mapped to
vk on the grid. Let |vk| denote the number of vertices mapped to vk. Then we
have:

If cp has no neighbors in G − Gk

x(z0) = x(cp)
y(z0) = y(cq) + x(cq) − x(cp) − |vk| + 1

otherwise
x(z0) = x(cp) + 1
y(z0) = y(cq) + x(cq) − x(cp) − |vk|

If |vk| = 2 define z1 also:
x(z1) = x(z0) + 1
y(z1) = y(z0)

Up to this step, the algorithm is just a restriction of the one in [4] and it
guarantees the convex drawing of the faces. Then, in order to guarantee strict-
convexity, we note the following degenerate cases; see Fig. 4:



•Degeneracies: We check for the following:

If only one vertex, z0, is mapped to vk
(d1) If x(z0) = x(cp+1) = x(cp+2)

Shift each vertex gi ∈
⋃r

i=p+1 U(ci) to the right by one.
Perform the location calculation for z0 again.

(d2) If k < m and z0, cq, cq+1 are aligned and cq has no neighbors in G−Gk

Shift each vertex gi ∈
⋃r

i=q+1 U(ci) to the right by one.
If two vertices, z0 and z1 are mapped to vk

(d3) If y(z0) = y(z1) = y(cp)
Shift each vertex gi ∈

⋃r
i=q U(ci) to the right by one.

Perform the location calculation for z0 and z1 again.
(d4) If k < m and z1, cq, cq+1 are aligned and cq has no neighbors in G−Gk

Shift each vertex gi ∈
⋃r

i=q+1 U(ci) to the right by one.
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Fig. 4. Four possible degenerate cases: type d1, type d2, type d3, type d4.

2.4 Proof of Correctness

Lemma 2. Let Ck = (u = c1, c2, ..., cr = v) be the exterior face of Gk after the
kth placement step. Let α(cj , cj+1) denote the angle of the vector cjcj+1, for
1 ≤ j ≤ r − 1. The following holds for 2 ≤ k ≤ m − 1:

1. α(cj , cj+1) lies in [−45◦, arctan−1/2] ∪ {0} ∪ [45◦, 90◦]. It can not lie in
(−45◦, arctan−1/2] if cj has a neighbor in G − Gk.

2. If cj ∈ Ck, cj /∈ {c1, cr} s.t. cj does not have a neighbor in G − Gk, then:
(a) If Low(cj−1, cj) = j − 1 then α(cj , cj+1) = 90◦; else α(cj−1, cj) = −45◦.
(b) If α(cj , cj+1) = 90◦ then α(cj−1, cj) 6= 90◦.
(c) If α(cj , cj+1) = −45◦ then α(cj−1, cj) 6= −45◦.

Proof Sketch: Due to space limitations the proof of this lemma is left out of
this extended abstract.1 ut

Preserving Planarity Let only one vertex, z0, be mapped to vk. If (z0, cj)
is an edge in Gk for some cj ∈ Ck−1, then the placement algorithm and the
previous lemma guarantees that −90 < α(z0, cj) < −45, for j 6= p, j 6= q.

1 The proof of this lemma can be found in the full version of the paper, available at
www.cs.arizona.edu/~cesim/dual.ps.
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Fig. 5. The vertices pointed to by the arrows must lie in the indicated area. The dashed
lines indicate open boundaries that are not included in the area.

Then no crossing is created between a new edge (z0, cj) and the edges of Ck−1.
Because such a crossing would imply that there exists j′ < j s.t. cj′ ∈ Ck and
α(cj′ , cj) < −45. But this is impossible by the first part of the above lemma.
The same idea applies to the case where |vk| = 2. Then the following corollary
holds:

Corollary 1. Insertion of the vertex(vertices) mapped to vk, at the kth place-
ment step, where 2 ≤ k ≤ m preserves planarity.

Strictly Convex Faces Let |vk| = 1 and z0 be the vertex mapped to vk.
Let Fj = (cj , cj+1, cj+2, z0) be a quadrilateral face created after the insertion of
z0. If Low(cj , cj+1) = j + 1, then by the previous lemma α(cj , cj+1) = −45◦.
Fig. 5(a) shows the area where z0 and cj+2 must lie. If Low(cj , cj+1) = j, then
α(cj+1, cj+2) = 90◦. Fig. 5(b) shows the area where z0 and cj+2 must lie in this
case. Both cases imply that Fj = (cj , cj+1, cj+2, z0) is strictly convex.

If |vk| = 2 and z0, z1 are mapped to vk, the placement algorithm requires
that cp must lie in the area shown in Fig. 5(c), which implies that the newly
created face is strictly convex. The following corollary holds:

Corollary 2. The newly created faces after the insertion of the vertex(vertices)
mapped to vk, at the kth placement step, where 2 ≤ k ≤ m, are strictly convex.

Shifting Preserves Planarity and Strictly Convex Faces The above discussion
shows that after the insertion of the vertex(vertices) at the kth placement step,
no new edge crossings are created and all the newly added faces are strictly
convex. In order to complete the proof of correctness we only need to prove that
the same holds for shifting also:

Lemma 3. Let Ck = (u = c1, c2, ..., cr = v) be the exterior face of Gk after the
kth placement step, where 2 ≤ k < m. For any given j, where 1 ≤ j ≤ r, shifting
the vertices in

⋃r
i=j U(ci), to the right by s units preserves the planarity and the

strictly convex faces of Gk.

Proof Sketch: The claim holds trivially for k = 2. Assume it holds for k′ = k−1,
where 2 ≤ k′ < m − 1. We assume |vk| = 1. The case where |vk| = 2 is similar.



Let z0 be the vertex mapped to vk and cp, cq ∈ Ck−1, respectively be the first
and the last neighbor of z0in Gk−1.

If j ≤ p then by the inductive assumption the planarity of Gk−1 and the
strictly convex faces of Gk−1 are preserved. The faces introduced by z0 shifts
rigidly to the right, which, by the previous corollaries, implies that Gk is planar
and all its faces are strictly convex.

If j > q, then by the inductive assumption the planarity of Gk−1 and the
strictly convex faces are preserved. Since neither z0 nor any of its neighbors in
Gk−1 are shifted the lemma follows.

If shifting the newly inserted vertex z0, we inductively apply the shifting to
j′ = Low(cp, cp+1) + 1 in Gk−1. By the inductive assumption the planarity and
strictly convex faces are preserved for Gk−1. Since we applied a shifting starting
with j′ then, all the faces except the first one are shifted rigidly to the right,
which implies that those faces are strictly convex. Then the only problem could
arise with the leftmost face. If Low(cp, cp+1) = p, then cp+1, cp+2 and z0 are all
shifted to the right by the same amount. Since initially the face (cp, cp+1, cp+2, z0)
was strictly convex, it continues to be so after shifting those three vertices also.
In the case where Low(cp, cp+1) = p + 1, the only shifted vertices are z0 and
cp+2. Again shifting those two vertices does not violate the convexity of the face.

If j = q, the situation is very similar to the previous case, except now the
only deformed face is the rightmost face, instead of the leftmost one. The same
idea applies to this case also, i.e., given that initially the face is strictly convex,
it remains so after shifting. ut

2.5 Grid Size

Lemma 4. The algorithm requires a grid of size at most (2n − 4) × (2n − 4).

Proof Sketch: If no degeneracies are created then the exact grid size required
is (n − 1) × (n − 1). We show that each degenerate case can be associated with
a newly added quadrilateral face of G.

Degenerate case of type d1 is associated with the face (cp, cp+1, cp+2, z0).
Degenerate case of type d2 at some step k of the algorithm, is associated with
a face (z0, cq, cq+1, gi), where gi is a vertex that will be added at some step
k′ > k of the algorithm. We know that such a face exists, since k < m, cq has
no neighbors in G − Gk and each face under consideration is a quadrilateral.
Similar argument holds for degenerate case of type d4. Finally degenerate case
of type d3 is associated with the face (cp, cq, z1, z0). Fig. 4 shows all four types
of degeneracies that can occur. Note that each quadrilateral face is associated
with at most one degeneracy.

Since an FQ graph G with n vertices has n − 3 inside faces, the placement
algorithm requires grid size of at most (2n − 4) × (2n − 4). ut

Final Shifting Let (u, v, w, w′) be the outer face of G. The placement al-
gorithm and Lemma-2 imply that the outer face is the isosceles right triangle
4uvw′ and that w lies on the line segment (v, w′). One final right shift is needed



Fig. 6. Dodecahedral graph and its dual representation. The filled-in vertices and solid
edges represent the primal graph; the empty circles and dashed edges represent the dual.

to guarantee that the outer face (u, v, w, w′) lies on a strictly concave quadrilat-
eral. For this we just shift v to the right by one. As a result we can draw the edge
(v, w′) as a straight-line segment. In order to draw the edge (u, w), we place a
bend point at (x(w′)− 1, y(w′) + 2), where x(w′) and y(w′), respectively denote
the x and y coordinates of the vertex w′. We connect the bend point with u and
w. Then the total area required is (2n − 2) × (2n − 2) and Theorem-1 follows.

3 Implementation

We have implemented our algorithm to visualize 3-connected planar graphs and
their duals using the LEDA/AGD libraries [10]. Finding a suitable canonical la-
beling takes linear time [9]. We make use of the technique introduced by [5] to do
the placement step. It is based on the fact that storing relative x-coordinates of
the previously embedded vertices is sufficient at every step. Then the placement
step also requires only linear time. Overall, the algorithm runs in linear time.
Fig. 6 shows the primal/dual drawing we get for the dodecahedral graph and
Fig. 7 shows the primal/dual drawing of an arbitrary 3-connected planar graph.
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