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Abstract. We study the maximum differential graph coloring problem,
in which the goal is to find a vertex labeling for a given undirected graph
that maximizes the label difference along the edges. This problem has its
origin in map coloring, where not all countries are necessarily contiguous.
We define the differential chromatic number and establish the equivalence
of the maximum differential coloring problem to that of k-Hamiltonian
path. As computing the maximum differential coloring is NP-Complete,
we describe an exact backtracking algorithm and a spectral-based heuris-
tic. We also discuss lower bounds and upper bounds for the differential
chromatic number for several classes of graphs.

1 Introduction

The Four Color Theorem states that only four colors are needed to color any
map so that no neighboring countries share the same color. This theorem assumes
that each country forms a contiguous region in the map. However, if countries
in the map are not all contiguous then the result no longer holds [6]. Instead,
this necessitates the use of a unique color for each country to avoid ambiguity.
As a result, the number of colors needed is equal to the number of countries.

Given a map, we define the country graph G = {V,E} to be the undirected
graph where countries are nodes and two countries are connected by an edge
if they share a nontrivial boundary. We then consider the problem of assigning
colors to nodes of G so that the color distance between nodes that share an edge
is maximized. Figure 1 gives an illustration of this map coloring problem.

As not all colors make suitable choices for country colors, a good color palette
is often a gradation of certain “map-like colors”. Furthermore, if the final result
is to be printed in black and white, then the color space is strictly 1D. We
therefore make the assumption that the colors form a line in the color space,
and model our map coloring problem as one of node labeling of the graph, where
the available labels are from set C of all permutations {1, 2, · · · |V |}}. This brings
us to the maximum differential graph coloring problem, in which we aim to find a
vertex labeling for a given undirected graph that maximizes the label difference
along the edges in the graph.

More formally, we are looking for a labeling function, a bijection c : V →
{1, 2, . . . , |V |}, that solves the following MaxMin optimization problem:
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Fig. 1. Graph Drawing Symposia (1994-2004) co-authorship map with a single-hue color
palette from ColorBrewer [2]: a random color assignment above and optimal below.
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max
c∈C

min
{i,j}∈E

wij |c(i)− c(j)| (1)

Here wij is a positive weight representing the importance of keeping the differ-
ence of the labels between nodes i and j large. To simplify the problem further,
throughout this paper we assume wij = 1.

Figure 2 illustrates the graph coloring problem. We use a color palette of yel-
low to blue, indexed from 1 to 9. Figure 2(a) shows a map with 9 countries, with
one non-contiguous country (its two components are at the center, and to the far
right of the map). Figure 2(b) shows the corresponding country graph. The node
labeling is not optimal, with many adjacent nodes having label difference of 1.
Figure 2(c) gives the optimal node labeling, with a minimal label difference of 3.
The map in Figure 2(a) is in fact colored using this optimal coloring scheme,
which gives distinctive colors for neighboring countries.

In this paper we define the differential chromatic number and show a cor-
respondence between the maximum differential graph coloring problem and the
Hamiltonian path problem in the complement graph. We also provide exact and
heuristic algorithms for computing good solutions. In Section 3 we establish the
relationship between this problem and that of finding a k-Hamiltonian path. Sec-
tion 4 gives an exact algorithm and compares it with a heuristic algorithm on
a number of well known graphs. Section 5 gives results for some special graphs.
We conclude the paper with Section 6.

2 Related Work

The problem of maximum differential coloring of graphs arises in the context
of coloring a map in which not all regions are necessarily contiguous [6, 7]. A
variation of the differential graph coloring problem was studied by Dillencourt
et al. [4], under the assumption that all colors in the color spectrum are available.
This makes the problem continuous rather than discrete. A heuristic algorithm
based on the force-directed model is used to select |V | colors as far apart as
possible in the 3-dimensional color space. However this algorithm cannot be used
directly for the general map coloring problem, as maps are typically colored with
“map-like colors”, often light, pastel colors which come from a very restricted
subset of the color spectrum. It may be possible to adapt the algorithm and apply
it to a lower-dimensional color manifold, but because the algorithm is greedy it
is more likely to converge to local minimum in lower dimensional space.

Finding a permutation that minimizes the labeling differences along the edges
is well-studied problem in the context of minimum bandwidth or wavefront re-
duction ordering for sparse matrices. It is known that the bandwidth problem
is NP-complete, with a reduction from 3SAT dating to 1975 [11]. Moreover, it
is NP-complete to find any constant approximation, even when restricting the
problem to trees [1, 15]. A number of effective heuristics for that problem have
been proposed [8, 9, 13].

The complement of the bandwidth problem, that of maximizing the label-
ing difference along the edges, is the less well-known antibandwidth problem.

3
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Fig. 2. An illustration of the graph coloring problem and its relation to a k-Hamiltonian
path. A yellow to blue coloring scheme (indexed from 1 to 9) is used; nodes are labeled by
color indices and edges are labeled with the absolute difference of of the adjacent nodes.
(a) An input map. (b) The country graph G corresponding to the input map; note that
many adjacent nodes have very similar colors. (c) An optimal 3-differential coloring of the
country graph. (d) The complement graph Ḡ corresponding to G and a 2-Hamiltonian
path. The Hamiltonian path {1, 2, . . . , 9} is shown with orange arrows, and edges with
labeling difference of 2 are shown as blue dashed lines. Note that the 2-Hamiltonian path
of Ḡ is such that any two nodes of labeling difference ≤ 2 form an edge of Ḡ.

Not surprisingly, it is also NP-Complete as shown in 1984 [10]. Exact values
for the antibandwidth are known for some Hamming graphs [5], as well as for
meshes [14], hypercubes [12,16], and complete k-ary trees for odd values of k [3].

There have been definitions for a graph being k-edge Hamiltonian and k-
vertex Hamiltonian in the literature [17], which are defined as the graph having
a Hamiltonian cycle after removing any k edges or vertices, respectively. These
concepts, though related, are different from our definition of k-Hamiltonian path,
introduced in the next section.
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3 Maximum Differential Coloring and Hamiltonian Path

Let the undirected graph of interest be G = {V,E}. We denote Ḡ as the com-
plement of graph G, defined as Ḡ = {V, Ē}, where Ē = {{i, j}|i 6= j, i, j ∈
V, and {i, j} /∈ E}. In other words, Ḡ is the graph containing all nodes in G,
and all edges that are not in G. We now formally define the maximum differential
coloring problem.

Definition 1. A coloring of the nodes of G is a bijection c : V → {1, 2, . . . , |V |}.
We denote the set of all colorings C(G).

Definition 2. A k-differential coloring of G is one in which the absolute coloring
difference of the endpoints for any edge is k or more. We denote the set of
all such k-differential colorings DC(G, k) = {c | c ∈ C(G), |c(i) − c(j)| ≥
k for all {i, j} ∈ E}.

Definition 3. A graph is k-differential colorable if DC(G, k) 6= ∅.

Definition 4. If a graph is k-differential colorable, but not (k + 1)-differential
colorable, it has a differential chromatic number k, denoted as dc(G) = k.

Definition 5. A Hamiltonian path of G is a bijection p : {1, 2, . . . , |V |} → V ,
such that {p(i), p(i + 1)} ∈ E for all i = 1, 2, . . . , |V | − 1. We denote the set of
all Hamiltonian paths H(G).

The key insight in understanding the maximum differential coloring comes
from observing a good differential coloring scheme. For example, in Figure 2(c),
the minimum labeling difference between any two adjacency nodes is 3. This
means that any two nodes with labeling difference of ≤ 2 can not form an edge in
G, in other word they must form an edge in the complement of the graph, shown
in Figure 2(d). Therefore the list of nodes induced by this coloring scheme of G,
with labels {1, 2, . . . , |V |}, forms a Hamiltonian path in Ḡ, shown in Figure 2(d)
with orange arrows. Furthermore, this Hamiltonian path is such that any two
nodes along the path with labeling difference of 2 are also connected by an edge
of Ḡ, shown in Figure 2(d) with dashed lines.

This observation leads to a natural extension of the concept of Hamiltonian
path, which we call a k-Hamiltonian path.

Definition 6. A k-Hamiltonian path (k ≥ 1) of G is a Hamiltonian path, such
that each i-th node on the path is connected to the j-th node, if |i−j| ≤ k. We de-
fine the set of k-Hamiltonian paths as H(G, k) = {p|p ∈ H(G), and {p(i), p(j)} ∈
E if 0 ≤ i, j ≤ |V | and |i− j| ≤ k}. Clearly H(G) = H(G, 1).

Based on our previous discussion, we can relate the k-differential coloring
problem to that of finding a (k − 1)-Hamiltonian path.

Theorem 1. A k-differential coloring (k ≥ 2) of a graph G exists if and only if
a (k− 1)-Hamiltonian path exists in the complement of G, i.e., DC(G, k) 6= ∅ if
and only if H

(
Ḡ, k − 1

)
6= ∅. Furthermore, the inverse function of each element

of DC(G, k) is in H
(
Ḡ, k − 1

)
, and vice visa.

5



Proof. Suppose a k-differential coloring c exists for G. Define the path, p = c−1,
so that it visits the vertices of the graph in order of their color index (i.e., the
first vertex is that with color 1, the second is that with color 2 and so on).
Consider two nodes u = p(i) and v = p(j) such that |i − j| ≤ k − 1. Since
the color difference of these two nodes in the original graph, |c(u) − c(v)| =
|i − j| ≤ k − 1, by the definition of k-differential coloring (u, v) is not an edge
of G, hence {u, v} = {p(i), p(j)} is an edge of Ḡ. It follows that p = c−1 is a
(k − 1)-Hamiltonian path.

Conversely, suppose a (k − 1)-Hamiltonian path p exists for Ḡ. Define a
coloring c = p−1, where the color index is given by the order in which a vertex
appears in the path (i.e., color 1 is assigned to the first vertex along the path,
color 2 to the second, and so on). Consider any edge {u, v} ∈ E. We prove that
|c(u)− c(v)| ≥ k. Assume that |c(u)− c(v)| < k. Let i = c(u) and j = c(v), then
|i− j| < k, and u = c−1(i) = p(i) and v = c−1(j) = p(j). By the definition of a
(k− 1)-Hamiltonian path, (u, v) must be an edge of Ḡ, which is a contradiction
with the fact that {u, v} ∈ E. It follows that |c(u) − c(v)| ≥ k, and so c = p−1

is a k-differential coloring of G. ut

This theorem immediately gives an upper bound for the differential chromatic
number of a graph based on its maximum degree:

Corollary 1. A graph of maximum degree ∆(G) has a differential chromatic
number of at most |V | −∆(G).

Proof. Ḡ must have a node with degree |V | − 1 − ∆(G), therefore H(Ḡ, |V | −
∆(G)) = ∅, or by Theorem 1 DC(G, |V | −∆(G) + 1) = ∅. ut

A special case of differential coloring is finding a scheme with maximum
difference of 2 or more. Clearly:

Corollary 2. Finding a 2-differential coloring of a graph G is equivalent to
finding a Hamiltonian path of Ḡ.

Given the equivalence between 2-differential coloring and Hamiltonian path,
a number of well known results for Hamiltonian path can immediately be used
to give results on 2-differential coloring.

Theorem 2. (Ore’s Theorem) A graph with more than 2 nodes is Hamiltonian
if, for each pair of non-adjacent nodes, the sum of their degrees is |V | or greater.

Corollary 3. A graph with more than 2 nodes is 2-differential colorable if, for
each pair of adjacent nodes, the sum of their degrees is |V | − 1 or less.

Theorem 3. (Dirac’s Theorem). A graph with more than 2 nodes is Hamilto-
nian if each node has degree |V |/2 or greater.

Corollary 4. A graph with more than 2 nodes is 2-differential colorable if each
node has degree |V |/2− 1 or less.

6



Corollaries 3-4 confirm the intuition that a sparser graph has a better chance
of being more differential colorable.1 The flip side of this intuition is that the
complement graph needs to be denser. For a graph to be k-colorable, the com-
plement graph must be well connected. The next theorem follows from a result
in [12]:

Theorem 4. The complement of a k-differential colorable graph is (k − 1)-
connected.

Given the connection between finding a 2-differential coloring and a Hamil-
tonian path, it is not difficult to prove directly that the maximum differential
coloring problem is NP-Complete. An equivalent result was established in 1984
in the context of the antibandwidth problem [10].

4 Algorithms for Maximum Differential Coloring

Theorem 1 provides a way to check whether a graph is k-differential colorable.
The following kpath algorithm attempts to find a k-Hamiltonian path of Ḡ =
{V, Ē} from a given node i. Before calling kpath the k-Hamiltonian path is
initialized as p = ∅. Each call to kpath recursively tries to add a neighbor to the
last node in the path, and checks that this maintains the k-path condition. If the
condition is violated, the next neighbor is explored, or the algorithm backtracks.
If a k-Hamiltonian path of Ḡ is found by the algorithm, we know that the graph
G is (k + 1)-colorable.

As the exact algorithm requires exponential time, it is impractical for large
graphs, where heuristic algorithms might be a better choice. Gansner et al. [6]
proposed a heuristic based on a relaxation of the discrete MaxMin problem (1)
into a continuous maximization problem of 2-norm:

max
∑
{i,j}∈E

wij(ci − cj)2, subject to
∑
i∈V

c2i = 1 (2)

where c ∈ R|V |. This continuous problem is solved when c is the eigenvector
corresponding to the largest eigenvalue of the weighted Laplacian of the graph.
Once (2) is solved, the ordering defined by the eigenvector is used as an ap-
proximate solution for the MaxMin problem. This is followed by a greedy re-
finement algorithm which repeatedly swaps pairs of vertices, provided that the
swap improves the coloring scheme. We call this algorithm GSpectral (Greedy
Spectral). Table 1 gives the chromatic number of some well-known graphs found
by kpath, as well as an estimate of the differential chromatic number obtained
by GSpectral. The exact algorithm kpath can be prohibitively expensive even
for small graphs. For example, on the 60-node football graph (skeleton graph
1 Even planar graphs, which have average degree less than 6, may be tough to color

well. Consider a star graph, where one vertex is connected to every other vertex in
the graph. Regardless of the coloring, at least one pair of nodes will have a difference
of at most one, thus showing that dc(G) = 1.

7



Input: Ḡ, i, p (initialized to ∅ on first entry)
Output: p
if i ∈ p, or i is not connected with the last k nodes in p then

return ∅;
end
p = p ∪ {i};
if |p| = |V | then

return p;
end
foreach neighbor node j of i do

if kpath(Ḡ, j, p) 6= ∅ then
return p;

end

end
p = p− {i};
return ∅;

Algorithm 1: kpath

of a truncated icosahedron), one week of CPU time was not enough to find the
exact differential chromatic number, whereas the greedy spectral algorithm gives
a lower bound of 18 in a few milli-seconds. We note that the GSpectral algo-
rithm often finds good solutions, though it rarely matches the optimal solution.
We also tested GSpectral on larger grid graphs for which the differential chro-
matic number is known; see Section 5. For grid10 and grid20 graph, it gives
an estimate of 30 and 124, and the actual differential chromatic numbers are 45
and 190, respectively. In both case the CPU time for GSpectral is less than 0.1
seconds.

5 Differential Chromatic Numbers of Special Graphs

Theorem 5. A line graph on n nodes has differential chromatic number of
bn/2c. A cycle graph on n nodes has differential chromatic number of b(n−1)/2c.

Proof. Consider a line graph with even number of nodes labeled in order with
n/2+1, 1, n/2+2, 2, . . . , n, n/2; see Fig. 3(top). This labeling is clearly a n/2-
differential coloring and it is easy to show that this is the best possible coloring.
Take any labeling of this graph and consider the node labeled n/2. Regardless of
the labels of its neighbor(s) this node must induce an edge difference of at most
n/2 achieved if the neighbor(s) is labeled n. Hence the differential chromatic
number can not be more than n/2, that is, dc(G) = n/2 = bn/2c. A similar
argument also works when n is odd; see Fig. 3 (bottom).

5 6 5 6 5 6 5 6 56 1 7 2 8 3 9 4 10 5

6 5 6 5 6 5 6 5 6 51 7 2 8 3 9 4 10 5 11 6

Fig. 3. Optimal coloring of line graphs with 10 and 11 nodes.
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Table 1. Differential chromatic numbers given by kpath and by GSpectral.

name drawing dc(G) GSpectral

petersen

7
8

3

7

3

5

7

3

5

8
7

3

3

3
5

33

65

3

4

5

4

3 33

4

5

6

4

1
2

8
9

5

4

7

3

6

10

3 3

hypercube

6

712

8

6

54

8

5

6

12

9
7

6

4

8
12

10

9

8
4

10

11

7

1211

10

8
49

10

8

8

5

7

4

7

5

4

5

8

4

6

5

8

7

6

4

8
4

6

7
8

5

6

4

9
5

4

5

8
4

7

5

17

2 8133

14 4

510

6 12

915

11 16

4 4

binarytree3

7 7

11

13 13

12

8

7

8

7 7

8

8

10

81 15

12

14 2

3

4

5

6

7 9

10

11

13

7 5

grid4

8

10

8

7

6

7

8

10

8

6

10

8

6

6

8

9

10

10

9

8

6

6

8

10

6

8

10

10

8

7

6

6

7

8

10

10

8

6

10

8

6

8

9

10

9

8

6

8

1

9

2

10

11

3

12

4

5

13

6

14

15

7

16

8

6 3

grid5

13

15

13

12

10

12

13

15

13

12

10

12

15

15

12

10

10

12

13

15

15

13

12

10

10

12

13

15

15

13

10

10

13

15

15

13

12

10

10

12

13

15

15

13

12

10

10

12

15

15

12

10

10

12

13

15

15

13

12

10

10

12

13

15

15

13

10

10

13

15

13

12

10

12

13

15

13

12

10

12

1

14

2

15

3

16

4

17

5

18

6

19

7

20

8

21

9

22

10

23

11

24

12

25

13

10 7

football

31

24

21

35

26

45

44

18

20

21

21

21

20
25

22

34

22

37

19

21

21

35

32

25

29

50

21

22

19

24

19

45

20

22

35

24

29

46

18

20

22

19

21

21

22
23

21

25

30

21

33

28

20

4429

2121

21

22

47
34

21

34

42

23
4521

27

21

27

30

21

29

22

33

25

29

27

33

29

37
21

46

2019

22

52

2441

21

6

37

30

27

1

46

45

19

33

12

54

13

3

25

40

22

42

10

17
34

41

60

4

51

29

16

2

38

58

26

31

15 48

20

47

5

52

32

823

1153

55

21

49
28

9

36

18

14

50

43

56

24

44

7

39

57

59

35

- 18
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5

9

4
5

4

5

4
5

4

5

1

62

7

3

8

4 9

5

10

6

5

5

6

56

5

6

5

6
5

1

7

2

8
3

9

4

10

5

11 6

Fig. 4. Optimal coloring of ring graphs with 10 and 11 nodes.

Now consider a cycle graph with an even number of vertices labeled in order
with 1, n/2 + 1, 2, n/2 + 2, . . . , n/2, n; see Fig. 4(left). This labeling is clearly
n/2 − 1 = b(n − 1)/2c differential coloring and no better solution exists. Take
any labeling of this graph and consider the node labeled n/2. Regardless of the
labels of its two neighbors this node must induce an edge difference of at most
n/2− 1, achieved if the first neighbor is labeled n and the second neighbor is 1
or n− 1. A similar argument also works when n is odd; see Fig. 4 (right). ut

Theorem 6. A grid graph of n × n nodes has differential chromatic number
≥ 1

2n(n− 1).

Proof. If n is even, let m = n/2, we can color the grid as shown in Fig. 5.
Due to the symmetries in the numbering scheme, only five labeling differences
are possible: 2m2 − m, 2m2 − 1, 2m2, 2m2 + 1, 2m2 + m. The smallest is
2m2 − m = 1

2n(n − 1). For odd n there is also solution with only four label
differences. ut

It turns out that 1
2n(n−1) is also an upper bound for the chromatic number of

the n×n grid graph, making this result tight [12]. It is informative to contrast an
optimally colored grid map with a grid map that uses the coloring induced by the
largest eigenvector; see Fig. 6. The eigenvector coloring provides good contrast
between neighboring countries, particularly in the center. This indicates that
GSpectral might ineed be a good practical heuristic for large graphs.

6 Conclusion

In this paper we introduced the maximum differential graph coloring problem
which arises in the context of map coloring. We described exact and heuristic
algorithms for this problem, and considered some special classes of graphs for
which good solutions can be computed. We showed that this problem is related to
that of finding a k-Hamiltonian path. There is also a close relationship between
this problem and the antibandwidth problem.

We note that the results of this paper extend easily to the case when there
are more than |V | colors available: we can augment the graph with the same

10
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1 2m2
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+1 m+1

2 2m2
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2m2
+2 m+2

m 2m2
+2m

2m2
+m 2m

2m+1

2m2
+2m+1

2m+2

2m2
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2m2
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Fig. 5. Optimal coloring of n× n-grids for even n.

Fig. 6. Optimal grid map coloring (left) and one induced by the largest eigenvector (right).

number of isolated “dummy” nodes as there are extra colors. We further note
that countries that are not neighbors, but are nevertheless close (e.g., neighbor’s
neighbor), can also be forced to have distinctive colors by adding additional
edges in the country graph linking these countries.

Throughout our paper we have been assuming that the edge weights in the
country graph are uniform. That is, the importance of having a different color
between any pair of adjacent countries in the map is the same. We would also
like to investigate ways to handle non-uniform weights, where more importance
can be placed on certain countries or certain types of adjacencies (e.g., long vs.
short common borders).
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