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Abstract. A touching triangle graph representation (TTG) of a planar
graph is a planar drawing I" of the graph, where each vertex is represented
as a triangle and each edge e is represented as a side contact of the
triangles that correspond to the endvertices of e. We call I" a proper
TTG if I' determines a tiling of a triangle, where each tile corresponds
to a distinct vertex of the input graph. In this paper we prove that every
3-connected cubic planar graph admits a proper TTG. We also construct
proper TTG for parabolic grid graphs and the graphs determined by
rectangular grid drawings (e.g., square grid graphs). Finally, we describe
a fixed-parameter tractable decision algorithm for testing whether a 3-
connected planar graph admits a proper TTG.

1 Introduction

Planar graphs are of interest in theory and in practice as they correspond to nat-
urally occurring structures, such as skeletons of convex polytopes and duals of
maps, and contain subclasses of interest, such as trees and grids. While tradition-
ally graphs are represented by node-link diagrams, alternative representations
also have a long history. There is a large body of work about representing planar
graphs as contact graphs, i.e., graphs whose vertices are represented by geomet-
ric objects with edges corresponding to two objects touching in some specified
fashion. Early results, such as Koebe’s 1936 theorem [11] that all planar graphs
can be represented by touching disks, deal with point contacts. Similarly, de
Fraysseix et al. [6] construct representation of planar graphs with vertices as
triangles, where the edges correspond to point contacts between triangles.

In this paper, we consider side contact representations of graphs, where ver-
tices are represented by simple polygons, with an edge occurring whenever two
polygons have non-trivially overlapping sides. The algorithms of He [10] and Liao
et al. [12] produce side contact representations for planar graphs, with nodes
represented by the union of at most two isothetic rectangles, or non-convex oc-
tagons. Bonichon et al. [3] and Duncan et al. [8] independently show that this
can be done with convex hexagons, and Duncan et al. [8] prove that six sides
are necessary for general planar graphs.



Certain subclasses of planar graphs admit even simpler side contact repre-
sentations. Buchsbaum et al. [4] give an overview on the state of the art concern-
ing rectangle contact graphs, which are often referred to as rectangular layouts.
Graphs allowing rectangular layouts have been fully characterized [4, 14, 15] with
linear-time constructive algorithms.

The simplest possible side-contact representation of a graph, in terms of the
complexity of polygons used, is the triangle contact representation. Gansner et
al. [9] show certain necessary and sufficient conditions for such representations,
however a complete characterization turns out to be surprisingly difficult and
is not yet known. It is known that every outerplanar graph admits a touching
triangle representation (TTG) that may not be proper, and every graph that is
a weak dual of some maximal planar graph admits a proper TTG [9].

In this paper we examine only the proper TTG representations, i.e., the TTG
must determine a tiling of some triangle and every tile must correspond to a
distinct vertex of the input graph; see Figs. 1(a-b). Recently, Alam et al. [1] give a
characterization for the outerplanar graphs that admit proper TTG. Phillips [13]
enumerates all possible tiling of a triangle into five subtriangles, which helps us
to list all non-isomorphic connected planar graphs with less than six vertices
that do not admit proper TTG; see Fig. 1(g).

Our Contributions: We prove that every 3-connected cubic planar graph ad-
mits a proper TTG, with an algorithm that constructs such a representation. We
then show that parabolic grid graphs and the graphs determined by rectangular
grid drawings (e.g., square grid graphs) have proper TTG. Finally, we describe a
fixed-parameter tractable decision algorithm for testing whether a 3-connected
planar graph with n vertices admits a proper TTG. We use the maximum degree
A, the number of outer vertices and the number of inner vertices with degree
greater than three as fixed parameters. Specifically, if A = 4, then this can be
done in O*(4%16%2) time', where k; is the number of degree-4 inner vertices and
ko is the number of vertices on the outerface, which results in a polynomial-time
algorithm when &y + k2 = O(logn).

2 Preliminaries

A weak dual of a planar graph G is a subgraph induced by the vertices of the
dual graph of G that correspond to the inner faces of G. The weak dual D of
every maximal planar graph M is a subcubic planar graph, where only three
vertices of D have degree two. Therefore, by definition any straight-line drawing
of M is a proper TTG of D. Constructing a proper TTG for a 3-connected
cubic planar graph G may initially seem easy since it differs from the dual of
a maximal planar graph by only one vertex. But a careful look at Figs. 1(c—f)
reveals that it is not obvious how to construct a proper TTG of a 3-connected
cubic planar graph from its corresponding maximal planar graph.

A straight-line drawing I' of a planar graph G is a planar drawing of G,
where each vertex is drawn as a point and each edge is drawn as a straight line

L O* ignores the polynomial terms.
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Fig. 1. (a) A planar graph G. (b) A proper TTG of G. (c) A 3-connected cubic planar
graph G’. (d) The dual graph M of G', where G is shown in dotted lines. (e) A straight-
line drawing of M is a proper TTG of its own weak dual. (f) A proper TTG of G’. (g)
All planar graphs with less than six vertices that do not admit proper TTG.

segment. A path vy, ve,...,v; is stretched in I if all the vertices on the path
are collinear in I'. Two paths are non-crossing if they do not have an internal
vertex in common. A path covering of G is an edge covering of G by non-crossing
edge-disjoint paths.

Theorem 1 (de Fraysseix and de Mendez [5]). A path covering P of a
plane graph G is stretchable if and only if each subset S of P with at least two
paths has at least three free vertices, where a free vertex in the graph H induced
by S is a vertex on the outerface of H that is not internal to any path of S.

By a k-cycle in G we denote a cycle of k vertices in G. By len(f) we denote the
length (i.e., the number of vertices on the boundary) of a face f of G.

Throughout the paper we only examine the proper touching triangle rep-
resentations. Therefore, unless explicitly stated otherwise, by the term “TTG”
we denote a proper touching triangle representation. We also assume that the
combinatorial embedding of the input graph is fixed, i.e., the input is a plane
graph.

3 Proper TTG of 3-Connected Cubic Planar Graphs

In this section we describe an algorithm for constructing a proper TTG of a
3-connected cubic planar graph G based on the combinatorial structure of such
graphs. In particular, every 3-connected cubic planar graph can be constructed
starting with a K4 and then applying one of the three “growth” operations [2];
see Figs. 2(a—c). We use this inductive construction of 3-connected cubic planar
graphs to construct its TTG. While constructing GG, we maintain a plane graph
G’ that corresponds to the TTG of G. We also define a path covering P(G’) of
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Fig. 2. (a—c) Growth operations 1-3; (d) G = K4 and its proper TTG; (e) G'.

G’ such that any planar embedding of G’ with every path in P(G’) stretched, is
a TTG of G. We now describe our algorithm in details.

We start with G = K4, and the graph G’ that corresponds to the TTG of
G; see Figs. 2(d—e). Throughout the algorithm G’ will have exactly three inner
faces incident to its three outer edges, each of which is a 4-cycle. We call these
faces the quads of G’. For every quad we will define a stick, which is a path of
three vertices on the corresponding quad. No two sticks in G’ will have an edge
in common. All the inner faces of G’ other than the quads will be 3-cycles, which
we call the ordinary faces.

In Fig. 2(e), the 4-cycles [a,b, f,d], [b,c,e, f] and [c, a,d, €] are the quads of
G, where (a,d, f), (b, f,e) and (c,e,d) are their sticks, respectively. The path
covering P(G’) consists of the sticks and all the edges of G’ that are not covered
by the sticks. In Fig. 2(e), the path covering P(G’) = {{(a,d, f), (b, f,€), (c,e,d),
(a,B), (b,¢), (¢, a)}.

Assume inductively that we have a 3-connected cubic planar graph G, its
corresponding graph G’ and path covering P(G’), where one of the three growth
operations of Figs. 2(a—c) on G produces the input graph G. In Lemmas 1-3 we
show how to construct the graph G’ and its path covering P(G’) by a constant
number of insertion/deletion on G’ and P(G'), respectively.

Lemma 1. Assume that G is produced from G by an application of Operation 1.
Then the graph G’ and its path covering P(G') can be constructed by a constant
number of insertion/deletion on G' and P(G'), respectively.

Proof. First consider the case when vertex v of G, on which we apply Operation
1, corresponds to an ordinary face T of G’. We then add a vertex x inside T
and connect the vertex with the three vertices on the boundary of T'. Let the
resulting graph be G’. It is easy to verify that the vertices on the cycle that
replaces v correspond to the three new ordinary faces in G’; see Figs. 3(a-b).
The path cover P(G’) consists of all the paths of P(G’) along with the three
paths that correspond to the three new edges incident to x.

Next consider the case when vertex v of G, on which we apply Operation 1,
corresponds to a quad T = [a,b, c,d] of G'. Without loss of generality assume
that the stick of T is (a,d, c¢) and the outer edge of T is (b,c). We then add a
vertex x inside T and add the edges (a, z), (b,x) and (d, x); see Figs. 3(c—d). Let
the resulting graph be G’. The 4-cycle [b,x,d, ] is a quad in G’ and (b, z,d) is
its stick. Since G’ contains exactly three quads, G’ also contains exactly three
quads (i.e., [b,z,d, c] replaces [a, b, c,d] and all other quads remain the same).
The path cover P(G’) consists of all the paths of P(G’) \ (a,d, ¢) along with the
paths {(a,d), (d,c), {a,z), (b, z,d). O



Fig. 3. (a—d) Ilustration for Operation 1. G and G are shown in dotted lines as weak
duals of G’ and G’, respectively.

Since the path covering P(G’) consists of the sticks and all the edges of G’
that are not covered by the sticks, in Lemmas 2 and 3, we will only define the
sticks in G’, instead of defining P(G’) explicitly.

Lemma 2. Assume that G is produced from G by an application of Operation 2.
Then the graph G' and its path covering P(G') can be constructed by a constant
number of insertion/deletion on G' and P(G’), respectively.

Proof. Assume that the vertices v and u of G on which we apply Operation 2
correspond to two faces T7 and Ty of G’. Then T7 and T, must share an edge,
which we denote by e’. We distinguish three cases, depending on the types of
these faces.

Case 1 (T} and T; are ordinary faces): Here we subdivide ¢’ with a vertex
x and connect x with the vertices on T} and T, that are not already adjacent to
x. The resulting graph is G’; see Figs. 4(a—b). The new faces are ordinary, and
hence the quads and sticks of G’ coincide with the quads and sticks of G’.

Case 2 (Exactly one of T and T3 is a quad): Without loss of generality
assume that the outer boundary of the union of 77 and T3 is a, b, ¢, d, e, T} is the
quad and (a,c,d) is its stick; see Fig. 4(c). We now subdivide e’ with a vertex
x. If (d, e) is the outer edge, then we add the edges (z,b), (z,€). Otherwise (a, ¢)
is the outer edge and we add the edges (x,b), (x,d). The resulting graph is G';
see Figs. 4(c)—(f). The quad [a, ¢, d, €] of G’ does not determine quad for G'. The
new quad of G’ is [z,c¢,d, €] (resp., [a,x,d,e]), where (z,c,d) (resp., {a,z,d))
is its stick, as shown in Fig. 4(d) (resp., Fig. 4(f)). The four new faces in G’
correspond to the four vertices of the cycle that replace v and v of G.

Case 3 (Both 77 and T are quads): Without loss of generality assume
that the outer boundary of the union of T} and T is a, b, ¢, d, e, f, and (a, d, e),
(b,c,d) are the sticks of T3, Ty, respectively. By induction, every quad in G’
contains an outer edge. Since b and e are distinct vertices, both (a, ) and (e, f)
cannot be the outer edges of G’. Consequently, (a,b) and (a, f) are the outer
edges of Ty and Ty, respectively; see Fig. 4(g).

We now subdivide ¢’ with a vertex x and add the edges (z,c), (z,e); see
Fig. 4(h). The quads [a, b, ¢, d] and [a,d, e, f] of G’ are not the quads for G’. The
quads of G’ are [a,b,c,z] and [a,z,e, f], where (b,c,z) and (a,z,e) are their
corresponding sticks. a

The following lemma examines the construction of G’ and P(G’) for Opera-
tion 3. A detailed proof of this lemma is included in the Appendix.



Fig. 4. (a-h) Ilustration for Operation 2. G and G are shown in dotted lines as weak
duals of G’ and G’, respectively.

Lemma 3. Assume that G is produced from G by an application of Operation 3.
Then the graph G' and its path covering P(G') can be constructed by a constant
number of insertion/deletion on G' and P(G'), respectively.

Theorem 2. FEvery 3-connected cubic planar graph admits a proper TTG.

Proof. Let G be the input graph. We use Lemmas 1-3 to construct the corre-
sponding graph G’ and path covering P(G’). Since G’ contains G as its weak
dual, if G’ admits a straight-line drawing I", where all the faces are drawn as
triangles, then I" must be a proper TTG of G.

By construction G’ has exactly three inner faces that are of length four (i.e.,
the quads). All the other faces are of length three. Consequently, if G’ admits a
straight-line drawing I”, then all the inner faces except the three quads must be
drawn as triangles. If the thee sticks of G’ are stretched in I', then every face of
I must be a triangle, and hence I" must be a proper TTG of G. In other words,
any planar embedding of G, where every path in P(G’) is stretched, must be a
proper TTG of G.

It now suffices to prove that G’ admits a planar embedding, where each path
in P(G") is stretchable. It is straightforward to verify that each subset of P(G’)
with at least two paths has at least three free vertices. Hence by Theorem 1, G’
admits a planar drawing, where every path in P(G’) is stretched; such a drawing
can be computed by solving a barycentric system [5]2. ad

4 Proper TTG of Grid Graphs

In this section we give an algorithm to construct proper TTG for square grid
graphs and parabolic grid graphs. Note that Gansner et al. [9] gave an algorithm
to construct TTG for square grids and its subgraphs, where the outerface takes

2 The authors believe that instead of relying on de Fraysseix and de Mendez’s result [5],
one can adapt well known straight-line planar graph drawing techniques (e.g. shift
method [7]) to construct such a drawing of G’ on an integer grid with small area.



the shape of an astroid, (also called cubocycloid), and hence the TTG was not
proper. On the other hand, our algorithm constructs proper TTG for grid graphs
and some of its subgraphs, as stated in the following theorem.

Theorem 3. Let G be a planar graph with exactly four vertices of degree two.
If G admits a rectangular grid drawing, then G also admits a proper TTG.

Before proving Theorem 3, we show how to construct proper TTG of square
grid graphs. A square grid graph G, n, where m,n > 1, is the graph determined
by an integer grid I of dimension m x n. By a vertex u,, of G, we denote
the vertex that correspond to the point (z,y) of I. See Fig. 5(a), where us 1
corresponds to the point ¢. We now introduce a few more definitions. By z(v)
(respectively, y(v)) we denote the z-coordinate (respectively, y-coordinate) of
the point v. Let vy, va,...,vr be a polygonal chain such that z(v1) < z(vay) <
o< z(vg), y(va) > ylvg) > ... > y(uvg) > y(v1) and vg,vs, ..., vk, vy forms a
strictly convex polygon; see Fig. 5(b). We call such a polygonal chain a ripple of
k vertices and denote it by Ry.

Theorem 4. Any square grid graph Go, n, m,n > 1, admits a proper TTG.

Proof. We first construct G, 1 as follows. Construct a ripple Rp,42 = (v1,v2, . . .,
Um+2). Then add a point b below R,, 2 and draw straight line segments from b
to each vertex in R,,42. We make sure that such that 2(b) = z(vnm42) +€,€ > 0,
and the drawing is planar. Now add a point ¢ above R, 1o with z(t) = x(vs)
and draw straight line segments from ¢ to each vertex in R,,t+2. We place t
with sufficiently large y-coordinate so that the drawing remains planar and the
vertices t, v, 42, b become collinear. The resulting drawing is a proper TTG of
Gm.1; see Fig. 5(c). Assume inductively that G, ;, i < n, admits a proper TTG
such that the following conditions hold.

(a) The topmost vertex ¢ in the drawing is adjacent to a ripple R,,+2 and the
triangles incident to ¢ correspond to the vertices of the ith row of G, ;.

(b) The triangle below the edge (vj,vj41),1 < j < m+ 1, corresponds to the
vertex Uj—1,i—1 of Gm,i-

(¢) The bottommost vertex b of the drawing has the largest « coordinate in the
drawing and it is adjacent to the leftmost and the rightmost vertices of Ry, 2.
(d) One can decrease the y coordinate of b and redraw its adjacent edges to
obtain another proper TTG of G, ;.

Observe that the above conditions hold for the base case. We now construct
the proper TTG of G, , from the proper TTG I" of Gy, r—1.

Let R,,+2=(v1,v2,...,Vm12) be the ripple that is adjacent to the topmost
vertex t. Delete ¢ from I" to obtain another drawing I'"”. Now draw another ripple
Ry o=V (= v1), 05, -, Vo (= Umy2)) such that z(vh) = z(v2), y(vy) > y(v2)
and v},2 < j < m+2, is the midpoint of the line segment v}_,v;; see Fig. 5(d).
The triangles incident to R;,,, correspond to a new row of m vertices, i.e,
the (n — 1)th row G, ,. We now add a point ¢’ above R;, ,, with z(t')=x(v})
and draw straight line segments from ¢’ to each vertex in R;,  ,. Conditions (c)



and (d) help us to install ¢ with sufficiently large y-coordinate such that the
drawing remains planar and the vertices ', v,,12 and the bottommost point b
become collinear; see Fig. 5(e). It is straightforward to observe that the resulting
drawing is the proper TTG of G, for which the conditions (a)—(d) hold. O

(d)

Fig. 5. (a) G3,2. (b) Rs. (c) Proper TTG of Gpn,1. (d) Construction of the triangles for
the (n — 1)th row of Gim,n. Ry, y2 is shown in bold. (e) Installment of #'.

A rectangular grid drawing G, , is a planar drawing of some graph, where
each vertex is drawn as a point on the m x n grid, each edge is drawn as either
a horizontal or a vertical straight line segment and each face takes the shape of
a rectangle. We now generalize the proof of Theorem 4 to prove Theorem 3.

Proof (Theorem 3). Let Gy, ,, m,n>1, be a rectangular grid drawing and let
G, j, j<n, be the subgraph of G, , induced by the vertices of the jth row and
all the rows below it. A vertex u is unsaturated in G,, ; if u has a neighbor in
G, that does not belong to G, ;. Otherwise, u is saturated in G, ;.

We first construct a ripple Ry, where k is the number of vertices in the lowest
row of G, . Observe that Ry, is a TTG (not necessarily proper) of Gy, 0. We then
incrementally construct the TTG I, ; (not necessarily proper) for G, ;,i<n,
and finally add the triangles for the nth row such that the resulting drawing
becomes a proper TTG of G, ,,. While constructing I, ;, <n, we maintain the
following invariants.

(a) Let uy, ug, . .., u; be the unsaturated vertices of G, ;. Then the outer bound-
ary of I3,; while walking clockwise from the leftmost to the rightmost ver-
tex of I, is a ripple Ryy1=(v1,v2,...,v41). The triangle below the edge
(vj,vi41),1 < j <t, corresponds to the vertex u;; see Figs. 9(d-f).

(b) The bottommost vertex b of the drawing has the largest z coordinate in the
drawing and it is adjacent to the leftmost and the rightmost vertices of R; 1.
(¢) One can decrease the y coordinate of b and redraw its adjacent edges to
obtain another TTG (not necessarily proper) of G, ;.

Observe that the invariants are similar to invariants we used in the proof of

Theorem 4. Consequently, we can install the nth row in a similar way, but we
move the further detail of this construction in the Appendix. O

A parabolic grid of n lines is the graph determined by the arrangement of
line segments lo,l1,...,l,, where [;, 1 < i < n — 1, has endpoints at (0,7) and



(n—1,0), and the endpoints of [y and ,, are (0,0), (n—1,0) and (0,n—1), (0,0),
respectively. We can construct proper TTG for parabolic grid graphs in a way
similar to the proof of Theorem 4; see the Appendix.

Theorem 5. FEvery parabolic grid graph admits a proper TTG.
5 Proper TTG for Plane Graphs with Max-Degree Four

Let G be a 3-connected plane graph with maximum degree four. We give an
O*(4%16%2)-time algorithm to decide whether G admits a proper TTG, where k;
and ko are the number of inner vertices of degree four and the number of outer
vertices in G, respectively.

Here is an outline of our algorithm. Given a 3-connected max-degree-4 plane
graph G, we first construct a set of graphs D such that every graph H € D
contains G as its weak dual. We then prove that G admits a proper TTG if and
only if some graph H € D admits a straight-line drawing, where each face of H is
a triangle; see Lemma 4. For each H we construct a set of feasible path coverings
such that H admits a straight-line drawing with each face of H as a triangle if
and only if one of these path coverings is stretchable; see Lemma 5. We show
that the stretchability of each path covering can be tested in polynomial time;
see Lemma 6. We show that |D| = O*(2*2) and the number of path coverings is
O*(4k13F2). Therefore, the algorithm takes O*(4%16*2) time in total.

Let wy,wo,...,w; be the outer vertices of G in clockwise order. Construct
a graph G’ by inserting G into a cycle ¢1,c¢a,...,¢; of ¢ vertices and adding
the edges (¢;,w;), 1 < i < t. Let G* be the weak dual of G’; see Fig. 6(a).
Consider now the set of graphs D that are obtained by contracting at most ¢t — 3
outer edges of G*. Since G is 3-connected, D contains all the 3-connected plane
graphs that contain G as their weak dual. For every graph D’ € D, we construct
aset D}, i €{0,1,2,3}, of (kf) graphs that are obtained from D’ by subdividing
i outer edges of D’ (with one division vertex per edge); see Figs. 6(b—c). Let
D = Uyprep(Dy U D} U D5 U Dy). Observe that every graph that satisfies the
following conditions belongs to D.

(a) At most three outer vertices of H are of degree two.

(b) For every outer vertex v of degree two in H, if we contract an edge that
is incident to v, then the resulting plane graph H’' must be a 3-connected
planar graph that contains G as its weak dual.

We now have the following lemma, whose proof is included in the Appendix.

Lemma 4. The graph G admits a proper TTG if and only if some graph H € D
admits a straight-line drawing, where each face of H is a triangle.

Let I' be a straight line drawing of a plane graph H and let f be a face in
I'. By a corner at v in f we denote the angle at v interior to f, which is formed
by the edges incident to v on f. A corner at v is bold if v is an internal vertex in
I'. A corner at v is stretched in I', if the corresponding angle is equal to 180°.
A corner at v is concave in I, if the corresponding angle is greater than 180°.
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Fig. 6. (a) G and G*, where G is shown in dashed lines. (b) A member D’ of D. (c) A
member of Dj. (d) A straight-line drawing I", where a concave and a stretched corner
is shown at vertex a and h, respectively. Every corner in I that is incident to an inner
vertex (i.e., f,g or h) is a bold corner. All the inner faces in I" are semi-outer except
the shaded face, which is a full inner face.

(d)

We call an inner face f a semi-outer face of H, if f contains an outer vertex on
its boundary. Otherwise, f is a full-inner face of H. See Fig. 6.

Observe that for every H € D, if f is a semi-outer face in H, then len(f) €
{3,4,5,6}; Fig. 6(c) shows an example where each of these values appears at least
once. For every other inner face f, len(f) € {3,4}. Moreover, if I is a straight-
line drawing of H, where all the faces are drawn as triangles, then every face f in
I" contains exactly len(f) — 3 stretched corners. The following lemma computes
an upper bound on the number of ways the corners of H can be stretched to
have such a straight-line drawing. A detailed proof of this lemma is included in
the Appendix.

Lemma 5. The number of ways in which the corners of H can be stretched to
obtain a straight-line drawing I' such that every face f in I' contains len(f) — 3
stretched corners is O*(4513%2) where ki and ko are the number of inner vertices
of degree four and the number of outer vertices in I', respectively.

Every candidate of Lemma 5, marks some of the corners of H as “stretched”.
The following lemma shows how to test the feasibility of such a marking.

Lemma 6. Let H be a graph that belongs to D. Assume that for every face f in
H, exactly len(f) — 3 corners of f are marked “stretched”. Then one can decide
in polynomial time whether H admits a straight-line drawing I, where all the
corners marked “stretched” are stretched.

Proof. If two different corners at the same vertex are marked stretched, then H
cannot have a straight-line drawing such that both of those corners are stretched
simultaneously. We thus assume that every vertex can have at most one corner
that is marked stretched. We now construct a set P of paths, as follows.

- The three corners that are not marked on the outer face of H must be concave
corners. Let the corresponding vertices be u,v and w in clockwise order on
the outer face of H. Let Sy, be the path on the boundary of the outer face
between the vertices v and v. Define S,,, and S, in a similar way. We add
the paths Sy, Spw and Sy, to P.

- For every corner ¢ that is marked “stretched”, we do the following. Let the
vertex and edges that correspond to ¢ be v and (v, z), (v, y), respectively. We
add the path z,v,y to P.

10



- For every edge (z,y) of H, if (z,y) does not belong to any path of P, then we
add the path z,y to P.

- For any two paths uy, uo, ..., ur_1,ur and vy, v, ..., v;_1,v; in P, if up_1 = vy
and ux = vg, then we delete those paths from P and add the path uq,us,
co k-1 (= 1), uk(=v2), ..., vi—1, v to P. We assume that uy, ug, ..., v4—1, v

do not create a cycle. Otherwise, each of the vertices on the cycle will contain
a stretched corner and H will not have a straight-line drawing.

Observe that every edge in G is contained in a path of P. Furthermore, if H
admits the required drawing I', then every path in P must be stretched in I'. In
the rest of the proof we show that every pair of paths in P is non-crossing and
edge-disjoint, i.e., P is a path covering of H, and hence we can use Theorem 1
to test whether H admits the required straight-line drawing in polynomial time.
The details for this part of the proof is included in the Appendix. a

The following theorem is a consequence of Lemmas 4-6.

Theorem 6. Let G be a 3-connected plane graph with mazimum degree four.
Then one can decide in O*(4%16%2)-time whether G admits a proper TTG, where
k1 and ko are the number of inner vertices of degree four and the number of outer
vertices in G, respectively.

One can adapt the decision algorithm of this section for more general classes
of plane graphs as follows. Let G be 3-connected plane graph of max-degree-A.
Then one can construct a set of graphs D such that every graph H € D contains
G as its weak dual, and G admits a proper TTG if and only if some graph H € D
admits a straight-line drawing, where each face of H is a triangle. Observe that
the cardinality of such a set is independent of A and |D| = O*(2*2). Since
the proof of Lemma 6 does not depend on A, we can use the same lemma to
construct necessary path coverings and to test the stretchability of those path
coverings. Observe that the number of path coverings of H that we need to
check is bounded by the number of ways we can mark the corners of H such
that for every face f in H, exactly len(f)—3 corners of f are marked “stretched”.
Since len(f) < A+ 2, the number of path coverings is O(A3(F1+k2)) where k; is
the number of inner vertices with degree greater than three. Consequently, the
running time of the modified algorithm is O*(2%2 A3(1+k2)) which is polynomial
if A=0(1) and k;+ko=0(logn).

Theorem 7. Let G be a 3-connected n-vertex plane graph with maximum degree
A. Then one can decide in O*(2F2 A3*1+k2)) time whether G admits a proper
TTG, where k1 and ko are the number of inner vertices of degree greater than
three and the number of outer vertices in G, respectively.

6 Conclusion and Open Problems
We presented algorithms for constructing proper TTG for 3-connected cubic

planar graphs, and some grid graphs. Our results are strong in the sense that
there exist 2-connected and 3-connected graphs with maximum degree four that
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do not admit proper TTG; see Fig. 1(g). We also described a fixed-parameter
tractable decision algorithm for deciding proper TTG. In all these cases, one
can obtain the proper TTG (if exists) by solving a barycentric system using the
result of de Fraysseix and de Mendez [5]. Finding such representations on an
integer grid with small area may be an interesting avenue to explore. The main
open problem is of course whether deciding proper TTG is NP-hard, for general
planar graphs, or whether there exists a polynomial-time algorithm.

Acknowledgments. We thank the organizers and participants in the 11th
McGill-INRIA-Victoria Workshop on Computational Geometry 2012 for stimu-
lating research discussions. We also thank many colleagues for discussions about
this problem: Michael Kaufman, Martin Néllenburg, Ignaz Rutter, Alexander
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Appendix

Here we include detailed proofs of some claims with proof-sketches in the main
body of the paper.

Proof of Lemma 3

Proof. Assume that the vertices w, v and u of G on which we apply Operation 3
corresponds to the faces Ty, T5 and Tx of G'.

Case 1 (T1,T> and T3 are ordinary faces:) Without loss of generality
assume that the outer boundary of the union of 77,75 and T3 is a, b, ¢, d, e; see
Fig. 7(a). We add a vertex x interior to Ty and then remove the edges (¢, e) and
(b, e). We now connect z with a,b, ¢, d, e. The resulting graph is G’; see Fig. 7(b).
The new faces are ordinary and hence the quads and edges of G’ coincide with
that of G'.

©) (h) 0) ) (k) U]

Fig. 7. (a-1) Illustration for Operation 3, G and G are shown in dotted lines as weak
duals of G’ and G’, respectively.

Case 2 (Exactly one of T1,75,T3 is a quad): Without loss of generality
assume that 77 is the quad [a, b, ¢, f] and (b, ¢, f) is its stick. By ¢’ and e’ we
denote the edges that are common to 77,75 and Ts, T3, respectively. We have
two consider three subcases.

In Case 2.1 ¢” = (d, f). We add a vertex x interior to T and then remove the
edges (¢, f) and (d, f). If (a, b) is the outer edge, then we connect z to a, c,d, e, f.
If the outer edge is (a, f), then we connect x to b, ¢,d, e, f; see Fig. 7(c—f). The
quad [a, b, ¢, f] of G’ does not determine quad for G’. The new quad of G’ in
Fig. 7(d) (respectively, Fig. 7(f)) is [a,b,c,x] (respectively, [a,b,z, f]), where
(b, ¢, x) (respectively, (b, z, f)) is its stick.

In Case 2.2 €’ = (¢, e). We add a vertex « interior to T and then remove the
edges (¢, e) and (c, f). If (a,b) is the outer edge, then we connect z to a, c,d, e, f.
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If the outer edge is (a, f), then we connect x to b, c,d, e, f; see Fig. 7(g—j). The
quad [a, b, ¢, f] of G’ does not determine quad for G’. The new quad of G’ in
Fig. 7(h) (respectively, Fig. 7(j)) is [a,b,c,x] (respectively, [a,b,x, f]), where
(b, ¢, x) (respectively, (b, z, f)) is its stick.

In Case 2.3 €” is empty, i.e., To, T3 do not share any edge. We add a vertex
x interior to T» and remove the edges (¢, e) and (a,e). We then connect x to
a,c,d, e, f; see Fig. 7(k-1). The quad [a,b,c,e] of G’ does not determine quad
for G’. The new quad of G’ in Fig. 7(1) is [a, b, ¢, x], where (b,c,z) is its stick.
Observe that in Fig. 7(k) T» is incident to edge (c,e). It is straightforward to
obtain a similar analysis for the case when T is incident to edge (b, c¢).

In Cases 2.1-2.3, the five new faces in G’ correspond to the five vertices of
the cycle that replace u,v and w in G.

Case 3 (Exactly two of T1,T, T3 are quads): Without loss of general-
ity assume that 77 and 75 are quads. We now have to consider four subcases
depending on the variation in the edge sharing of these faces.

In Case 3.1 T and T3 share the edge (a, f); see Fig. 8(a). The outer edges of
G’ are (a,b) and (b, c). The paths (b, e, f) and (¢, d, e) are the sticks of T} and Tb,
respectively. We add a vertex z interior to Ta, remove the edges (b, e), (a, f) and
then connect = to b,d, e, f,g; see Fig. 8(b). The quads [b,¢,d,e] and [a,b, e, f]
of G’ do not determine quads for G’. The new quads of G’ are [b,¢,d,x] and
[a, b, x, g], where (c,d,z) and (b, z, g) are their sticks, respectively. Observe that
the five new faces in G’ correspond to the five vertices of the cycle that replace
u,v and w in G. By the inductive hypothesis, no two sticks of G’ have an edge
in common. Therefore, edge (c¢,d) cannot be a part of any other sticks in G'.
Consequently, no two sticks of G’ can have an edge in common.

In Case 3.2 T and T35 share the edge (c,e); see Fig. 8(c). The outer edges
are (a,b) and (b, c). The paths (b, f,g) and (e, ¢, f) are the sticks of 77 and 75,
respectively. We now add a vertex x interior to T5, remove the edges (b, f), (¢, €)
and then connect x to b, d, e, f, g; see Fig. 8(d). The quads [b, ¢, e, f] and [a, b, f, g]
of G’ do not determine quads for G’. The new quads of G’ are [b,¢,d,x] and
[a, b, x, g]. By the inductive hypothesis, G’ has exactly three sticks. Both (c,d)
and (a, g) cannot be contained in the third stick of G’ since this will imply that
[c,d = g,a] is a quad of G'. But [¢,d = g, a] cannot be a quad since by definition
every quad must be a 4-cycle. If (¢, d) is a part of the third stick, we then define
(x,g,a) and (d, z,b) as the sticks of T} and Ty, respectively. Otherwise, we define
(b,x,g) and (¢, d, z) as the sticks of T} and T, respectively.

In Case 3.3 T» and T3 share the edge (d, f); see Fig. 8(e). The outer edges
are (a,b) and (b, c). The paths (b, f,g) and (c,d, f) are the sticks of 77 and 75,
respectively. We now add a vertex z interior to Ty, remove the edges (b, f), (d, f)
and then connect x to b, d, e, f, g; see Fig. 8(f). The quads [a, b, f, g] and [b, ¢, d, f]
of G’ do not determine quads for G’. The new quads of G’ are [a, b, z, g] and
[b, ¢, d, x], where (b, z,g) and (c,d,x) are their sticks, respectively. Observe that
the five new faces in G’ correspond to the five vertices of the cycle that replace
u,v and w in G. By the inductive hypothesis, no two sticks of G’ have an edge
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Fig. 8. (a)—(h) Illustration for Case 3, when T} and 75 are quads.

in common. Therefore, edge (c,d) cannot be a part of any other sticks in G’.
Consequently, no two sticks of G’ can have an edge in common.

In Case 3.4 Ty and T3 share the edge (e, g); see Fig. 8(g). The outer edges
are (a,b) and (b, c). The paths (b, e, g) and {(c,d, e) are the sticks of T} and T5,
respectively. We now add a vertex x interior to T», remove the edges (b, e), (e, g)
and then connect z to b, d, e, f, g; see Fig. 8(f). The quads [a, b, e, g] and [b, ¢, d, €]
of G’ do not determine quads for G’. The new quads of G’ are [a, b, z, g] and
[b, ¢, d, x], where (b, x,g) and (c,d, x) are their sticks, respectively. Observe that
the five new faces in G’ correspond to the five vertices of the cycle that replace
u,v and w in G. By the inductive hypothesis, no two sticks of G’ have an edge
in common. Therefore, edge (c¢,d) cannot be a part of any other sticks in G'.
Consequently, no two sticks of G’ can have an edge in common.

Note that one last potential case (when all the 77, T» and T5 are quads) does
not arise since in this case we cannot apply Operation 3 on the corresponding
vertices w, v, u in G. a

Proof of Theorem 3

Proof. This is the continuation of the proof of Theorem 3 presented in the main
body of the paper.

Assume inductively that we have constructed I, ;, where i < n—1. We now
describe how to install the triangles for the vertex set Z = {21, 22, ..., 2,} of the
(i +1)th row maintaining (a)—(d). Let uf,ub, ..., u; be the unsaturated vertices
of Gp,iy1. We create a ripple R, =(vi(= v1),v5, ..., (= vey1)) as follows.

If z; has the smallest z-coordinate in G, ,, then we add a point v5 above
Ry with z(v1)<z(vh)<z(vs), and draw the straight line viv, avoiding any edge
crossing; see Fig. 9(b). We now iterate the following steps starting with j = 3
and k£ =3, as long as 57 < p.
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Fig.9. (a) A rectangular grid drawing Gs.4. (b—d) Installation of the 1st row Z =
.,711 on top of the TTG for Gy,,0. The triangles for rs,...,r10 and 711 are
constructed by Steps (ii) and (iii), respectively. (e) Installation of the 2nd row Z =
r12,713. (f) Installation of the 3rd row Z = ri4,...,715. The triangles for rig, 717,718
are constructed by Step (iv).

T6, 7y -

(i)
(if)

(iii)

If z; does not have any downward neighbor, then we increment j by 1 for
the next iteration.

If zj_1, z; are not adjacent, then z; must be unsaturated. Here the point
v coincides with vy, and we increment k by 1; see vj in Fig. 9(b). Let z,
be the first vertex after z; that has a downward neighbor. Assume that
w = q— j and set j = g. We place the points v}, vi 1,0} o, ...,V —wi1
such that they become a part of the ripple, and draw the straight lines
from vy, to the newly added points; see vy, v in Fig. 9(c). If z; and z;j41
are adjacent, then we increment k by 2; otherwise, we increment k£ by 1.
Finally, we increment j by 1 for the next iteration.

If z;_1, 2; are adjacent and z; is unsaturated, then

- If both z;_; and z; have downward neighbors, then we examine whether
zj—1 is saturated. If z;_; is saturated, then the point v; coincides with
v;_l. We draw the line segment v;vk and increment k£ and j by 1 for the

next iteration; see the triangle for r; in Fig. 9(d). If z;_; is unsaturated,

then we place the point v; in the middle of the line segment between the
last point placed and the point vg; see the triangles for r15 and 716 in

Fig. 9(f). We then increment k and j by 1 for the next iteration.

16



- If z; does not have downward neighbor, then let z, be the first vertex
after z; that has a downward neighbor. Assume that w = ¢ — j and set
j = q. We place the points v},v}_ 1,0 5, ..., vj—wt1 such that they

become a part of the ripple, and draw the straight lines from vg_1 to the

newly added points; which is similar to Fig. 9(c). We then increment k

and j by 1 for the next iteration.

(iv) If z; is saturated, then we examine whether z;_; is saturated. If z;_; is
saturated, then the point v; coincides with the last point placed, and we add
the straight line v}vk, and increment k and j by 1 for the next iteration; see
the triangles for r1¢, 717 and 5 in Fig. 9(f). Otherwise, z,;_1 is unsaturated
and we place the point v;- in the middle of the line segment between the last
point placed and the point v; see the triangles for r15 and r16 in Fig. 9(f).
We then increment k& and j by 1 for the next iteration.

The case analysis when z; does not have the smallest z-coordinate in G, ;, is
similar. The only difference is the first few vertices of R}, coincides with that
of Ri11, as shown in Fig. 9(e).

To create the triangles for the nth row, we add a point ¢ above the TTG
of Gy, n—1 with z(t)=x(v2), where vs is the second vertex of the ripple on the
outer face of G, ,—1, and draw straight line segments from ¢ to each vertex of
the ripple. Conditions (b) and (c) of the induction invariant help us to install
t with sufficiently large y-coordinate such that the drawing remains planar and
the vertices t, v, +2 and the bottommost point b of the drawing become collinear.

O

Parabolic Grid

We define parabolic grid graphs as follows. Let L = {lg,l1,l2,...,l,} be a set of
n + 1 line segments where line segment [;, 1 <i < n — 1, has endpoints at (0, 7)
and (n —4,0). The endpoints of [y are (0,0), (n — 1,0) and the endpoints of I,
are (0,n — 1),(0,0). We denote the coordinate of the intersection point of lines
l; and I as (4,7). We place a vertex to each intersection point. The vertex on
the point (4, j) is denoted by v; ;. The resulting graph is the parabolic grid graph
of size n which we denote by G,; see Fig. 10.

To prove Theorem 5, we define the following term. Let Ry = vy, va, ..., v be
a ripple. Let the middle point of the line segment vivy be v'. We then call the
polygonal chain vy, v’,va, ..., vk an extended ripple and denote by Ry 1. We are
now ready to prove Theorem 5.

Proof of Theorem 5

Proof. We first construct proper TTG of G5 by placing a point d inside a triangle
abc and connecting d to each of a, b, c. Without loss of generality we assume that
z(a) < z(c) < x(b) and y(c) > y(a) > y(b). We now construct a proper TTG for
G35 from the proper TTG of G3. We remove the vertex ¢ and its incident edges.
We then add extended ripple Ry = vy, v9,v3,v4 such that v; and vy coincides
with a and b, respectively. We now connect vs,d. We then place the vertex ¢
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above R3 and connect ¢ to all the vertices of R3. Assume inductively that Gj,
3 < i < n, admits a proper TTG such that the following conditions hold.

(a) The topmost vertex ¢ in the drawing is adjacent to an extended ripple R;
and the triangles incident to ¢ correspond to the vertices on I; of G;.

(b) The triangle below the edge (v;,v;11),3 < j < i — 1, corresponds to the
vertex u;—1;—; of G; and the triangle below the edges (vi,v2) and (v2,v3)
corresponds to the vertex u;_; ;2 of G;.

(¢) The bottommost vertex b of the drawing has the largest a coordinate in the
drawing and a has the smallest x coordinate.

o
(o]

(=
—_
[g]
o
x
—_
(g]

@ (b)

Fig. 10. (a—c) Construction of proper TTG for parabolic grid graphs. Extended ripples
are shown in bold. (a) G3 and its proper TTG, (b) G4 and its proper TTG, and (c)
G5 and its proper TTG.

We now construct a proper TTG of G,, from proper TTG of G,,_1 such that
the invariants (a)—(c) hold. Let the extended ripple R,, that is adjacent to the
vertex ¢ in the TTG of G,,—1 be v{,v5,...,v],. We remove the vertex ¢ and its
incident edges. We then add extended ripple R,, 41 = v1,v2,...,v,4+1 such that
vy and v,41 coincides with a and b, respectively and vj1q, 3 < j < n—2,is
the middle point of the line segment vjv;. We now add the edges (v}, v;) for
3 < j <n—1. We then place the vertex c above R, ;1 and connect ¢ to all the
vertices of R, 1. It is easy to check that the invariants hold for the constructed

proper TTG of G,,. See Fig. 10 for an illustration of the proof. O
Proof of Lemma 4

Proof. If some graph H € D admits a straight-line drawing such that each face of
H is a triangle, then the drawing itself is a proper TTG of G. Hence, we assume
that G admits a proper TTG I" and then prove that the graph G corresponding
to I' belongs to D. Observe that G is the weak dual of Gp. If G is 3-connected,
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then Gr € D C D by construction. Otherwise, G is not three connected and
we now prove that G satisfies (a) and (b).

If Gr does not satisfy (a), then G contains four or more outer vertices of
degree two. These vertices correspond to four or more corners in I', contradicting
that I" is a proper TTG. Therefore, it remains to prove that G satisfies (b). Let
G’ be the graph obtained by contracting an incident edge for each outer vertex
of degree two in G . Since G contains G as its weak dual and the contraction
operations do not change the corresponding faces, G must be a weak dual of G/
Since G- contains a 3-connected graph as its weak dual and does not contain
any outer vertex of degree two, G- must be a 3-connected graph. a

Proof of Lemma 5

Proof. Let f be a face of H. If f is an outer face with ¢ € {0,1,2,3} vertices of
degree two, then we can choose the three concave corners of I' in (32) ways,
where k is the number of outer vertices in H. All the corners interior to f other
than the concave corners must be stretched.

Assume that f is an inner face of H. If len(f) = 3, then f cannot have any
stretched corner. Otherwise, len(f) = 4. If f is a full-inner face, then exactly one
of its four bold corners must be stretched. Otherwise, f is a semi-outer face. In
this case f cannot have a vertex of degree two since this will imply the vertex
in G corresponding to f is a vertex of degree two; see Fig. 11(a). We may thus
assume that f contains i € {1,2}, outer Vertices Then exactly one of its 4 — ¢
bold corners must be stretched; see Fig. 11(b

A A A

(b)

Fig. 11. (a-b) Illustration for the case when len(f) = 4. The corners at b, ¢,d, g and f
are bold corners. Illustration for the case when (c—d) len(f) =5 and (e) len(f) = 6.

Assume now that len(f) > 5. Since the maximum degree of G is four, f must
be a semi-outer face. If f contains a vertex of degree two, then all the bold corners
must be stretched. Otherwise, f contains ¢ € {1, 2}, outer vertices. Observe that i
cannot be one since this will imply the vertex in G corresponding to f is a vertex
of degree five or more; see Fig. 11(c). Therefore, if len(f) = 5 and 7 = 2, then
two of the three bold corners of f must be stretched; see Fig. 11(d). Otherwise,
len(f) = 6 and i = 2. This case will imply the vertex in G corresponding to f is
a vertex of degree five; see Fig. 11(e).

Observe that for each semi-outer (respectively, full-inner) face, the maximum
number of ways to mark the corners as “stretched” is at most three (respectively,
four). Since the semi-outer faces correspond to the outer vertices of G and the
full-inner faces correspond to the internal vertices of G, the number of ways in
which the corners can be stretched in I" is O*(4¥132), where k1 and ko are the
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number of inner vertices of degree four and the number of outer vertices in H,
respectively. a

Proof of Lemma 6

Proof. This is the continuation of the proof of Lemma 6 presented in the main
body of the paper.

Observe that every edge in G is contained in a path of P. Furthermore, if
H admits the required drawing I, then every path in P must be stretched in
I'. In the following we show that every pair of paths in P is non-crossing and
edge-disjoint, i.e., P is a path covering of H, and hence we can use Theorem 1
to test whether H admits the required straight-line drawing in polynomial time.

Let p; and py be two paths in P. We now prove that p; and p, are non-
crossing and edge-disjoint. Suppose for a contradiction that p; and py cross. If
they have an internal vertex v in common, then v must have two different corners
that are marked stretched, which contradicts our initial assumption that every
vertex can have at most one corner that is marked stretched; see in Figs. 12(a—c).
We may thus assume that p; and ps have an edge (v, v) in common, where none
of u and v is internal to both p; and ps. We now have the following cases.

Case 1: Both of the vertices v and v are end vertices of p;. In this case p;
is an edge that is contained in py. By construction, such a case cannot appear.

@ (b)

Fig. 12. (a-b) The paths p1 and ps have an internal vertex in common, where p; and p2
are shown in bold and dashed lines, respectively. The corners that are marked stretched
are denoted by circular arcs. (¢) The paths p; and p2 cannot cross in this way, since
no corner (therefore, corner Zbvd) can have an edge that splits the corner.

Case 2: One of the vertices u and v is an internal vertex in p;. Without loss
of generality assume that u is an internal vertex of p;. If v is also an internal
vertex of p1, then v and v must be the end vertices of ps and we can use Case
1 to obtain a contradiction. Therefore, we assume that v is an end vertex of
p1. Since u is an internal vertex in p;, v must be an end vertex of ps. The
vertex v cannot be an end vertex of ps since in that case both u and v must
be the end vertices of ps deriving a contradiction. Therefore, we assume that
v is an internal vertex of py. Observe that p; and ps have the following form:
p1 = (ug,ug,y ..., up—1(= u),up(=v)) and p1 = (v1(= w),va(= v),...,ve—1, V).
By the construction of P, such a case cannot appear.

Since any two paths in P are non-crossing and edge-disjoint, P is a path
covering of H. Therefore, we can use Theorem 1 to test whether H admits the
required straight-line drawing I in polynomial time. a
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