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Abstract. We consider contact representations of graphs where vertices are rep-
resented by cuboids, i.e. interior-disjoint axis-aligned boxes in 3D space. Edges
are represented by a proper contact between the cuboids representing their end-
vertices. Two cuboids make a proper contact if they intersect and their intersection
is a non-zero area rectangle contained in the boundary of both. We study repre-
sentations where all cuboids are unit cubes, where they are cubes of different
sizes, and where they are axis-aligned 3D boxes. We prove that it is NP-complete
to decide whether a graph admits a proper contact representation by unit cubes.
We also describe algorithms that compute proper contact representations of vary-
ing size cubes for relevant graph families. Finally, we give two new simple proofs
of a theorem by Thomassen stating that all planar graphs have a proper contact
representation by touching cuboids.

1 Introduction
There is a large body of work about representing planar graphs as contact graphs, i.e.,
graphs whose vertices are represented by geometrical objects with edges correspond-
ing to two objects touching in some specified fashion [1, 10]. Typical classes of objects
might be curves, line segments, or polygons. An early result is Koebe’s 1936 theo-
rem [11] stating that all planar graphs can be represented by touching disks.

In this paper we consider contact representations of graphs with vertices represented
by interior-disjoint axis-aligned boxes in 3D space, called cuboids. The graph edges are
represented by contacts between the corresponding cuboids, i.e. there is an edge if and
only if two cuboids touch. We say that two cuboids touch if they intersect and their
intersection is contained in the boundary of both. In particular, we are interested in the
class of planar graphs represented by proper contact of cuboids, where contacts must
always have non-zero area. Cubes are special cuboids where all sides have the same
length.

1.1 Related Work
Cuboids become rectangles in the 2D version of this problem, and such a representa-
tion is known as a rectangular dual of the input planar graph. There are several (in-



dependent) characterizations of the class of planar graphs that allows such rectangular
duals [12, 13, 17]. A historical overview and a summary of the state of the art in the rect-
angle contact graphs literature can be found in Buchsbaum et al. [3] and Felsner [8].

In the 3D case Thomassen [16] shows that any planar graph has a proper contact
representation by cuboids. Felsner and Francis [9] prove that any planar graph has a
non-proper contact representation by cubes, i.e. a representation where a valid contact
between cubes that represent adjacent vertices may have zero area. This naturally raises
the question about whether a proper contact representation by cubes is possible for all
planar graphs.

1.2 Our Contributions
We study proper contact representations by cuboids, considering cuboids of the same
size and of different sizes. We address both combinatorial and computational questions
summarized as follows:

– We show that any graph with n vertices that admits a proper contact representation
by unit cubes has at most 7n−Ω(n

2
3 ) edges, and we also show that such a bound

is tight. We describe different families of planar graphs with and without proper
contact representation by unit cubes (Section 2).

– We investigate the complexity of the problem of deciding whether a graph admits
a proper contact representation by unit cubes. We prove that this problem is NP-
complete (Section 3).

– We show that some classes of graphs have no proper contact representation even
if cubes are of varying sizes. We also show that varying size cubes allow us to
represent larger classes, such as partial planar 3-trees, than unit cubes (Section 4).
To the best of our knowledge this is the first significant class of planar graphs for
which a proper contact representation by cubes is shown to always exist.

– Finally, we consider general cuboids and describe two new proofs of Thomassen’s
result. The first one uses the canonical ordering of de Fraysseix, Pach and Pol-
lack [6]; the second one uses Schnyder’s realizers [15] (Section 5).
Due to space limitations some proofs are moved to the appendix.

2 Properties of Unit Cube Representations
In this section we establish basic combinatorial properties of graphs with proper contact
representations by unit cubes. We start by studying the classical Turán-type problem
of finding an upper bound on the number of edges as a function of the number of
vertices. We then give examples of graphs that have and don’t admit a proper contact
representation by unit cubes.

We remark that two axis-aligned unit cubes are said to be in proper contact if their
interiors have empty intersection and their boundaries intersect in a rectangle of positive
area. Two cubes make a vertex contact if each cube has a vertex v lying in the interior
of a face of the other cube; in such a case v participates in a vertex contact. Two cubes
make an edge contact if each cube has an edge e lying in the interior of a face of the
other cube; in such a case the endpoints of e participate in an edge contact. Two cubes
make a face contact if each cube has a face f coincident with a face of the other cube;
in such a case the vertices of f participate in a face contact.
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Theorem 1. The maximum vertex degree of a graph that admits a proper contact rep-
resentation by unit cubes is 14. Also, in any proper contact representation by unit cubes
Γ , if a cube C of Γ has degree 14 then it touches its neighboring unit cubes as follows:

– Two opposite faces of C have 4 vertex contacts each.
– Of the remaining 4 faces, 2 opposite ones have 2 edge contacts each and the other

2 have a face contact each.

Proof: We label each vertex v of C with the multi-set of contact types it participates
in: v, e, and f for vertex, edge, and face contact, respectively. If v participates in a
vertex contact, it cannot participate in another and it can participate in at most one edge
contact and one face contact, or in two face contacts. If v does not participate in a vertex
contact and it does participate in an edge contact, it can participate in at most one more
edge contact and one face contact, or in two face contacts. If v only participates in face
contacts, it can participate in at most three of them. Thus a valid label of v is a subset of
{v, e, f}, {v, f, f}, {e, e, f}, {e, f, f}, or {f, f, f}. Every e label at vertex v implies another e
label at an adjacent vertex caused by the same cube touching C. Thus, the total number
of e labels at vertices of C is twice the number of adjacent cubes contributing to those
labels, i.e., each e label contributes 1

2 to the number of cubes adjacent to C. Every f
label implies three other f labels caused by the same cube touching C, so each f label
contributes 1

4 to the degree of C. Every v label contributes 1 to the degree of C. The
total contribution to the degree of C given by a valid vertex label is at most 1.75, by
{v, e, f}. Since C has 8 vertices, it can have degree at most 14.

The only way to obtain degree 14 is if every vertex has label {v, e, f}. That means
two opposite faces ofC have face contact. None of the edges connecting these two faces
can be part of an edge contact, as otherwise the endpoints of the edge could not be part
of a vertex contact. Since the edges that are part of an edge contact form a matching
(i.e., no endpoint of a cube participates in two edge contacts), there exist two parallel
planes P1 and P2, each one containing a face of each cube that makes an edge contact
or a face contact. The remaining 8 cubes that form the vertex contacts thus contact C in
two opposite faces: 4 touching one face (lying in P1) and 4 touching the opposite face
(lying in P2). Fig. 1 shows a realization of a degree 14 cube.

C1 C2

C4 C3

C7C8

C5 C6

C9

C

C10

Fig. 1. An example of a degree 14 cube C viewed from above. We show only the outline of the
four adjacent cubes C1, C2, C3, and C4 touching the top face of C. The corresponding cubes
C11, C12, C13, and C14 touching the bottom face of C are not shown.
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Fig. 2. The graph Ĝv in the statement of
Corollary 2. The vertex labels are consis-
tent with the subscripts in Figure 1.
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Fig. 3. The subgraph of Ĝv used to con-
struct the seed graph.

A consequence of the proof of Theorem 1 is that any proper contact representation
by unit cubes that has a cube C of degree 14, the 8 vertices of C that participate in
vertex contacts on opposite faces of C lie on two parallel planes P1 and P2 such that C
and all its remaining neighbors lie between these two planes. We therefore have three
layers: The middle layer lies between P1 and P2; the extremal layers contain the eight
cubes making vertex contact with C. In general, we say that a subdrawing of a proper
contact representation by unit cubes is extremal if it consists of cubes that all have a face
lying on a same plane, which separates such cubes from the rest of the representation.
A subgraphG′ of a graphG is extremal if in every proper contact representation by unit
cubes of G, the subdrawing of G′ is extremal.

We have the following corollary of Theorem 1.

Corollary 1. In a proper contact representation by unit cubes that has a cube C of
degree fourteen, the 8 cubes that have vertex contacts on opposite faces of C induce
two extremal subdrawings.

By looking at the contacts between the cubes representing the vertices adjacent to a
vertex v of degree 14, we obtain the following.

Corollary 2. Let C be a cube representing a degree fourteen vertex v in a proper con-
tact representation by unit cubes of G and let Gv be the graph induced by the neighbors
of v (not including v). Gv is a subgraph of the graph Ĝv of Fig. 2. More precisely, Gv

has the same vertex set as Ĝv , it includes all solid edges, and a (possibly empty) subset
of the dotted edges of Fig. 2. Also, if Gv includes a dotted edge e, it does not include
any other dotted edge crossing e in Fig. 2.

We are now ready to establish an upper bound to the number of edges in a graph
that admits a proper contact representation by unit cubes.

Theorem 2. If a graph G with n vertices has a proper contact representation by unit
cubes then it has at most 7n−Ω(n2/3) edges, which is asymptotically tight.

Proof: Let Γ be any unit cube representation of G. By Theorem 1, each cube C of Γ
has proper contact with at most 14 other cubes. This implies that the maximum number
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of edges of G is at most 7n. Moreover, in any unit cube representation of G there are
Ω(n2/3) cube vertices that are in the “exterior” of Γ . These vertices cannot belong to
cubes of degree 14. It follows that G has at most 7n−Ω(n2/3) edges.

To prove that this upper bound is tight we pack n = k3 (k odd) unit cubes in an
axis-aligned bounding box B of volume n and side length k. Call the set of k2 cubes
with z-coordinate in [i, i + 1] Li (i = 1..k). For every even i, shift Li (for i even) by
(ε, ε, 0) (with 0 < ε < 1) so that each cube of Li, except for those originally on the
border of B, touches 4 cubes of Li−1 and Li+1. Let Rij be the row of k cubes in Li

with y-coordinate in [j, j + 1] (j = 1..k). For every even i and j, shift Ri,j by (ε, 0, 0)
so that each cube of Ri,j , except for those originally on the border of B, touches two
cubes of Ri,j−1 and Ri,j+1. Now every cube, except for the O(n2/3) cubes originally
on the border of B, has degree 14.

An immediate consequence of Theorem 1 is that any graph having at least one vertex
of degree larger than 14 does not admit a proper contact representation by unit cubes.
In addition, volume constraints imply that relevant families of graphs whose maximum
vertex degree is smaller than 14 may not have a proper contact representation by unit
cubes. We give an example of one such families below.

Lemma 1. Every complete binary tree whose height is larger than or equal to 14 does
not admit a proper contact representation by unit cubes.

Proof: Let T be a complete binary tree with n = 2h+1 − 1 vertices and height h. The
diameter of T is 2h. Since T is connected, a proper contact representation of T by unit
cubes has a bounding box with side lengths at most 2h + 1 and thus volume at most
(2h+ 1)3. On the other hand, the volume must be at least n. For h ≥ 14, this results in
a contradiction.

Note that the argument of the lemma above implies that any graph that contains
a vertex v such that the number of vertices with graph-theoretic distance at most d
from v is greater than (2d + 1)3 does not have a proper contact representation by unit
cubes. Still, there are non-trivial classes of planar graphs that do have a proper contact
representation by unit cubes, as the next theorem shows.

Theorem 3. Triangular grid, square grid, hexagonal grid, and parabolic grid graphs
have a proper contact representation by unit cubes.

Proof Sketch: It is easy to formally prove that all the regular grids above have such
representations. In fact, in these representations all the cubes are co-planar so providing
(x, y)-coordinates for each cube suffices. We leave the details out and instead include
a proof-by-picture, illustrating the regular tiling pattern (infinitely extendable) for the
claimed grid graphs; see Fig. 4.

3 Complexity of the Unit Cube Representability Problem
Here we give a compressed proof that it is NP-complete to determine whether a graph
has a proper contact representation by unit cubes. Section 3.1 gives a “logic engine” [7]
design, which is essentially a representation of a certain contact graph by unit cubes,
such that if an instance of NAE 3-SAT is satisfiable, then the graph can be represented.
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Fig. 4. Regular tiling patterns with unit cubes.

Section 3.2 uses the results of Section 2 to give tools for proving that the graph can be
represented only if the NAE instance is satisfiable. Section 3.3 completes the proof.

3.1 Logic engine design

For an instance of NAE 3-SAT withm clauses and n variables, our logic engine consists
of n poles (one for each variable and its complement) which rotate around a central
shaft. The shaft is attached at each end to a shell which encases the entire assembly. The
shaft passes through a pole block at the center of each pole. The uncomplemented side of
each pole represents an uncomplemented variable, and the other side, the complement
of that variable. Each side of a pole contains m link blocks. A flag block is attached to
the ith link block from the jth pole block, on the uncomplemented side, if and only if
ith clause fails to contain the jth variable (uncomplemented); similarly, a flag block is
attached to the ith link block on the complemented side of the jth pole if and only if
the ith clause does not contain the jth variable in complemented form. Along the poles
and the shaft, spacer blocks separate link and pole blocks. A schematic cross-section
of the logic engine for an m = n = 3 instance is in Fig. 5. All blocks are a × a × a
cubes, where a is odd so that each block face has a unit cube face at its center. Unit
cubes appear larger than scale. The side walls of each block are 2 units thick, as are the
walls of the shell, which is a hollow rectangular box.

Each unit cube depicted in Fig. 5 makes face contact on two sides with a unit cube
in the center of the face of a neighboring block (or shell); this allows poles and flagged
link blocks to “turn” independently.

A variable is regarded as “true” if the uncomplemented part of the pole is positioned
above the shaft. The flags can be positioned so that they do not intersect other flags or
the shell if and only if there is at least one unflagged block in each row of blocks
above and below the shaft, in which case all the remaining flags in the row can be
rotated to point to the unflagged block. This corresponds to having at least one true
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Fig. 5. Schematic cross-section of the logic engine (shaft and shell are darkly shaded).

literal and at least one false literal in each clause. Fig. 5 encodes a “yes” instance of
(x1 ∨x2 ∨ x̄3)∧ (x1 ∨x2 ∨x3)∧ (x̄1 ∨x2 ∨x3), where x1 = T , x2 = F , and x3 = T .

3.2 Making the blocks and shell rigid

The inner dimensions of the blocks and enclosing shell must accommodate unit
cubes from additional graph structure needed to force the desired rigidity of these parts.
The need for this extra, rigidifying structure is indicated by Fig. 6.

C1 C2

C4 C3

C

C1
C2

C4
C3

C

C1 C2

C4 C3

C

(a) (b) (c)

Fig. 6. Top view of 4 unit cubes on an extremal layer of a degree 14 unit cube C; the contact
subgraph can be: (a) an independent set of size 4; (b) a chordless 4-cycle, with cubes unaligned;
(c) a chordless 4-cycle, with aligned, tight cubes in a 2x2x1 box.
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A cube graph is the skeleton of a cube, i.e., a matched pair of chordless 4-cycles.
Since the walls of the shell and the blocks have thickness 2, their associated graphs of
desired contacts are composed of cube graphs. It is not hard to show that if for some
reason, the 8 vertices in any cube subgraph in a block or shell must be realized tightly,
i.e., by unit cubes with a 2× 2× 2 bounding box, then the entire block or shell must be
represented in the desired aligned, rigid way. Our proof defines and uses crystal lattice
graphs, inspired by crystallography (see, e.g., [2]).

C

C4 C3

C2

C ′

C ′
1

C ′
4

C ′
3

tight, extremal 4-cycle

(a) (b)

Fig. 7. (a) A portion of the seed graph. C and C′ represent vertices of degree 14. C has an
“top” cycle of neighbors C1, C2, C3, C4. C′ has a “top” cycle of neighbors C′1, C′2, C′3, C′4. The
remaining neighbors of C and C′ are not shown. (b) The crystallizer graph, with a 10× 10× 10
box enclosing all but the tight, extremal 4-cycle of its seed graph. Only a portion of the seed
graph is shown.

To make a cube subgraph rigid, i.e., to force it, and hence the shell or block graph
to which it belongs, to have a rigid, unique, aligned representation, we attach the cube
subgraph to a crystallizer graph, which in turn contains a seed graph. To define these
two special graphs, we start with the particular contact graph of neighbors shown in
Fig. 3. This neighborhood contact graph uniquely identifies the faces of degree 14 cube
C and gives unique identities to its neighbors, both in the contact graph and in its
representation A by unit cubes. For example, we say the unique chordless 4-cycle that
must be represented by cubes lying in an extremal layer of A lies in the top layer of
A, in contact with the top face of C. We call the left face of C the one in contact with
the unique pair of middle layer cubes that make face contact with each other and edge
contacts with C. We say the unique pair of cubes in the bottom layer that contact each
other also contact the bottom face of C at the front; see Fig. 3.

To create the seed graph, we imagine taking the assemblies of two degree 14 vertices
and their neighborhoods, as described above, and attaching the top of each assembly to
a tight representation of a central cube graph, as shown in Fig. 7. The labeled 4-cycles
of cubes must be represented tightly, with no hole as in Fig. 7 (b), because the face
planes of the top layers align the cubes. Finally, we match an additional chordless 4-
cycle to the chordless 4-cycle in the central cube graph, as shown at the upper part of
Fig. 7 (a), to obtain a seed graph G1. The crystallizer graph is simply a cube graph
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with the vertices of one of its chordless 4-cycles identified with the vertices of the tight,
extremal chordless 4-cycle of the seed graph; see Fig. 7 (b). This cube graph subgraph
of the crystallizer graph is always tight in any crystallizer graph representation, and
hence can force rigid alignment of representations of crystal lattice graphs such as the
graphs for the blocks and the shell when it is identified with one of their cube subgraphs.

3.3 Recognizing proper contact graphs of unit cubes is NP-complete

To prove membership in NP, is suffices to prove that if a representation exists, then
one with a polynomially bounded description exists; this can be done by a technique
similar to that of the proof of Theorem 3.2 of Czyzowicz et al. [4].

Any instance of NAE-3SAT can be transformed in polynomial time to a logic engine
graph made of crystal lattice graphs for the shell, link, flag, pole, and spacer blocks to-
gether with the crystallizer graphs that make these parts rigid, together with the vertices
whose representations allow the poles and links to turn independently (i.e., to be spa-
tially positioned in alternative ways). If the NAE-3SAT instance can be satisfied, then
the logic engine graph can be properly realized in at least one way (see Section 3.1). On
the other hand, if the logic engine graph can be represented, then its crystallizer sub-
graphs force the parts to be drawn rigidly and aligned; the shell forces the poles, links
and flags into a flattened configuration, such that an unflagged position must appear in
each row above and below the shaft to avoid intersection of unit cubes. Thus each clause
has at least one true and one false literal. This completes our compressed proof.

4 Cubes of Varying Size
Motivated by the result of the previous section, we consider graphs that admit a proper
contact representation by cubes of varying size. We start by establishing an upper bound
on the number of edges that such graphs can have. The proof is similar to that of Theo-
rem 1 and it is sketched in the appendix.

Theorem 4. If a graph G with n vertices has a proper contact representation by cubes
then it has at most 14n edges.

We now prove that a fairly general family of planar graphs, namely the class of
partial planar 3-trees, has a proper contact representation by cubes. We recall that a
partial planar 3-tree is a subgraph of an Apollonian network or, equivalently, a planar
graph with tree-width at most 3. For example, outerplanar graphs and series-parallel
graphs are partial planar 3-trees. It may be worth noticing that partial planar 3-trees
with n vertices can have vertices of degree Ω(n); hence, by Theorem 1 they do not
have a proper contact representation by unit cubes. A complete proof of the following
theorem is given in the appendix.

Theorem 5. Every partial planar 3-tree has a proper contact representations by cubes.

Proof Sketch: We first show that every maximal planar 3-tree admits a proper con-
tact representation by cubes. We use the fact that every maximal planar 3-tree can be
obtained starting from K4 and adding a vertex of degree 3 inside a triangular face and
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connecting it to all vertices of the face. We representK3 with three cubes that touch one
another so that they form a corner. The fourth vertex is represented by a smaller cube
that fits in the corner and creates three new corners, each corresponding to the three
inner triangular faces of K4. We now construct the representation by adding a vertex at
a time. Every time a vertex of degree 3 is inserted, it is represented by a smaller cube
that fits in the appropriate corner, creating 3 more corners.

Moreover, we can also represent partial 3 trees. We sketch the main idea next. Any
planar partial 3-treeG can be augmented to a maximal planar 3 treeG′ by adding edges.
Let Γ ′ be a proper contact representation by cubes ofG′, computed as described above.
Let (u, v) be a vertex of G′ that is not in G. Edge (u, v) is represented in Γ ′ by a proper
contact between the cube Cu representing u and the cube Cv representing v. Also,
assume that v was added to the representation after u had already been drawn, which
corresponds to the fact that v is inserted inside a face having u on its boundary. By the
drawing procedure sketched above, cube Cv is smaller in size than Cu and it properly
touches Cu orthogonally to either the x-, or the y-, or the z-direction. Assume, for
concreteness, that Cu and Cv touch with a plane orthogonal to the positive x-direction.
Let Cv, C1, C2, . . . , Ck be all cubes that can be stabbed by a ray originating in Cu and
shooting in the positive x-direction. In order to delete edge (u, v), we compute a small
enough real positive value ε such that if Cv is moved along the positive x-direction by ε
none of the proper contacts between C1, C2, . . . , Ck and the remaining cubes of Γ ′ are
destroyed.

5 Proper Contact Representations by Cuboids
In this section we further relax the constraint on the polyhedra representing the vertices
and consider proper contact representations of graphs where vertices are represented
by cuboids. We present two new (simple) proofs of the following result that was first
established by Thomassen [16].

Theorem 6. Any planar graph has a proper contact representation by cuboids.

The idea behind the first proof is to use the concept of canonical ordering of a plane
triangulation, introduced by de Fraysseix, Pach, and Pollack in [6]. We add vertices
in the canonical order and maintain a staircase rectilinear profile in 2D of the “active”
vertices (that is, the vertices on the outerface ofGi), at the same z level. The “height” of
the realization (the 3rd dimension) corresponds to the index of the current vertex that we
process. When a new vertex vi is added it connects to a chain of vertices vl, vl+1, . . . , vr

of length 2 or more. The contact representation of Gi−1 has height z = i − 1. The
new vertex vi is represented by a cuboid that covers (is placed on top) of the cuboids
representing vl+1, . . . , vr−1 and has proper contact with the cuboids representing vl and
vr on surfaces that are orthogonal to the x- and to the y-direction. Then all new active
cuboids are extended one unit in the z dimension. In particular, the covered vertices
do not grow, while all others gain one unit in the z-direction. See the appendix for a
detailed description of this proof.

The second proof uses Schnyder’s realizers. We start by adding dummy edges to G
so thatG is a maximal planar graph. Later, we will avoid contacts that represent dummy
edges in G by slightly shrinking the dimensions of some cuboids. Let a1, a2, a3 be the
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exterior face of an embedding of G. A Schnyder realizer [15] of G is a partition of the
interior edges ofG into three sets T1, T2, T3 of directed edges such that for each interior
vertex v: (1) v has outdegree one in each of T1, T2, and T3, and (2) the edges around v
in counterclockwise order are leaving in T1, entering in T3, leaving in T2, entering in
T1, leaving in T3, entering in T2.

We may assume that the directed edges in Ti form a tree rooted at external vertex
ai. We add the edges (a2, a1) to T1, (a3, a2) to T2, and (a1, a3) to T3; see Fig. 8.

Let <X , <Y , <Z be a set of three total orders on the vertices of G with <X con-
sistent with T1, T−1

2 , T−1
3 , <Y consistent with T−1

1 , T2, T−1
3 , and <Z consistent with

T−1
1 , T−1

2 , T3. Here, T−1
i is the transpose of Ti. The sequence (<X , <Y , <Z) exists

and is called a 3-dimensional representation of G [14].
We use these three total orders to define our proper contact representation of G by

cuboids. For vertex v, let xM (v), yM (v), and zM (v) be the rank of v in the inverse
of <X , <Y , and <Z respectively. (Using the inverse makes the pictures similar to T-
contact systems [5].) For (u, v) ∈ T1, let xm(u) = xM (v). Let xm(a1) = xm(a3) = 0.
Since every internal vertex u and a2 has outdegree one in T1, this defines xm(u) for all
vertices. If (u, v) is a dummy edge then subtract some ε (0 < ε < 1) from xm(u). For
(u, v) ∈ T2, ym(u) = yM (v) (minus ε if a dummy edge) and ym(a1) = ym(a2) = 0.
For (u, v) ∈ T3, zm(u) = zM (v) (minus ε if a dummy edge) and zm(a2) = zm(a3) =
0.

For a vertex v, define the v-cuboid as the region ([xm(v), xM (v)], [ym(v), yM (v)],
[xm(v), zM (v)]). LetB(<X , <Y , <Z) be the set of v-cuboids defined by<X ,<Y , and
<Z (obtained from the Schnyder realizer (T1, T2, T3) of G); see Fig. 8. The proof that
B(<X , <Y , <Z) is a proper contact representation ofG by cuboids can be found in the
appendix.

v3

v5

v6

a3

v4

v2
v1

a2a1

X

Z

a2

v1

a3

v6

v5

v4

v3

v2

a1

Y

Fig. 8. A Schnyder realizer with <X : a2a3v3v6v5v1v2v4a1, <Y : a3a1v6v4v5v2v3v1a2, and
<Z : a1a2v1v2v3v4v5v6a3 and the corresponding proper contact representation by cuboids. The
arrangement of cuboids may enclose regions of empty space.
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6 Open Problems
1. Does every planar graph admit a proper contact representation by cubes?
2. Can we characterize/recognize the class of graphs that have a proper contact repre-

sentation by cubes (e.g., K5 is not representable but K3,3 is)?
3. What is the complexity of deciding whether a planar graph has a proper contact

representation by unit cubes (we have shown that the problem is NP-complete for
general graphs)?

4. The question above is interesting also for just binary trees.
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Appendix
Proof of Theorem 4
Theorem 4. If a graph G with n vertices has a proper contact representation by cubes
then it has at most 14n edges.

Proof Sketch: Let Γ be any cube representation ofG. Consider a cube C having small-
est dimension in Γ . By Theorem 1, there can be at most 14 cubes touchingC and having
size larger than or equal to the one of C. If we remove C from Γ , we delete at most 14
edges. We remove all edges of Γ by repeatedly removing a cube of smallest size. Since
there are at most n cubes and each deletion removes at most 14 edges, we have that the
number of edges in G is at most 14n.

Proof of Theorem 5
Theorem 5. Every partial planar 3-tree has a proper contact representation by cubes.

Proof: Augment G to a maximal planar 3-tree G′ by adding dummy edges to it. The
edges of G′ are hence partitioned into real edges, that belong both to G and to G′, and
dummy edges, that belong to G′ and not to G.

We first show that G′ has a proper contact representation by cubes Γ ′. We later
modify Γ ′ to obtain a proper contact representation of G by cubes.

In order to construct Γ ′, we use the fact that every n-vertex maximal planar 3-tree
is a maximal planar graph with tree-width 3, hence it can be constructed starting from
K3 and repeatedly adding a vertex of degree 3 inside a triangular face of a planar em-
bedding of a previously constructed maximal planar 3-tree with one less vertex. Such
a construction determines an ordering v1, v2, . . . , vn of the vertices of G′, where v1,
v2, and v3 are the vertices of the starting K3. For each k ≥ 3, denote by G′k the sub-
graph of G′ induced by v1, v2, . . . , vk. We construct Γ ′ starting from a representation
of (v1, v2, v3) and drawing the vertices in G′ one at a time, in order v4, v5, . . . , vn. For
each k ≥ 3, the constructed proper contact representation by cubes Γ ′k of G′k satisfies
the following invariants:

– Invariant A: For each vi (4 ≤ i ≤ k), there exists a labeling of its adjacent vertices
ai,bi,ci ∈ G′i−1 such that the bottom (back, left) side of C(vi) touches only the
cube C(ai) (C(bi), C(ci), respectively).

– Invariant B: For each face f of G′k, there exists a labeling of its vertices a,b,c and
a point pf in Γ ′k such that, for every ` > 0, the cube C with xm(C) = x(pf ),
ym(C) = y(pf ), zm(C) = z(pf ), and with side length ` touches only only the
cube C(a) (C(b), C(c)) along its bottom (back, left, respectively) side.
When k = 3, a proper contact representation by cubes satisfying Invariants A and B

is constructed by drawing v1, v2, and v3 as three cubes of side length 2, with xm(v1) =
ym(v1) = −1, zm(v1) = −2, xm(v2) = −2, ym(v2) = −1, zm(v1) = 0, xm(v3) =
0, ym(v3) = −2, and zm(v3) = 0. Observe that Invariant B is satisfied with pf ≡
(0, 0, 0); see Fig. 9(a).

Assume now that k > 3 and let Γ ′k−1 be a a proper contact representation of
G′k−1 by cubes satisfying Invariants A and B. Let f = (ak, bk, ck) be the face of
G′k−1 into which vk is inserted to form G′k. Let l > 0 be any real number such that
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Fig. 9. Illustration of the algorithm for constructing a proper contact representation of G′ by
cubes. (a) Construction of Γ ′3. (b) Insertion of vertex vk in Γ ′k−1.

l < min{xM (C(ak))−x(pf ), yM (C(ak))−y(pf ), xM (C(bk))−x(pf ), zM (C(bk))−
z(pf ), yM (C(ck))− y(pf ), zM (C(ck))− z(pf )}. Construct Γ ′k from Γ ′k−1 by drawing
vk so that xm(vk) = x(pf ), ym(vk) = y(pf ), zm(vk) = z(pf ), and the side length of
C(vk) is l; see Fig. 9(b). Since Γ ′k−1 satisfies Invariant B, it follows that C(vk) touches
C(ak),C(bk), andC(ck) along its bottom, back, and left side, respectively, and touches
no cube other than C(ak), C(bk), and C(ck); hence Γ ′k is a proper contact represen-
tation of G′k by cubes satisfying Invariant A. We prove that Invariant B is satisfied by
Γ ′k. For each face f of G′k which is not incident to vk, point pf has the same coordi-
nates as in Γ ′k−1. Moreover, denoting by f1 face (ak, bk, vk), by f2 face (ak, vk, ck),
and by f3 face (vk, bk, ck) of G′k, we have that points pf1 ≡ (x(pf ) + l, y(pf ), z(pf )),
pf2 ≡ (x(pf ), y(pf ) + l, z(pf )), and pf3 ≡ (x(pf ), y(pf ), z(pf ) + l) satisfy Invariant
B for the faces f1, f2, and f3, respectively. Namely, for every ` > 0 the cube C with
xm(C) = x(pf1), ym(C) = y(pf1), zm(C) = z(pf1), and with side length ` touches
C(ak), C(bk), and C(vk) along its bottom, back, and left side, respectively, by con-
struction; moreover, since C is contained inside the cube C ′ with side length `+ l and
with xm(C ′) = x(pf ), ym(C ′) = y(pf ), zm(C ′) = z(pf ) and since Γk−1 satisfies In-
variant B, we have thatC touches no other cube representing a vertex ofG′k. Analogous
considerations hold for the cubes associated with faces f2 and f3.

Next, we show how to remove dummy edges ofG′ from Γ ′, thus obtaining a proper
contact representation by cubes Γ of G. Define vk to be the x-child of ck, the y-child
of bk, and the z-child of ak. Define the x-descendants of u as follows: If u has no x-
child, then it has no x-descendants; if u has an x-child, v, then the x-descendants of
u are v and its x-descendants; y- and z-descendants are defined analogously. Consider
again the vertices of G′k in order v4, v5, . . . , vn. When vertex vk is considered, edges
(vk, ak), (vk, bk), and (vk, ck) are removed, if they are dummy. This is done as follows.
Suppose that (vk, ak) is a dummy edge (we can deal with edges (vk, bk) and (vk, ck)
analogously). Let ε > 0 be a real number such that, if the z-coordinates of the vertices
of C(vk) and of the vertices of the cubes representing its z-descendants are increased
by ε, two cubes touch along a plane parallel to x = 0 or y = 0 after the modification
if and only if they touched before the modification. Observe that, since Γ ′ is a proper
contact representation by cubes, such an ε always exists. Then, increase by ε the z-
coordinates of the vertices of C(vk) and of the vertices of the cubes representing its
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z-descendants. By Invariant A, C(vk) touches C(uk) along its bottom side and touches
no cube other than C(uk) along its bottom side. Hence, the performed modification
does not alter the adjacency between any two vertices in Γ ′, except for vk and ak, that
are not adjacent any longer in Γ ′. Finally, dummy edges between v1, v2, and v3 can be
handled analogously.

Using canonical ordering to prove Theorem 6
LetG be any planar graph. AugmentG to a maximal planar graphG′ by adding dummy
edges to it. The edges of G′ are hence partitioned into real edges, that belong both to G
and to G′, and dummy edges, that belong to G′ and not to G.

Lemma 2. [6] Let G′ be a maximal planar graph embedded in the plane with exterior
face (u, v, w). Then, there exists a labeling of the vertices v1 = u, v2 = v, v3, . . . , vn =
w meeting the following requirements for every 4 ≤ k ≤ n.
1. The subgraph G′k−1 ⊂ G′ induced by v1, v2, . . . , vk−1 is 2-connected, and the

boundary of its exterior face is a cycle C ′k−1 containing the edge (u, v);
2. vk is in the exterior face of G′k−1, and its neighbors in G′k−1 form an (at least

2-element) sub-interval of the path C ′k − (u, v).

Denote by Gk the graph G′k restricted to the real edges of G′. Observe that Gn =
G. Further, denote by xm(t), xM (t), ym(t), yM (t), zm(t), and zM (t) the minimum
x-coordinate, the maximum x-coordinate, the minimum y-coordinate, the maximum
y-coordinate, the minimum z-coordinate, and the maximum z-coordinate of a cuboid
representing a vertex t of Gk, respectively. Our algorithm constructs, for each 3 ≤
k ≤ n, a proper contact representation by cuboids Γk of Gk such that the following
invariants are satisfied.

– Invariant 1: The border of Γk is z-free, i.e., the z-coordinates of the top side of
each cuboid representing a vertex in C ′k are equal and can be arbitrarily and in-
dependently increased still maintaining the property that Γk is a proper contact
representation of Gk by cuboids.

– Invariant 2: The border of Γk is an (x, y)-staircase, i.e., it holds xM (wi) < xM (wi+1)
and yM (wi) > yM (wi+1), for each 1 ≤ i ≤ m− 1.
Our algorithm works by induction on k. For k = 3, a proper contact representation

by cuboids satisfying Invariants 1 and 2 can be constructed by assigning coordinates to
v1, v2, and v3 as follows: Set zm(v1) = zm(v2) = zm(v3) = 0, zM (v1) = zM (v2) =
zM (v3) = 1, xm(v1) = 0, xM (v1) = 1, ym(v1) = 0, yM (v1) = 4, xM (v2) = 4,
ym(v2) = 0, yM (v2) = 1, xM (v3) = 3, and yM (v3) = 3. Further, if edge (v1, v2) is
real, then set xm(v2) = 1, otherwise set xm(v2) = 2; if edge (v1, v3) is real, then set
xm(v3) = 1, otherwise xm(v3) = 2; finally, if edge (v2, v3) is real, then set ym(v3) =
1, otherwise set ym(v3) = 2; see Fig. 10.

Now suppose that a proper contact representation by cuboids Γk satisfying Invari-
ants 1 and 2 can be constructed for Gk, for some 3 ≤ k ≤ n − 1. We show how
to construct proper contact representation by cuboids Γk+1 of Gk+1 satisfying Invari-
ants 1 and 2. Denote by w′1, w

′
2, . . . , w

′
p−1, w

′
p the neighbors of vk+1 in G′k. Let Z be

the real number such that the top sides of the cubes representing w′1, w
′
2, . . . , w

′
p−1, w

′
p
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Fig. 10. Three of the eight base cases of the algorithm. (a) Edges (v1, v2), (v1, v3), and (v2, v3)
are all real. (b) Edges (v1, v3) and (v2, v3) are real, while edge (v1, v2) is dummy. (c) Edges
(v1, v2), (v1, v3), and (v2, v3) are all dummy.

lie on the plane z = Z (observe that all such top sides lie on the same plane by Invariant
1). Let Z ′ and Z ′′ be any real numbers such that Z ′′ > Z ′ > Z. For each vertex w′i
in w′2, . . . , w

′
p−1 such that edge (w′i, vk+1) is real, increase to Z ′ the z-coordinate of

the top side of the cuboid representing w′i in Γk; for each vertex that is in C ′k and that
is not in w′2, . . . , w

′
p−1, increase to Z ′′ the z-coordinate of the top side of the cuboid

representing such a vertex in Γk. By Invariant 1, the modified Γk is still a proper con-
tact representation of Gk by cuboids. Set zm(vk+1) = Z ′ and zM (vk+1) = Z ′′. Let
X and Y be any real numbers such that xM (w′p−1), xm(w′p) < X < xM (w′p) and
yM (w′2), ym(w′1) < Y < yM (w′1), respectively. Further, letX ′ and Y ′ be real numbers
such that xM (w′1) < X ′, such that yM (w′p) < Y ′, and such that, for each 2 ≤ i ≤ p−1,
Y ′ < yM (w′i) and X ′ < xM (w′i). Set xM (vk+1) = X and yM (vk+1) = Y . Further,
if edge (w′1, vk+1) is real, then set xm(vk+1) = xM (w′1), otherwise set xm(vk+1) =
X ′. Finally, if edge (w′p, vk+1) is real, then set ym(vk+1) = yM (w′p), otherwise set
ym(vk+1) = Y ′; see Fig. 11.

x
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z

x

y

z

(a) (b)

Fig. 11. Inductive case of the algorithm. (a) Γk (in which only the top sides of the cuboids rep-
resenting the vertices w1, w2, . . . , w6 in C′k are shown). (b) Γk+1 (in which only the cuboid
representing vk+1 and the top sides of the cuboids representing vertices in C′k are shown). In this
example vk+1 is adjacent to each of w1, w2, . . . , w6 in G′k+1, and is adjacent to w1, w2, and w4

in Gk+1.
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Proof of Lemma 3
Lemma 3. B(<X , <Y , <Z) is a proper contact representation of G by cuboids.

Proof: The upper x-normal face of the a1-cuboid touches the lower x-normal face of
the a2-cuboid. Similarly, the a2-cuboid and the a3-cuboid touch y-normal faces. and
the a3-cuboid and a1-cuboid touch z-normal faces. Thus the exterior edges of G are
represented.

Consider an interior edge (u, v) in G. Assume T3 contains the directed edge (u, v).
The argument is similar for T1 and T2. We show that the corner (xM (u), yM (u), zm(u))
of the u-cuboid lies in the interior of the face ([xm(v), xM (v)], [ym(v), yM (v)], zM (v))
of the v-cuboid. By construction, zm(u) = zM (v). Since (u, v) ∈ T3, v <X u and
v <Y u thus xM (u) < xM (v) and yM (u) < yM (v).

If v is an external vertex then v = a3 so xM (u) > xm(v) = 0 and yM (u) >
ym(v) = 1.

Otherwise, to establish xM (u) > xm(v), let (v, w) be the edge from v in T1. By
Property (2) of Schnyder realizers, uvw forms a triangle in G. Since <X , <Y , and <Z

are acyclic, either (u,w) ∈ T1 or (w, u) ∈ T2. In either case, u <X w, thus xM (u) >
xM (w) = xm(v). A similar argument can be used to show that yM (u) > ym(v).
Thus the lower z-normal face of the u-cuboid touches the upper z-normal face of the
v-cuboid.
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