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Abstract. For a set S of n lines labeled from 1 to n, we say that S supports
an n-vertex planar graph G if for every labeling from 1 to n of its vertices, G
has a straight-line crossing-free drawing with each vertex drawn as a point on its
associated line. It is known from previous work [4] that no set of n parallel lines
supports all n-vertex planar graphs. We show that intersecting lines, even if they
intersect at a common point, are more “powerful” than a set of parallel lines. In
particular, we prove that every such set of lines supports outerpaths, lobsters, and
squids, none of which are supported by any set of parallel lines. On the negative
side, we prove that no set of n lines that intersect in a common point supports
all n-vertex planar graphs. Finally, we show that there exists a set of n lines in
general position that does not support all n-vertex planar graphs.

1 Introduction

We consider the effect of restricting the placement of vertices in a planar, straight-line,
crossing-free embedding of a planar graph. Every vertex has an associate region of the
plane where it can be placed. If each region is the whole plane then the regions support
all planar graphs. If the regions are points then they fail to support even such a simple
class of graphs as paths. Our interest is in what classes of planar graphs are supported
by particular families of vertex regions. Specifically, in this paper we focus on vertex
regions that are lines.

A set of segments is crossing-free if no two segments intersect in their interiors. A
vertex labeling of a graph G = (V, E) is a bijection 7 : V' — [n]. A set R of n regions
(subsets of R?) labeled from 1 to n supports a graph G with vertex labeling T if there
exists a set of distinct points p1, pa, . . . , P, such that p; lies in region ¢ for all ¢ and the
segments Pr(,)Pr(v) for (u,v) € E are crossing-free. The set R of n labeled regions
supports a graph G if R supports G with vertex labeling 7 for every vertex labeling .
As an example of the use of this terminology, we show that every n-pinwheel (set of n
labeled lines that share a common point) supports any n-squid (see definition below).
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While we focus on embeddings that prescribe a specific region for each vertex, the
problem is also interesting if each vertex may be placed in any one of the regions.
In this variant, a set of regions R supports a graph G = (V, E) without mapping if
there exists a bijection 7 from V to R such that R supports G' with vertex labeling
7. Rosenstiehl and Tarjan [8] posed the question of whether there exists a point set of
size n that supports without mapping all n-vertex planar graphs: a universal point set
for all planar graphs. De Fraysseix et al. [3] resolved the question in the negative by
presenting a set of n-vertex planar graphs that requires a point set of size 2(n + /n).
For some classes of n-vertex planar graphs, universal point sets of size n have been
found. In particular, Gritzmann et al. [6] showed that any set of n points in general
position forms a universal point set for trees and indeed for all outerplanar graphs, for
which Bose [2] gave an efficient drawing algorithm.

Embedding with mapping is an even more restricted version of the problem. For
example, any set of n points supports without mapping all n-vertex paths. Whereas, for
large enough n, no set of n points supports all n-vertex paths. For n > 5, every set of n
points contains a subset of three collinear points or four points in convex position.” In
both cases, it is easy to devise a vertex mapping of three (respectively four) consecutive
vertices of any n-vertex path to that subset of points that forces an edge crossing.

If the straight-line edge condition is relaxed in this mapped setting, Pach and Wenger [7]
showed that any set of n points supports all n-vertex planar graphs, however 2(n)
bends per edge may be necessary in any crossing-free drawing. Even if the mapping
constraint is relaxed to just two colors: the red vertices must be mapped to any red point
and the blue vertices to any blue point, Badent et al. [1] proved that £2(n) bends per
edge are sometimes necessary.

Estrella-Balderrama et al. [4] show that any set of n parallel lines supports exactly
the class of unlabeled level planar (ULP) graphs. This class of graphs contains several
sub-classes of trees (namely caterpillars, radius-2 stars and degree-3 spiders) [4] and a
restricted set of graphs with cycles (such as generalized caterpillars) [5]. The simplest
class of trees not supported by parallel lines is the class of lobsters.

We show that any set of n lines that intersect at a common point supports a larger
sub-class of n-vertex trees than the ULP graphs. We further show that no set of n lines
that intersect at a common point supports all n-vertex planar graphs. Whether such a
set of lines supports all trees is a natural open question. We also show that there exists a
set of n lines in general position that does not support all n-vertex planar graphs. Here,
a set of lines is considered in general position if no two lines are parallel and no three
lines intersect in a common point. The main open question remaining is whether there
exists a set of lines in general position that supports all planar graphs.

2 Pinwheels

Definition 1. A pinwheel is an arrangement of n distinct lines that intersect the origin
and are labeled from 1 to n in clockwise order. Each line in the pinwheel is called a
track.

7 Eszter Klein’s Happy Ending problem.



Fig. 1. (a) A labeled lobster with spine vertices v1 = 1, v2 = 8. (b) An embedding using
the algorithm. The dotted circles indicate the empty discs at each step.

As the next lemma shows, pinwheels are an interesting family of line sets to consider
when investigating whether more general families support planar graphs.

Lemma 1. Any class of graphs supported by every n-line pinwheel is also supported
by every arrangement of n lines, no two of which are parallel.

Proof: Determine a circle that contains all line intersections. By scaling the arrange-
ment down we can make the radius of this circle arbitrarily small, rendering it effec-
tively into a pinwheel. m

3 Graphs Supported by Arrangements of Lines

In this section we describe non-ULP families of planar graphs that are supported by ev-
ery arrangement of lines, no two of which are parallel. We use pinwheels as supporting
sets for the graphs in these families since by Lemma 1 the results will then apply to
the more general arrangements. We begin by studying lobsters, then extend the result to
squids and finally consider outerpaths.

A caterpillar is a graph in which the removal of all degree one vertices and their

incident edges results in a path. This path is called the spine of the graph.

— A lobster is a graph in which the removal of all degree one vertices and their inci-
dent edges results in a caterpillar.

— A squid is a subdivision of a lobster.

— An outerpath is an outerplanar graph whose weak dual is a path (where the weak

dual is obtained from the dual by removing the vertex corresponding to the outer-

face and its adjacent edges).

Lemma 2. Every n-line pinwheel supports any n-vertex lobster.



Proof: Let L be a lobster with n vertices and spine vertices vy, vo, . . ., vx. We compute
a straight-line embedding of L on any labeled n-pinwheel such that no two edges cross
for any vertex labeling of L. We place the vertices in order of a preorder traversal of
L, where L is considered as a tree rooted at v; and such that each spine vertex is the
last descendant of its parent. At any step, there is a set of vertices not all of whose
children have been drawn — call these the active vertices. We maintain the invariant
that all active vertices can “see” the origin (i.e., the segment from the embedded active
vertex to the origin does not intersect a segment of the drawing). As a consequence, all
active vertices can see an empty disk (i.e., a disk that does not intersect a segment of the
current drawing) of nonzero radius centered at the origin and intersecting every track
twice; see Fig. 1. At each step, the current vertex is placed at one of the two intersection
points of its track and the boundary of the largest empty disk centered at the origin
that is seen by all active vertices. The intersection point that is chosen is the one that is
encountered first in counter-clockwise radial order from the track of its already-placed
parent. (The first vertex, vy, is initially placed on its corresponding track at an arbitrary
point that is not the origin.)

The correctness of the drawing algorithm is proved by induction on the length of
the spine. While a spine vertex is active, only vertices at distance at most two from it
are drawn. Since the radial distance between a vertex and its parent is less than 180
degrees, we maintain the invariant that each active vertex sees the origin. [

Lemma 3. Every n-line pinwheel supports any n-vertex squid.

Proof: We extend the algorithm of Lemma 2 to the drawing of squids. A squid G’ can
be obtained from a lobster G by subdividing edges of . For each vertex v created by
subdividing an edge (u,w) of G, we define v’s lobster parent as the closer of u or w to
the root v1. We draw the vertices in order of a preorder traversal of the graph. But at each
step, the position chosen for a vertex is on the track that is encountered first in counter-
clockwise radial order from the track of its lobster parent instead of its parent. As a
result, the whole path obtained by subdividing an edge is drawn at the radial distance of
at most 180 degrees from its lobster parent. As in the proof of Lemma 2, every active
vertex can see the origin. [

With similar techniques as those of Lemmas 2 and 3, the following can be proved.
Lemma 4. Every n-line pinwheel supports any n-vertex outerpath.

Lemmas 3, 4, and 1 imply the following.
Theorem 1. Every arrangement of n lines, no two of which are parallel, supports any

n-vertex squid and any n-vertex outerpath.

4 Non-supporting Line Sets

In this section, we show that there is a labeled planar graph that is not supported by any
pinwheel. We also show that there exists a family of n-line sets, where each set is in
general position, that does not support all n-vertex planar graphs. Note that this doesn’t
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Fig. 2. (a) Graph G can be realized only if the origin of the pinwheel is contained in an
internal face. (b) Graph G consists of three copies of G connected by three edges.

rule out the possibility that some family of n-line sets in general position could support
all n-vertex planar graphs.

Both arguments rely on graphs that use as a building block the graph G¢ in Fig. 2(a).
It is not difficult to show that any straight-line, crossing-free embedding of G with the
given labeling requires that the origin of the pinwheel (with tracks labeled in clockwise
order) is in an internal face. We prove a slightly stronger statement since we will need
it in the proof of Theorem 3. For a set, S, of lines, no two of which are parallel, define
the core, C'(S), of S to be the union of the intersections, finite edges, and bounded cells
of the arrangement of S

Lemma 5. Let S be any set of lines, no two of which are parallel, labeled so that they
intersect some line at infinity in the order 1,2,3,4,5,6. In any straight-line, crossing-free
embedding of G (labeled as in Fig. 2(a)) on S, the core C(S) intersects some internal
face of the embedding.

Proof: Suppose for the sake of contradiction that the core C'(S) lies in the external
face of some embedding of Gg. Thus each vertex of Gy lies on a half-line (of the
arrangement of .S) that does not intersect C'(.S) and these six half-lines intersect a line
at infinity in some order. Let us assume initially that this order is 1,2, 3,4, 5, 6.

Consider edge (1, 5) in the embedding of G, and the line ¢ that contains edge (1, 5).
For any pair of vertices a,b € {2,3,4} of Gg, if a and b are in the distinct half-planes
bounded by ¢ then a does not see b, that is, the segment between a and b intersects
edge (1, 5). Since both 3 and 4 are adjacent to 2 in G, all three of these vertices are in
the same half-plane determined by ¢. Moreover, 2 is contained inside of a triangle, T',
determined by either 1, 3,5 or 1,4, 5. Since 6 is adjacent to 2 in G, 6 is inside of T" as
well. However, line 6 does not intersect T', which provides a desired contradiction.

A similar argument holds for the other possible half-line orders. u

To construct the graph that is not supported by any pinwheel, we make three copies of
G and label them so that the vertex labeled k in the original graph is labeled 6(i—1)+k
in the ith copy. Finally, the graph G is created by connecting the three labeled copies
of G with the help of three additional edges, as shown in Fig. 2(b).



Theorem 2. Planar graph G} is not supported by any pinwheel.

Proof: Assume for the sake of contradiction that there is a straight-line, crossing-free
drawing of the labeled graph G on the pinwheel. By Lemma 5, each of the copies of
G can be realized crossing-free and with straight line edges only if the origin of the
pinwheel is contained in an internal face. Without loss of generality, that implies that
the first copy of G is inside an internal face of the second copy of G, and both are
inside an internal face of the third copy of G¢. That provides a desired contradiction,
since the edge connecting the first copy with the third copy must cross some edge of the
second copy. [ ]

We now turn our attention to lines in general position. One might hope that lines in
general position (i.e., no two lines are parallel and no three lines intersect in a common
point) provide enough freedom in the placement of vertices to support any planar graph.
We show that the general position assumption alone is not sufficient. Specifically, we
prove that there exists a family of n-line sets such that each set is in general position
and not all planar graphs are supported by a line set in the family.

A parabolic grid of n lines consists of lines T for j = 1,...,n through points
(0,(j = 1)/(n — 1)) and ((n — j)/(n — 1),0). By again using a graph containing
multiple copies of Gg and by exploiting a geometric property of triangulated graphs
drawn on parabolic grids, we show (see the appendix for details):

Theorem 3. Parabolic grids do not support all planar graphs.

5 Conclusion and Open Problems

Whether there exists some set of n lines that does support all n-vertex planar graphs is
a natural question that is still open. It is also not known whether pinwheels support all
trees.
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A Proof of Lemma 4

5 3 1 6 4

Fig. 3. (2) A labeled outerpath on 7 vertices. (b) An embedding using the algorithm. The
vertices are processed in the order v1 = 5, v2 = 7,v3 =3, v4 = 1, vs = 6, v = 2, and
vy = 4. The dotted circles represent the empty discs at each step. Vertex 6 is placed
inside the empty triangle, A, shown in the figure.

Proof: Let G = (V, E) be an n-vertex outerpath and let v; and v,, be the degree-2
vertices in G. Let ey, es, . . ., e,,—1 be the edges of G that are crossed by the Hamiltonian
cycle in the dual of G in order from the outerface. Let (v1, v2) be the edge e; (with vy
of degree 2) and in general let v;1; be the new vertex introduced by edge e;.

Place vertices v and vy on their corresponding tracks (not at the origin). Note that
all points of the embedded edge (v1,v2) see an empty disk of positive radius centered
at the origin.

Fori = 2ton—1, place vertex v;1 on its corresponding track so that the embedded
edge e; sees the origin.

For the correctness of the algorithm it suffices to show that we can maintain the
following invariant: the embedded edge e; sees an empty disk of positive radius centered
at the origin. The invariant holds for e;. In general, when placing v;+; we know that
the embedded edge e; sees the origin and therefore the triangle A defined by the origin
O and embedded edge e; is empty. If the track for v;4, intersects A then we pick any
point of that track that is inside A (other than the origin) and maintain the invariant.
Otherwise the track for v; intersects the empty disk at two points. At least one of
these two points forms a triangle with O and the already embedded endpoint of e; that
is contained in the union of A and the empty disc (see Fig. 3). Placing v;; at this point
preserves the invariant. [

B Parabolic grids do not support all planar graphs

Definition 2. A parabolic grid of n lines consists of lines T); for j = 1,...,n through
points (0, (j —1)/(n — 1)) and ((n — j)/(n — 1),0).



Definition 3. The closed corner is the core of the lines T, 15, . . ., T}, i.e., the union of
the intersections, finite edges, and bounded cells in the arrangement of 11, 75, ..., T),.

Note that with the coordinates chosen, any intersection of two lines in the parabolic
grid is contained in the square [0, 1] x [0, 1].

First, we show that if parabolic grids support all planar graphs then any planar graph
can be embedded using an area of the closed corner as small as desired.

Lemma 6. Suppose parabolic grids support all planar graphs. Then, for any € > 0,
any graph can be drawn inside a triangle, such that the area of the intersection of the
triangle with the closed corner is less than .

Proof: We can assume that the graph is triangulated, and so its external face is a triangle
for any planar embedding.

Let us define T'(x) as a track going through the points (0,z) and (1 — «,0) for
any z € [0,1]. In particular, the track T of a parabolic grid of n lines is the track
T((j—1)/(n—1)). Suppose there is a certain graph G, and values z1, . .., zj such that
any embedding of G mapped to the tracks T'(z1), . . ., T'(x)) must have an intersection
of area more than ¢ with the closed corner. We show that there is a contradiction with
the assumption that parabolic grids support all planar graphs.

Let f(d) be the minimum area of the intersection with the closed corner of any
embedding of G on the tracks T'(x1 + d), ..., T(zx + §). In particular, f(0) = . The
function f () being continuous, there is a certain interval [—d’, §’] such that f(5) > €/2
in this interval.

We set the number of tracks, n, to be greater than 1/(£6"). As a result, there are 2/
values of ¢ within the interval [—0’, 6'] such that T'(z; + 0) is a track of the parabolic
grid. For each of these values, we create a corresponding copy of the graph G to be
mapped to the tracks T'(z1 + 9), ..., T(zx + 0). By assumption, each copy cannot be
embedded on a triangle that has an intersection of area less than ¢/2 with the closed
corner. If we connect all of the copies by additional edges forming a cycle, it becomes
impossible to embed all the copies simultaneously such that they are pairwise contained
in an internal face of another. Therefore, the total area of the intersection of the triangles
containing the copies with the closed corner is more than one, which is impossible since
the closed corner itself has area less than one. m

Note that for any fixed n, we can choose ¢ as small as desired.

We prove now that parabolic grids do not support all planar graphs by showing that
a particular graph cannot be embedded on the grid without containing a fixed positive
area inside the closed corner.

Theorem 3. Parabolic grids do not support all planar graphs.

Proof: Let G be a planar triangulation on 24 vertices that has four vertex disjoint copies
of Gg as its subgraphs. The four copies of Gg are mapped to four sets of consecutive
tracks S7, So, S3 and S4 on the parabolic grid. The cores C(S;) of the closed corner
are represented on Figure 4. Note that the sets C(S;) are disjoint and separated by a
positive distance.



Fig.4. It is impossible for a triangle to intersect all four of the shaded regions without
intersecting the closed corner in at least some fixed positive area.

Lemma 5 implies that the ith copy of Gg in G cannot be embedded on its subset S;
of the parabolic grid without intersecting C'(.S;). Thus, any embedding of G must have
as external face a triangle that intersects each C'(.S;). However, it is clearly impossible
to have any triangle intersecting all of them without intersecting the closed corner in at
least some fixed positive area. Lemma 6 thus implies that the parabolic grid does not
support all planar graphs. [



