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Abstract. Graph and cartographic visualization have the common objective to
provide intuitive understanding of some underlying data. We consider a problem
that combines aspects of both by studying the problem of fitting planar graphs
on planar maps. After providing an NP-hardness result for the general decision
problem, we identify sufficient conditions so that a fit is possible on a map with
rectangular regions. We generalize our techniques to non-convex rectilinear poly-
gons, where we also address the problem of efficient distribution of the vertices
inside the map regions.

1 Introduction

Visualizing geographic maps may require showing relational information between enti-
ties within and between the map regions. We study the problem of fitting such relational
data on a given map. In particular, we consider the problem of fitting planar graphs on
planar maps, subject to natural requirements, such as avoiding edge crossings and en-
suring that edges between points in the same region remain in that region.

Fitting planar graphs on planar maps is related to cluster planarity [2,3,12]. In
cluster-planar drawing we are given the graph along with a clustering and the goal
is to find disjoint regions in the plane for the clusters for a valid plane realization of
the given graph. The realization is valid if all the vertices in a given cluster are placed
in their corresponding region, and there are no edge-crossings or edge-region crossings
(i.e., edges crossing a region in the map more than once).

In our setting (fitting graphs on maps), we are given both the graph and the regions
embedded in the plane, and must draw the clusters in their corresponding regions. The
regions form a proper partition of the plane, such that the adjacency between two clus-
ters is represented by a common border between their corresponding regions.

1.1 Related Work

The concept of clustering involves the notion of grouping objects based on the sim-
ilarity between pairs of objects. In graph theory, this notion is captured by a clustered
graph. Clustering of graphs is used in information visualization [17], VLSI design [15],
knowledge representation [18], and many other areas.

Feng et al. defined c-planarity as planarity for clustered graphs [13]; also see Sec-
tion 2 for related definitions. For clustered graphs in which every cluster induces a con-
nected subgraph, c-planarity can be tested in quadratic time. Without the connectivity
condition, the complexity of testing c-planarity is still an open problem. Algorithms for
creating regions in the plane in which to draw c-planar graphs have also been studied.
Eades et al. [10] presented an algorithm for constructing c-planar straight-line draw-
ings of c-planar clustered graphs in which each cluster is drawn as a convex region,



while Angelini et al. [1] show that every such c-planar clustered graph has a c-planar
straight-line drawing where each cluster is drawn inside an axis-aligned rectangle.

Many visualizations take advantage of our familiarity with maps by producing
map-like representations that show relations among abstract concepts. For example,
treemaps [24], squarified treemaps [5] and news maps represent hierarchical informa-
tion by means of space-filling tilings, allocating area in proportion to some metric. Con-
cept maps [8] are diagrams showing relationships among concepts. Somewhat similar
are cognitive maps and mind-maps that represent words or ideas linked to and arranged
around a central keyword. GMap [17] uses the geographic map metaphor to visual-
ize relational data by combining graph layout and graph clustering, together with the
creation and coloring of regions/countries.

Also related is work on contact graphs, where vertices are represented by simple
interior-disjoint polygons and adjacencies are represented by a shared boundary be-
tween the corresponding polygons. For example, every maximally planar graph has a
contact representation with convex polygons with at most six sides, and six sides are
also necessary [9]. Of particular interest are rectilinear duals, where the vertices are
represented by simple (axis-aligned) rectilinear polygons. It is known that 8 sides are
sometimes necessary and always sufficient [16,22,26]. If the rectilinear polygons are
restricted to rectangles, the class of planar graphs that allows such rectangular duals
is completely characterized [21,25] and can be obtained via bipolar orientation of the
graph [14]; see Buchsbaum et al. [6] and Felsner [11] for excellent surveys.

1.2  Our Contributions

We first consider the question of testing whether a given planar clustered graph fits
on a given planar map and show that the decision problem is NP-hard, even in the case
where the map is made of only rectangular regions and each region contains only one
vertex. Then we provide sufficient conditions that ensure such a fit on a rectangular
map. Finally, we generalize the fitting techniques to rectilinear maps with rectangles,
L-shaped and T-shaped polygons. In particular, we describe an efficient algorithm for
distributing vertices appropriately in the case of maps with L-shaped polygons.

2 Preliminaries

In this section we introduce definitions used throughout the paper and then describe the
properties of clustered graphs considered in the paper.

Let G = (V, E) be a planar graph, with vertex set V partitioned into disjoint sets
V ={V1,...,Vi}. We call the pair C = (G, V) a planar clustered graph. We consider
the following partition of the edges of GG that corresponds to the given partition of
vertices V = {Vi,...,Vi}. Let E;, for each i, 1 < i < k be the set of edges in E
between two vertices of V; and let E,,.., be the set of all the remaining edges in E.
Note that E = F1UF>U. . .UEU Ejpter. Wecall G; = (V, E;), 1 <1 < k, a cluster
of G, the edges of F;, 1 < i < k, the intra-cluster edges and the edges of F;., the
inter-cluster edges.

The cluster-graph of a clustered graph C' = (G, V) is the graph Go = (V,€),
where the edge (V;,V;) € £,1 <4,j < k, i # j if there exists an edge (u, w) in G so
that u € V; and w € Vj. A clustered graph C' = (G, V) is said to be connected (resp.
biconnected) if each of G;, 1 < i < k, is a connected (resp. biconnected) graph.



A drawing of a planar clustered graph C = (G, V) is a planar straight-line drawing
of G where each cluster GG; is represented by a simply-connected closed region R;
such that R; contains only the vertices of GG; and the drawing of each edge e between
two vertices of GG; is completely contained in R;. An edge e and a region R have an
edge-region crossing if the drawing of e crosses the boundary of R more than once.
A drawing of a planar clustered graph C' is c-planar if there is no edge crossing or
edge-region crossing. If C' has a c-planar drawing then we say that it is c-planar.

A polygonal map M is a set of interior-disjoint polygons on a plane. A dual graph
G of M is a graph that contains one vertex for each polygon of M. Two vertices of
Gy are connected by an edge if the corresponding polygons have a non-trivial common
boundary. Given a planar graph G/, a polygonal map M is called a contact map of Gy
if Gps represents the dual graph of M. Let C' = (G, V) be a planar clustered graph. A
polygonal map M which represents a contact map of the cluster-graph G¢ is said to
be compatible with C'. Notice that this definition yields a correspondence between the
clusters of C' and polygons of M. In this paper we are interested in determining whether
each cluster G; of C can be drawn with straight-line edges inside its corresponding
polygon in M, so that there is no edge crossing and no edge-region crossing. In case
such a drawing exists we say that planar clustered graph C has a straight-line planar
fitting, or just planar fitting on map M.

It is natural to consider all planar graphs, regardless of the clustering they come
with. We preview the construction of a straight-line planar fitting and isolate the prob-
lem we are interested in. Recall that, by the definition of a planar fitting, each cluster has
to be drawn inside a polygon, and there should be no edge crossings and no edge-region
crossings. This implies that a clustered graph that has a planar fitting is also c-planar, so
we consider only c-planar graphs. Unfortunately, the characterization of c-planar graphs
is still an open problem. Thus we restrict ourselves to clustered graphs for which we
know that c-planarity can be efficiently tested. We use the results of Feng et al. [13]
who provide a polynomial-time algorithm to test whether a connected clustered graph
is c-planar. Thus, in the rest of the paper we consider only connected c-planar graphs.

3 Fitting on a Rectangular Map

Here we consider the problem of deciding whether a connected c-planar graph G has a
straight-line planar fitting on a given compatible rectangular map M. We first show that
such a fitting does not always exist. To construct the counterexample we use a wheel
map, which contains four “thin rectangles” that surrounds an inner rectangle; see Fig. 1.

Intuitively, the notion of a thin rectangle will be clear in the following constructions
from the way it is used, but to be more precise, we formally define it. A thin rectangle
is one whose larger side is at least 4 times its
smaller side, i.e., it has aspect ratio at least
4. A thin rectangle is horizontal if its smaller
side is its height; otherwise it is vertical. We
assume all four thin rectangles in a wheel
map have the same size (same length of larger
sides, same length of smaller sides).

Let {V4, ..., Vi } be the set of clusters of
G and let (v;,v;) be an edge of G such that

(a) (b)
Fig. 1. Wheel maps cw (a), ccw (b).
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Fig. 2. (a)—(b) Proximity regions for the doors in a wheel map, (c) a clustered graph and a map
with no fit (the visibility regions of the bridge are highlighted).

v; € Vi, v5 € V;, 1 <4, < k. Then there exists a common boundary between the
polygons representing V; and V; in M. Call the common boundary the door for the
edge (v;,v;). Consider a wheel map W and its dual G which has a simple clustering:
each vertex constitutes a cluster. For the rest of the section we often assume that a wheel
map is associated with this clustered graph. With this consideration in mind, each thin
rectangle of W contains two doors, one for each incident thin rectangle. We define the
entry door to be the one which contains a complete side of the rectangle, and the exit
door to be the one that contains a complete side of a neighboring thin rectangle. We
call a wheel map a clockwise (cw) wheel when going from the entry door to the exit
door in each rectangle requires a clockwise walk through the wheel; see Fig. 1(a). A
counterclockwise (ccw) wheel is defined analogously; see Fig. 1(b).

We now define the notion of “proximity region” for each door inside each thin
rectangle of a wheel map. Given that the thin rectangles of a wheel map are of the same
size, using basic geometry we can define inside each thin rectangle a triangular region
of maximum area where these two conditions hold: (i) the triangular region inside each
thin rectangle contains the entry door of this rectangle; and (ii) for each point inside the
triangle of one of the four thin rectangles, there exists a point inside the triangle of each
other rectangle such that the visibility line between the two points inside any pair of
neighboring rectangles passes through the corresponding door. We call these triangular
regions the proximity regions of the corresponding entry doors; see Fig. 2(a). For each
exit door we can analogously define a quadrangular proximity region; see Fig 2(b). Next
we state a simple observation that follows from these definitions:

Observation 1. Let W be a wheel map and let G be its dual graph. In a straight-line
planar fitting of G the vertices in the thin rectangles either all lie inside the proximity
region of the entry doors, or they all lie in the proximity region of the exit doors. There
exists a straight-line planar fitting in each case.

Proof: The sufficiency follows from the definition of proximity regions. The necessity
follows from the fact that the proximity regions for the entry and the exit doors inside
each thin rectangle are disjoint since the aspect ratio of the thin rectangles is > 4. O

The next lemma shows that fitting a planar clustered graph on a compatible map is
not always possible.

Lemma 1. There exist a planar clustered graph C' = (G, V) and a compatible rectan-
gular map M, so that there is no straight-line planar fitting of C on M.

Proof: Consider a rectangular map M made of two wheel maps (of the same size)
joined together by a thin horizontal rectangle, called a bridge; see Fig. 2(c). We choose



the height of the bridge to be at most the length of the smaller sides in the thin rectan-
gles of the wheels and we attach the bridge in the middle of the neighboring two vertical
rectangles. For each of these two thin rectangles, the visibility region of the bridge is the
set of points in it from which the visibility line to at least one point in the proximity re-
gion of either of the entry or exit door of the rectangle passes through the door between
the bridge and the rectangle. We choose the length of the bridge to be long enough, such
that the two visibility regions for the two rectangles do not overlap.

Let GG be the dual of M: two 4-cycles connected by a path of length two. Assume a
clustering of G where each vertex constitutes a separate cluster. Then G has no straight-
line planar fitting on M. If GG had a straight-line planar fitting I" on M, by Observation 1,
all the vertices inside the thin rectangles of both the wheels must be placed in the prox-
imity regions of the doors in I". But then, there is no feasible position for the vertex that
represents the bridge since the two visibility regions of the bridge do not overlap. O

3.1 Fitting is NP-Hard

We show that deciding if a given planar clustered graph has a planar fitting inside
a given map is NP-hard, even for rectangular maps, with a reduction from Planar-3-
SAT which is known to be NP-complete [23]. Planar-3-SAT is defined analogously
to 3-SAT with the additional restriction that the variable-clause bipartite graph G g
for a given formula F is planar. There is an edge (x;, A;) in G if and only if z; or T;
appears in A;. Knuth and Raghunathan [20] showed that one can always find a crossing-
free drawing of the graph G for a Planar-3-SAT instance, where the variables and
clauses are represented by rectangles, with all the variable-rectangles on a horizontal
line, and with vertical edge segments representing the edges connecting the variables to
the clauses. The problem remains NP-complete when such a drawing is given.

Theorem 1. Let C = (G, V) be a planar clustered graph with a rectangular map M,
compatible with C'. Deciding if C' admits a straight-line planar fitting on M is NP-hard.

Proof: We reduce an instance of Planar-3-SAT to an instance (C, M) of our problem.
Let F' := Ay A ... A A, be an instance of a Planar-3-SAT, where each literal in each
clause A; is a variable (possibly negated) from U = {x1,...,2,}. Let I'r be the
given planar rectilinear drawing for this instance, as defined in [20]. From I'r we first
construct the rectangular map M, then take G as the dual of M, where each vertex
constitutes a separate cluster. We represent each literal by a wheel map (of the same
size) in M: a positive (negative) literal is a cw (ccw) wheel. From the two possible
vertex configurations inside each wheel we take the one in which the corresponding
literal assumes a true value when the vertices inside the thin rectangles of the wheel
lie in the proximity region of the exit doors and the literal assumes a false value when
they lie in the proximity region of the entry doors. Unlike in I'», we use a distinct
wheel for each literal in each clause. For each variable x, we draw the wheels for all
the (positive and negative) literals for x appearing in different clauses in a left-to-right
order, according to the ordering of the edges incident to the corresponding vertices in
I'r. To maintain consistency, we ensure that a true (false) value for a literal = implies a
true (false) value for every other instance of = and a false (true) value for each instance
of 7. This is done by means of thin rectangular bridges between two consecutive literals;
see Fig. 3. The size of the bridges is chosen equal to the thin rectangles in the wheels.
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Fig. 3. Representation of variables.

For each clause A = (xVyV z) of F', with the corresponding vertex lying above the
variables in I'r, we draw vertical rectangles [, l;‘ and [ from the topmost rectangles
Ty, Ty, T, of the wheels for x, y and z, respectively, attached at the end that is not
shared by other thin rectangles. (The case when the vertex lies below the variables in
Iy is analogous.) We place 14, l;‘, 12! 5o that they are completely visible from all the
points in the proximity of the exit doors of T, T, T, respectively. We choose the
length of the rectangles /2, lz‘;‘, 14 so that not all points inside them are visible from any
point of the proximity region of the entry doors of T, T}, T’,, respectively; see Fig. 5.

We then draw a rectangle R for the clause

and attach these three thin rectangles I}, ;' and i 1 /
h X

x
12 to R. For z we attach the vertical rectangle — SRS
lf to the bottom of R, while for each of x and R
1y, we attach horizontal rectangles h;?, hf to R gl
that also touch the vertical rectangles /2 and l;‘
coming from x or y, respectively. A point p in hy
rectangle ' (h}) is reachable from a point g Al ]
inside T, (T},) if there exists a point r inside I
l;‘.‘ or l;‘ such that the two lines pr and rq pass l
through the doors between the corresponding L ¥ LY z
rectangles. The reachable region of h (h;;‘) is Fig. 4. Clause representation.
the set of all points that are reachable from a
point inside the proximity region of the entry door of T’; (T})). Similarly a point p inside
Z‘Z4 is reachable from a point ¢ inside rectangle 7, of the wheel for z if the line pq
passes through the door between the two rectangles. The reachable region of lf is the
set of all points reachable from a point inside the proximity region of the entry door of
T.. Choose the lengths for the horizontal rectangles 7, h?‘;‘ and the vertical rectangles
4, lg‘, 12 so that the reachable regions inside them do not coincide with the entire inside
of these rectangles. For this purpose it is sufficient that the sizes of these rectangles are
comparable to the sizes of the rectangles inside the wheels. Thus the sizes of all the
wheels and other rectangles are polynomial in the size of the Planar-3-SAT instance.

Next we attach the thin rectangles hZ, h;‘, 14 to R in such a way that the areas

visible from the reachable regions of hf, h?’ lf do not have a common intersection,
while every pair of them does have a common intersection; see Fig 4. We now observe
that the size of R does not have to be too big to ensure this. Specifically, we attach (2
to the left half of the bottom line of R and choose the height of R small enough so that
the visible area from its reachable region is only in the left half of R. We also adjust
the vertical distance between the horizontal rectangles h;? and hf and adjust the width
of R so that the areas visible from the reachable regions of 27 and hf do not intersect
in the left half of R but they do intersect in the right half. This can be achieved if for
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Fig. 5. Planar 3-SAT instance and corresponding map fitting instance.

example we take the vertical distance between h and hﬁ to be a constant multiple of
their height, while we take the width of R to be a constant multiple of the length of h‘;‘,
hf. Finally we fill all the unused regions in the map with additional rectangles to get the
final map M. Since the sizes of all the rectangles are constant multiples of each other
and the total size is polynomial in the size of the Planar-3-SAT instance, the coordinates
for the map can be chosen to be polynomial in the size of the Planar-3-SAT instance.

Lemma 2. F is satisfiable if and only if G has a straight-line planar fitting on M.

Proof: Assume first that there exists a straight-line planar fitting I of G on M. We
show that I is satisfiable, i.e., there is a truth assignment for all the variables of F' such
that for each clause A = (z,y, z) of F, at least one of x, y and z is true. Let W, be the
wheel for x. If the vertices in W, are placed inside the proximity regions of the entry
doors, then by construction of M, the vertex in the horizontal rectangle k7 is placed
inside the reachable region. Thus this vertex can see only the highlighted visible area
in Fig. 4 inside the rectangle R for A. However if the vertices in 1V, are placed in the
proximity regions of the exit doors, then the vertex in the horizontal rectangle A% can
be placed outside the reachable region so that it can see the entire interior of R. This
is true for each of the three literals. Since the visible areas of the three literals have no
common intersection, the vertices in the wheel for at least one of z, y and z must be
placed in the proximity region of the exit door. We make each such literal true. This
assignment has no conflict, because of the way the wheels for a particular variable are
attached to each other. Furthermore, this assignment satisfies F'.

Conversely if F is satisfiable, for each clause A = (x,y, z) of F, at least one of z,
Y, z 1s true. Without loss of generality, assume that x is true. Place the vertices in the
wheel of x in the proximity regions of the exit doors. Then the vertex in the hf can
be placed outside the reachable region and it can see the entire interior of R. Place the
vertex for R in the intersection of the areas visible from reachable regions of hﬁ and
1. This ensures that we can place the vertices in the wheel for i and z in the proximity
regions of either the entry doors or the exit doors and we are still able to place the
vertices in rectangles h;;‘, 124, 12 so that all the straight-line edges create no area-region
crossings. This yields the desired straight-line planar fitting of G on M. a

The proof of Lemma 2 completes the NP-hardness proof. Fig. 5 illustrates a 3-SAT
formula, its Planar-3-SAT realization with the conditions of [20], and the corresponding
instance for the map fitting problem (rectangles filling up the holes are not shown). 0O

Note that Bern and Gilbert [4] and recently Kerber [19] obtained NP-completeness
results using similar techniques. In particular, Bern and Gilbert [4] consider the problem
of drawing the dual on top of the drawing of a plane graph G, such that each dual vertex



lies in the corresponding face of GG, while each dual edge is drawn as a straight-line
segment that crosses only its corresponding primal edge. They show that this problem is
NP-complete and the techniques used are similar to ours, as this problem can be thought
of as a special case of fitting a clustered graph on a map, where each cluster consists
of a single vertex. However, we consider the more restricted class of rectangular maps
instead of the generic drawing of a planar graph, and hence the NP-completeness of
our problem is not implied by [4]. Kerber [19] considers the problem of embedding the
dual on top of a primal partition of the d-dimensional cube into axis-aligned simplices
and proved that this problem is NP-complete. In 2D, this problem is also a special case
of our problem, with the exception that in Kerber’s setting edge-region crossings are
allowed. Thus the result in [19] also does not imply our results.

4 Sufficient Conditions for Fitting

We showed in Lemma 1 that not every c-planar connected graph admits a planar straight-
line fitting on a compatible map even if each cluster is a single vertex. The counterexam-
ple relies on two facts: (1) there is a vertex in some cluster (the bridge) that is connected
to vertices in two different clusters (the wheels); (2) its cluster-graph contains two cy-
cles. By considering graphs that do not have at least one of the above characteristics we
show planar straight-line fittings are always possible. In this sense the following two
lemmas give tight sufficient conditions for graphs to admit planar straight-line fittings.

Lemma 3. Ler C = (G, V) be a biconnected c-planar graph. Let M be a rectangular
map compatible with C. If for each vertex v of G, all the vertices adjacent to v through
an inter-cluster edge lie in the same cluster, C has a straight-line planar fitting on M.

Proof: Let I” be a c-planar drawing of C'. Let G1, G, . .., G, be the clusters of C' and
let V = {V1,V5,...,Vi} be the corresponding vertex partition. For each rectangle R;,
1 < i < k, of M representing the cluster G;, denote by O; the ellipse inscribed in R;.
We first place the vertices on the outer boundary of G; in I” on O; as follows. Consider
two adjacent rectangles RR; and ; in M. Letv;,,...,v;. € V;andv;,,...,v;, € V;be
the vertices of V; and V}, incident to the inter-cluster edges between these two clusters,
taken in the order they appear on the outer boundary of G; and G, respectively. Define
pi, p; and pj, p;. to be points of O; and O;, respectively, such that the straight-line

segments p;p; and p;p;- cross the common border of R; and R;, without crossing each

other. Place the vertices vy, , ..., v;, of V; and v, ..., v;, of V; on O; and O;, between
points p;, p; and p;, p}, respectively, so that all the inter-cluster edges between these
vertices cross the common border of R; and I;. Repeat the above procedure for each
pair of adjacent rectangles in M. Since each vertex thus placed is adjacent to a unique
cluster, its position is uniquely defined. For each cluster G;, 1 < i < k, we have thus
placed some vertices on the outer boundary of G; in I" on the ellipse O;. Distribute the
remaining vertices of the boundary of GG; on O;, so that the order of the vertices is the
same as in the boundary of G;. Since the resulting drawing of the outer boundary of
G, is convex and G; is biconnected, apply the algorithm for drawing a graph with a
prescribed convex outer face [7] to complete the drawing of each cluster. a

Lemma 4. Let C = (G, V) be a biconnected c-planar graph. Let M be a rectangular
map compatible with C. If each connected component of cluster-graph G contains at
most one cycle, then C' has a straight-line planar fitting on M.
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Fig. 6. (a) Drawing of G¢, each edge is represented by a strip of width ¢ > 0. (b) Placing the
boundary vertices of the clusters on the corresponding circles. (c) Step 4 of the proof of Lemma 4.

Proof Sketch: Assume that each connected component of G contains at most one cy-
cle. Let vy, ..., vy be the vertices of G that represent clusters G, . . . , G, respectively.
To complete the proof we go through the following steps:

(1) We show that G¢ has a planar fitting on M.

(2) We blow up the drawing of G, so that the edges of G are represented by strips
of width £ > 0, without creating edge-region crossings; see Fig. 6(a). For each
vertex v; of G, we draw a small circle circ(G;) centered at the intersection of the
strip-edges that are adjacent to v;.

(3) We draw the boundary of G; on the circle circ(G;), ¢ = 1,...,k, so that the
inter-cluster edges, when drawn with straight-line segments, intersect neither the
boundaries of the clusters, nor each other; see Fig. 6(b).

(4) Since the boundary of each G; is a convex polygon and G; is biconnected, we can
apply the algorithm for drawing a graph with a prescribed convex outer face [7] to
complete the drawing of the clusters; see Fig. 6(c).

While steps (2) and (4) are straight-forward, steps (1) and (3) need to be proved. We
provide a detailed proof of step (1) below. Step (3) is intuitively easy, however, its exact
proof is quite technical; we omit the proof for this step here due to the space constraints.

Step (1). We show that Go = (Vo, E¢) has a straight-line planar fitting on M. Con-
sider first the case when G is a tree and let v; € V¢ be the root of G. We prove
that even if the position of v; is fixed in its corresponding rectangle R;, we can place
the remaining vertices of G¢ in their corresponding rectangles so that the resulting
straight-line drawing is a planar fitting of G¢ on M. Let v, ..., vy be the children of
vy and let Ry,. .., Ry be the corresponding rectangles of M. Place vs, ..., v; inside
Ry, ..., Ry, respectively so that the straight-line edges (v1,v;), 2 < ¢ < f cross the
common boundary of R; and R;. Continue with the children of va, ..., vy, recursively.

Assume now that each connected component of G = (Vz, E¢) contains at most
one cycle. We show how to draw a single connected component of G¢. Let vy, . .., v, €
Ve induce the unique cycle of G¢ and let Ry, . . . , R, be the rectangles that correspond
to them, so that R; and R(; 1) mod(m+1), 0 < 7 < m, are adjacent. Place v;, 0 <t < m
inside R; such that for any point p € R(;{ 1) mod(m+1), Segment pu; crosses the com-
mon boundary of R; and R(;41)mod(m+1)- (For example placing v; right on the door
suffices.) The removal of the edges of this cycle results in several trees. Root the trees at
the vertices vy, . . . , U, to which they are adjacent and apply the procedure described
in the first part of the proof. This completes the construction. ad



Putting together the results in this section we obtain the following theorem:

Theorem 2. Let C' = (G, V) be a biconnected c-planar graph. Let M be a rectangular
map compatible with C. If (a) for each vertex v of G, all the vertices adjacent to v
through an inter-cluster edge lie on the same cluster, or (b) each connected component
of cluster-graph G ¢ contains at most one cycle, then C' has a straight-line planar fitting
on M. Moreover, there exist a c-planar graph C and a compatible map M which do
not fulfill condition (a) and (b) and do not admit a planar straight-line fitting.

5 Fitting Graphs on Rectilinear Maps

In this section we give a short overview of our results for more general rectilinear maps.
It is known that only a restricted class of planar graphs can be realized by rectan-
gular maps. For general planar graphs, 8-sided polygons (T-shapes) are necessary and
sufficient for contact maps [16]. In this section, we assume that the input is a recti-
linear map, with rectangles, L- and T-shapes, together with a c-planar graph G with a
cluster-graph G¢. The first condition that we require is that the subgraph induced by
the inter-cluster edges is a matching. From Lemma 3 this condition is sufficient for
rectangular maps. Now, we extend this to L-shaped and T-shaped polygons (maps). We
impose several conditions under which we prove the existence of a fitting. Because of
the presence of concave corners, we impose our second condition: none of the clusters
contains a boundary chord, i.e., a non-boundary edge between two boundary vertices.

The idea is to apply the algorithm for drawing a graph with a prescribed convex
outer face [7]. We partition the polygons into convex pieces. Since the polygons form a
contact map, for each common boundary of adjacent polygons there is at least one edge
between the corresponding clusters. Our last condition restricts this further: between
any two adjacent clusters there exist at least two independent inter-cluster edges. We call
a graph in which every pair of adjacent clusters has this property doubly-interconnected.

Note that the common boundary of two adjacent polygons contains at most two con-
cave corners, one in each polygon. We place the vertices next to the common boundary
on both sides of these concave corners. This ensures that the cycle spanned by the
boundary vertices of the cluster is completely within the corresponding polygon and
there are at most two concave corners along the cycle. Let a and b be the vertices at
these corners; see Fig. 7. We choose a third boundary vertex c lying opposite a and b.
Straight-line cuts between a, ¢ and b, ¢ define 3 convex regions. Now we compute an
(a ~ c¢)-path and a (b ~~ ¢)-path. These paths cannot have shortcuts, where a shortcut
of a path P is an edge between vertices nonadjacent in P, so that we can place the
vertices on these two paths on the two cuts between a, c and b, c. Note that such a path
should not contain any other boundary vertex, already placed elsewhere.

The above strategy for T-shaped polygons can also be applied to L-shaped poly-
gons, where the straight-line segment splitting this polygon into two convex parts is
between the concave corner of the L-shaped polygon and its opposite convex corner of
the neighboring polygon. Together, these yield the following theorem.

Theorem 3. Let G be a doubly-interconnected and biconnected c-planar graph such
that the inter-cluster edges of G form a matching and there is no boundary chord in any
cluster. Then there exists a straight-line planar fitting of G on any compatible map with
rectangular, L-shaped, or T-shaped polygons.
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Fig. 7. lllustrating how vertices on the boundary of a T'-shape are placed and how the cluster is
partitioned by an (a ~~ c)-path and a (b ~> c¢)-path, such that it fits into three adjacent convex
polygons with the paths as common boundaries.

Note that any algorithm that distributes vertices inside non-convex regions while
preserving cluster-planarity must distribute the vertices among the convex components
of the regions. It is only natural to try to make such distribution balanced. We define a
measure called "imbalance” which captures the difference between the geometric parti-
tion of the non-convex regions into convex regions (e.g., region area) and the partition of
the clusters into subclusters (e.g., subcluster size) corresponding to the convex regions.

First we consider the distribution inside one L-shaped polygon partitioned into two
pieces by a straight-line cut; then we use this result to minimize the maximum imbal-
ance in all L-shaped polygons in the map. We prove that the global imbalance mini-
mization problem can be solved optimally, using dynamic programming and min-max
shortest paths. These techniques are interesting by themselves.

Theorem 4. Let G be a connected c-planar graph, G be the cluster-graph of G and
let M be a rectilinear map of G with six-sided polygons such that M represents the
contact map of G¢. Then one can split the regions of M in O(n*) time into convex
shapes and distribute the vertices and faces of the clusters within the regions, such that
the maximum imbalance is minimized.

6 Conclusion and Future Work

We showed that fitting planar graphs on planar maps is NP-hard. The proof involves
skinny regions; it is natural to ask whether the problem becomes easier if all regions are
“fat”. We presented necessary and sufficient conditions for the construction of planar
straight-line fitting on rectangular map, for c-planar graphs with biconnected clusters.
These conditions are tight, in the sense that violating them makes it possible to con-
struct counterexamples. Relaxing the biconnectivity requirement is an open problem.
Finally, we gave a rather restricted set of sufficient conditions for fitting planar graphs
on maps with non-convex regions. It would be worthwhile to investigate whether these
conditions can be relaxed. We gave an algorithm for finding a fitting with a “balanced
distribution” of the vertices. Another interesting question is whether an exact bound on
vertex resolution can be guaranteed.
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