Viewing Abstract Data as Maps

Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov

Abstract From telecommunications and abstractions of the Internet to
interconnections of medical papers to on-line social networks, technology has
spawned an explosion of data in the form of large attributed graphs and networks.
Visualization often serves as an essential first step in understanding such data,
when little is known. Unfortunately, visualizing large graphs presents its own
set of problems, both technically in terms of clutter and cognitively in terms of
unfamiliarity with the graph idiom. In this chapter, we consider viewing such data
in the form of geographic maps. This provides a view of the data that naturally
allows for reduction of clutter and for presentation in a familiar idiom. We describe
some techniques for creating such maps, and consider some of the related technical
problems. We also present and discuss various applications of this method to real
data.

1 Introduction

In an increasingly technological world, we find ourselves dealing with large,
multivariate data sets in order to make informed decisions. For many, tables of
numbers are a cue for the eyes to glaze over. Even experts can have difficulties
determining patterns in “raw” data. For this reason, the statistics community has,
over several centuries, developed a variety of visualizations for statistical data [5]
which can expose correlations and structures that otherwise might be missed.
Recently, a complementary effort in the information visualization community has

E.R. Gansner (°<) ¢ Y. Hu
AT&T Labs — Research, Florham Park, NJ, USA
e-mail: erg@research.att.com; yifanhu@research.att.com

S.G. Kobourov
University of Arizona, Tucson, AZ, USA
e-mail: kobourov@cs.arizona.edu

W. Huang (ed.), Handbook of Human Centric Visualization, 63
DOI 10.1007/978-1-4614-7485-2_3, © Springer Science+Business Media New York 2014

mailto:erg@research.att.com
mailto:yifanhu@research.att.com
mailto:kobourov@cs.arizona.edu

64 E.R. Gansner et al.

Blefufec
w‘c‘:%"ﬁ'“ - %2
Difcovered, A.D. 1699

W

Fig. 1 Lilliput and Brobdingnag (Thanks to Project Gutenberg)

expanded the number of visual metaphors [30,43]. The key to all of this work is to
take the many dimensions inherent in the data and reduce it down to the two or three
that are accessible to the human eye, and doing it in a fashion that reveals or at least
maintains the data’s most salient features.

One approach to making this information more accessible to the human is to
rely on more familiar, less technical visual metaphors, in essence, to map abstract
data into a more concrete or physical space, ones tangible to and experienced by
the viewer. Not surprisingly, various researchers in the geographical information
science community (GIS) were among the pioneers in promoting this style of
visualization [27,40,41], which they termed spatialization.

Constraining the metaphor even more, one can consider how to present abstract
data in the context of a geographic map. At the simplest level, this might involve
merging geographic and abstract data [12]. Cartograms [24, 25] provide another
level of abstraction, in which quantitative information about a geographic region
is represented by area or distance, usually requiring a distortion of the geography.
These appear particularly attractive to the popular press.

More interesting is to derive a pseudo-geographic map from the abstract
data. People seem generally intrigued by maps, and seeing fictional or abstract
information portrayed on a map makes it more real. Authors, from Swift (Fig. 1) to
Hardy to Tolkien, have long provided maps to guide the reader through their world.

Viewing Abstract Data as Maps 65

Fig. 2 Aspects of eighteenth century financial bubbles as a map (http://bigthink.com/strange-
maps/554-the-fools-head-map- a-fossil-of - the-financial-bubbles- of - 1720)

More relevantly, there is also a very long tradition of displaying abstract data in the
form of a map. One early example is the Fool’s Head Map (Fig.2) diagramming
the financial bubbles of the early 1700s. This blends real geography (the Thames
and Seine Rivers) with allegorical aspects such as “Crazy Town” and islands
of “Poverty” and “Despair.” More recent examples include Cardelli’s map of
programming language concepts used as the cover for Ullman’s ML book [44] and
Randall Munroe’s take on the evolution of online communities (Fig.3). Clearly,
creating these maps relied on the talent, knowledge and wit of someone with artistic
talents.

For use in information visualization, it is necessary that we be able to automate
the production of such maps, with an eye for aesthetics but also with the accep-
tance that some genius of the hand-made map will be missing. Various techniques
have been devised for producing such maps. For example, from the GIS community,
there is the notable work of Skupin, Fabrikant and others [10, 35,37-39]. Adding
to intuition, there is some evidence that map-based displays of abstract data provide
an aid to comprehension [9].

http://bigthink.com/strange-maps/554-the-fools-head-map-a-fossil-of-the-financial-bubbles-of-1720
http://bigthink.com/strange-maps/554-the-fools-head-map-a-fossil-of-the-financial-bubbles-of-1720

66 E.R. Gansner et al.

GATHLHED

ORR BE
SPRING 40 SUMMER o 2010

e
B e Mo S ey
BT T O o KT A T B T

Fig. 3 Munroe’s map of online communities (http://xkcd.com/802/)

Until the recent past, much data visualization dealt with simple attributed data.
That is, the data was viewed as a collection of records, each record being one of a
small number of types, which determined the fields it had. A further complication
has been added that now many data sets have a graph or explicit relational structure
as well. (Theoretically, a graph can be represented using a simple attributed data
model, and in practice, the data often contained a graph implicitly. Making the graph
explicit also implies the desire to visualize the graph explicitly.) Canonical examples
of graph-based data are the various graphs induced by the Internet, the friendship
graph induced from Facebook, or the “following” relation from Twitter. Driven
by the increasing presence and importance of graphs, in software engineering,
biology, telecommunications, social networks, etc., there has been a great deal
of work in the theory and practice of drawing graphs [1], including graphs with
thousands of vertices.

http://xkcd.com/802/

Viewing Abstract Data as Maps 67

Fig. 4 A node-link drawing compared to a map representation of the same graph

As with other forms of data, representing graphs as maps can make the data
more accessible to the reader, replacing a typical node-link diagram or point-cloud
visualization with a more compelling drawing. A further impetus for considering
graphs as maps arises naturally from standard graph drawing. Figure 4a displays
a typical graph layout using a node-link diagram. The graph represents the author
collaborations between 1994 and 2004 at the Symposium on Graph Drawing. The
drawing exhibits the connected components, and closely related nodes are indicated
by proximity, but cluster structure is only hinted at. It is not difficult to already see
a map there, so why not go the next few steps and arrive at the rendering in Fig. 4b?
In this version, the cluster structure is obvious. Coloring the nodes in the node-
link drawing would still only imply the clusters. The map representation makes the
clusters explicit as well as indicating strong cluster relations where two clusters
share a border.

In the remainder of this chapter, we will explore a technique for displaying graphs
as geometric maps. The creation of the basic geometry is described in the next
section. Section 3 addresses some of the auxiliary problems that arise in making
a good map, such as how to best color the regions or provide additional features to
help the reader. Unlike in the real world, the geography of much abstract data is in
constant motion, changing with each packet or phone call. We look at the issue of
dynamic maps in Sect. 4. Section 5 applies the methods described to real-world data
and shows how such maps can provide insights into the data. We conclude with a
few thoughts in Sect. 6.

2 Making the Map

The technique we describe here, which we refer to as GMap, allows us to generate
map-like representations from an abstract graph. In particular, given a graph with
weighted edges, such as how similar or dissimilar two books are based on customer

68 E.R. Gansner et al.

e
ot -

- A = e Er s
e st T A
Sl o =l ==
Vi = a = - # ngistan M T Comrred
= . Sy 7 . \
P B 5 iy o ppees e e .~
i\ Kart: Grundiwor of S 3 N/ \

Mt hr Fraers -

N T -

Fig. 5 A map of books related to “1984” from Amazon.com

purchases, we produce a drawing with a map-like look, with countries that enclose
similar objects, outer boundaries that follow the outline of the vertex set, and inner
boundaries that have the twists and turns found in real maps. A typical example
is given in Fig.5, showing just under 1,000 books, with edges determined by
Amazon.com’s record of related purchases. Our maps also can have lakes, islands,
and peninsulas, similar to those found in real geographic maps. The technique
is applicable outside of the domain of graphs; it can typically be used on most high-
dimensional data sets.

This technique is a framework in the true sense of the word, rather than a specific
algorithm. It consists of three main steps. The first two steps are fairly generic and
can be achieved by a variety of existing algorithms. The last step is tuned to creating
a map and involves a special-purpose algorithm. When finished, we have a drawing
that has the basic appearance of a geographic map. With the addition of colors for
the countries, perhaps coastal shading, mountains or some other effects, we have an
acceptable imitation of a map. As noted above, these final features will be covered
in Sect. 3.

Much of our presentation is narrative and informal. We refer the interested reader
to the articles [14, 15, 19] for technical details and more references and examples.
A prototype implementation is available as part of the open source Graphviz
software package [16, 18].

2.1 Laying Out the Boundaries

For the first step, we take as input a graph or high-dimensional data set, and embed it
into the plane. The statistics and scientific modeling communities have extensively
explored this problem and provide many ways of doing this. Possible embedding

Viewing Abstract Data as Maps 69

algorithms include principal component analysis, multidimensional scaling (MDS),
force-directed algorithms, or non-linear dimensionality reductions such as Locally
Linear Embedding and Isomap.

The second step takes this collection of points in the plane and aggregates
them into clusters. Here, it is important to match the clustering algorithm to the
embedding algorithm. For example, a geometric clustering algorithm such as k-
means [31] may be suitable for an embedding derived from MDS, as the latter tends
to place similar points in the same geometric region with good separation between
clusters. On the other hand, with an embedding derived from a force-directed layout,
a modularity based clustering [32] could be a better fit. The two algorithms are
strongly related, and therefore we can expect vertices that are in the same cluster to
also be physically close to each other in the embedding.

In the third step, we use the two-dimensional embedding together with the
clustering to create the actual map by delineating country boundaries, carving con-
tinental outlines, and separating islands from continents. This can be accomplished
with the help of plane partitioning techniques such as Voronoi diagrams, along
with the addition of new algorithmic techniques to ensure realistic looking outer
and inner boundaries. We want to create a map, with inner boundaries separating
points not in the same cluster and outer boundaries preferably following the general
outline of the point set. A naive approach for creating the map is to form the
Voronoi diagram of the vertices based on the embedding information, together with
four points on the corners of the bounding box. This is illustrated in Fig. 6a. Such
maps often have sharp corners, and angular outer boundaries. We can generate
more natural outer boundaries by adding random points to the current embedding.
A random point is only accepted if its distance from any of the real points is
more than some preset threshold. Note that this step can be implemented efficiently
using a suitable space decomposing data structure, such as a quadtree. This leads to
boundaries that follow the shape of the point set. In addition, the randomness of the
points on the outskirts gives rise to some randomness of the outer boundaries, thus
making them more map-like, as seen in Fig. 6b. Furthermore, depending on the value
of the threshold, this step can also result in the creation of lakes and fjords in areas
where vertices are far apart from each other. Nevertheless, some inner boundaries
remain artificially straight.

At this point, we still note the undesirable feature that the “countries” all have
roughly the same area (Fig. 6b), whereas we might prefer some areas to be larger
than others (e.g., due to the importance of the entities they represent). As an
illustration, in Fig. 6, we assume that “node 1” is more important than the other
two nodes, and use a larger label for that area.! To make areas follow the shape of
the labels, we first generate artificial points along the bounding boxes of the labels
as shown in Fig. 6¢. To make the inner boundaries less uniform and more map-like,

A weighted Voronoi diagrams can be used to make the area of each Voronoi cell proportional to
its weight. We do not use this approach, however, because we want the Voronoi cell to also contain
a specific shape, e.g., the bounding box of a label.

70 E.R. Gansner et al.

Fig. 6 (a) Voronoi diagram of vertices and corners of bounding box; (b) better construction of
outer boundaries through placement of random points; (¢) Voronoi diagram of vertices and points
inserted around the bounding boxes of the labels; (d) the final map

we perturb these points randomly instead of running strictly along the boxes. Here
Voronoi cells that belong to the same vertex are colored in the same color, and cells
that correspond to the random points on the outskirt are not shown. Cells of the
same color are then merged to give the final map in Fig. 6d. Note that instead of
the bounding boxes of labels, we could use any 2D shapes, e.g., the outlines of real
countries, in order to obtain a desired look and proportion of area, as long as these
shapes do not overlap.

We note that not all real maps have complicated boundaries. For example,
boundaries of the western states in the United States often have long straight
sections. We believe that irregular boundaries are more typical of historical and
geographic boundaries, and lead to more map-like results. But this is a matter of
personal taste and our technique can generate maps of both styles.

Viewing Abstract Data as Maps 71

When mapping vertices that contain cluster information, in addition to merging
cells that belong to the same vertex, we also merge cells that belong to the same
cluster, thus forming regions of complicated shapes, with multiple vertices and
labels in each region. At this point we can add more geographic components to
strengthen the map metaphor. For instance, in places where there is significant space
between vertices in neighboring clusters, we can add lakes, rivers, or mountain
ranges to the map to indicate the distance.

With the regions determined, we have a representation of the data in which
closely related objects, as determined by the graph topology and possibly edge
weights, are drawn closely together. This geometric information is then used to
discover clusters among the objects. To emphasize the clusters, each is represented
as a collection of geometric regions.

When projecting high dimensional data into low dimensional space, distance
distortion is inevitable, and the resulting figure will often have some anomalies and
distortions. Thus, some strongly related objects may be separated by seemingly
unrelated objects. For example, in Fig. 13, we see several Richard Pryor shows
connected to the purple country by color but lying outside of the country’s main
region. These shows are also closely connected to shows in other countries further
down the map and are therefore pulled away. Such fragmentation is inherent in
the embedding and clustering algorithms used in the first two steps. However we
have proposed ways [14] to use the clustering information to adjust the layout, so
that the regions of countries are more contiguous, at the expense of some loss of
relational information captured in the original embedding.

3 Map Features

Once the map geometry is in place, we can add additional graphical attributes to
the drawing in order to enhance its clarity, to serve as keys to the abstract data, or
to simply make it more aesthetically appealing. To this end, one natural approach
is to employ additional cartographic or topographic conventions, such as overlaying
mountains, rivers or roads, applying coastal shading, or generating a relief map such
as the one shown in Fig. 15.

One feature common to almost all maps is a coloring of the regions to emphasize
commonality or separation. Thus, in past centuries, one could rely on all the states of
the British Empire being colored pink. Achieving a good coloring for our artificial
maps brings its own set of problems, which we now address.

3.1 Map Coloring

In this subsection we consider the problem of assigning good colors to the countries
in our maps. The Four Color Theorem states that only four colors are needed
to color any map so that no neighboring countries share the same color. It is

72 E.R. Gansner et al.

implicitly assumed that each country forms a contiguous region. However, this result
is of limited use to us because countries in our maps are often not contiguous.
For instance, in Fig. 13 as we previously noted, we have several Richard Pryor
shows that belong to the Saturday Night Live cluster, but are separated due to his
connections with films in other regions. In cases where one cluster is represented
by several disjoint regions we must use the same color for all regions to avoid
ambiguity. Thus, four colors (or even five or six) are not enough. Instead, we will
have to use one unique color for each cluster to avoid ambiguity.

Estimation of the number of colors an “average human” can discriminate, when
color pairs are presented side by side, ranges from tens of thousands to a million.
However, the number of colors a person can differentiate, when similar colors are
not immediately next to each other, is far smaller. A further limiting factor is that
5 % of males are color blind, which rules out certain coloring schemes. Finally, some
coloring schemes are used more often than others in maps, reducing the number of
colors even more.

In coloring our maps, we start with a coloring scheme from ColorBrewer [3],
and generate as many colors as the number of countries by blending the base colors.
As a result our color space is piecewise linear and discrete. It remain to be decided
which color should be assigned to which country. Because the number of countries
can be as many as 30 in many examples, and because we blend a few distinctive
colors to form a discrete 1D array of colors, two consecutive colors in the linear
array of colors are similar to each other. When applying these colors to the map,
we want to avoid coloring neighboring countries with such adjacent pairs of colors.
Although two non-neighboring countries with similar colors can lead the viewer to
believe that they are disjoint regions of the same country, this problem diminishes
when the two countries are sufficiently far apart, as it is unlikely that distant regions
that are far away belong to the same cluster. With this in mind, we define the country
graph, G. = {V,, E.}, to be the undirected graph where countries are vertices, and
two countries are connected by an edge if they share a non-trivial boundary. We then
consider the problem of assigning colors to nodes of G, so that the color distance
between nodes that share an edge is maximized.

More formally, let C be the color space, i.e., a set of colors; letc : V. — C be a
function that assigns a color to every vertex; and let w;; > 0 be weights associated
with edges {i, j} € E., indicating how important it is to color node i and j with
distinctive colors. Let d : C x C — R be a color distance function. Define the
vector of color distances along edges to be

v(e) = {wij d(c(i).c(j)) [{i.]} € Ec}.

Then we are looking for a color function that maximizes this vector with respect to
some cost function. Two natural cost functions are:

. N2
max Y wi;j d(c(i).c(j))* (2-norm)
{i.j}€E,

Viewing Abstract Data as Maps 73

and

max min w;; d(c(i),c(j)) (MaxMin)
ceC {i,j}€E,

The weights along the edges can be used to model the undesirable effect of two
nearby but not connected countries having very similar colors by making the country
graph a complete graph, and assigning edge weights to be the inverse of the distance
between two countries.

Dillencourt et al. [6] investigated the case where all colors in the color spectrum
are available. They proposed a force-directed model aimed at selecting |V, | colors
as far apart as possible in the color space. In our map coloring problem, however,
we are limited to “map-like” colors for aesthetic reasons, and our color space is
discrete. Therefore, for simplicity, we model our coloring problem as one of vertex
labeling, where our color space is C = {1,2,...,|V,|}, and the color function we
are looking for is a permutation that maximizes the labeling differences along the
edges. The cost functions we consider are

max Z w; j (i — nj)z, (2-norm) (D)
{i.j}eE,
and
max min w; j|m — 7|, (MaxMin) 2)
T {i.j}€E,
where 7; is the i-th element of the permutation & of {1,2,...,|V.|}.

It turns out that the MaxMin problem (2) is known as the antibandwidth problem,
and arises in a number of practical applications. For example, it belongs to the
family of obnoxious facility location problems. Here the “enemy” graph is one for
which nodes are people and there is an edge between two people if and only if
they are enemies. The problem is to build each person a house along a road so that
the minimal distance between enemies is maximized [4]. Another example is the
radio frequency assignment problem in which the nodes correspond to transmitters
and the edges are between interfering transmitters; the objective is to assign the
frequencies so that those for the interfering transmitters are as different as possible.

This antibandwidth maximization problem is NP-Complete [29]. In the liter-
ature, theoretical results have been presented for some special graphs, including
paths, cycles, rectangular grids, special trees and complete bipartite graphs (see, for
example, [34] and the references therein).

For more general graphs, heuristics algorithms are being developed. Hu et al. [20]
have developed an algorithm GSpectral (Greedy Spectral) that is based on
computing the eigenvector corresponding to the largest eigenvalue of the Laplacian
associated with the graph and then using a greedy refinement algorithm. Duarte,
Marti, Resende and Silva [7] have proposed a linear integer programming formula-
tion and several heuristics based on GRASP (Greedy Randomized Adaptive Search

74 E.R. Gansner et al.

21612020 -0 125Q 1270611‘80

3 9 8 4 1 11 4 9 7
:11405123. @101615010‘11 0814}0060
4 2 14 14 7 9
e o @ o 4129131512@ lssoslsuo

6 11 11 6 9 11 8

.701415213 ® ;s 3050 .3161407.

Fig. 7 Coloring schemes RANDOM, SPECTRAL, and SPECTRAL+GREEDY. Each node is
colored by the color index shown as the node label. Edge labels are the absolute difference of the
endpoint labels

Procedure) with path relinking. They present some high-quality computational
results for general graphs, although the run-times for their relatively modest-sized
test problems (graphs with fewer than 9,000 nodes) are quite high (typically several
minutes for their fastest approach applied to their largest problems). Scott and Hu
[36] presented a faster heuristic with the rough idea of finding a pseudo diameter of
the graph first, then ordering the corresponding level sets in an alternating fashion,
followed by a greedy refinement. The algorithm was found to give comparable
ordering to GRASP, but works for much larger graphs.

Here we describe the GSpectral algorithm. The algorithm is motivated by the
fact that the complementary problem of finding a permutation that minimizes the
labeling differences along the edges is well-studied. For example, in the context
of minimum bandwidth or wavefront reduction ordering for sparse matrices, it is
known that the problem is NP-hard, and a number of heuristics [23, 28, 42] were
proposed. One such heuristic is to order vertices using the Fiedler vector. This is
found to be very effective when combined with a refinement strategy. Motivated by
this approach, we approximate (1) by

max Z w,-,j(c,-—cj)z, subject to Zci =1 3)

{i.j}eE. keve

where ¢ € R!Y<l. This continuous problem is solved when c is the eigenvector
corresponding to the largest eigenvalue of the weighted Laplacian of the country
graph, while the Fiedler vector (the eigenvector corresponding to the second
smallest eigenvalue) minimizes the objective function above. Once (3) is solved,
we use the ordering of the eigenvector as an approximate solution for (1). We call
this algorithm SPECTRAL.

Figure 7 illustrates three coloring schemes on a 4 x4 unweighted grid graph given
16 colors in some discrete spectrum. A random assignment of colors, RANDOM,
does reasonably well, but has one edge with a color difference of 2. SPECTRAL
performs better, with the minimum color difference of 4. However there are still
2 edges with a color difference of only 4. It is easy to see that SPECTRAL can

Viewing Abstract Data as Maps 75

Fig. 8 Applying coloring schemes for the country graph corresponding to the map in Fig. 4b.
Left: SPECTRAL. There are two edges of color difference 1. Right: SPECTRAL+GREEDY, the
smallest color difference along any edges is now 4. Node labels are the color index given to the
node, and edge label are the absolute difference of the node color index. Nodes are positioned at
the center of the polygons in Fig. 4b

be improved (e.g., swapping colors 6 and 2 would improve the measurements
according to both cost functions). With this in mind we propose GREEDY, a greedy
refinement algorithm based on repeatedly swapping pairs of vertices, provided that
the swap improves the coloring scheme according to one of the two cost functions.
Starting from a coloring scheme obtained by SPECTRAL and applying GREEDY
often leads to significant improvements.

So far we have been using a simple grid graph to illustrate the algorithms.
The actual country graphs are usually more complex. Figure 8 (left) gives the
country graph corresponding to the map in Fig. 4b, with color assignment given
by SPECTRAL. There are two edges of color difference 1. Applying the GREEDY
algorithm guided by the MaxMin cost function to the result of SPECTRAL gives
Fig.8 (right). Now the minimum color difference along any edge is 4, a large
improvement. This is indeed the coloring scheme used to create Fig. 4b.

The GREEDY algorithm has a high computational complexity as we consider
all possible O(|V,|?) pairs of vertices for potential swapping. Since recomputing
the cost functions can be done in time proportional to the sum of degrees of the
pair on nodes considered for swapping, the overall complexity of GREEDY is
O(|V|* + | E;|*). Because the country graph G¢ is typically much smaller than
the underlying graph G, GREEDY is still quite fast and all maps in this chapter
were colored using SPECTRAL+GREEDY, the GSpectral algorithm.

We note in passing that GREEDY is flexible enough to be used with any
other cost functions. For example, the MaxMin cost function could be modified
to measure the distance between two colors in terms of their Euclidean distance in
the RGB or Lab color space, instead of the index difference.

76 E.R. Gansner et al.
4 Dynamic Maps

Unlike maps of the real world, where changes happen on a historical, if not
geological, time scale, the data we consider here is frequently changing daily, hourly
or even every second. To understand the evolution of this streaming data, it is
important that stability can be provided by visual cues. Dynamic map visualization
deals with the problem of effectively presenting relationships as they change over
time. Traditionally, dynamic relational data is visualized by animations of node-and-
link graphs, in which nodes and edges fade in and out as needed. One of the main
problems in dynamic visualization is that of obtaining individually readable layouts
for each moment in time, while at the same time preserving the viewer’s mental
map. A related problem is that of visualizing multiple relationships on the same
dataset. Just as with dynamic data, the main problem is guaranteeing readability
while preserving the viewer’s mental map. Representations based on the geographic
map metaphor could provide intuitive and appealing visualizations for dynamic data
and for multiple relationships on the same dataset.

We give some motivation for dynamic map layout first, then describe a heuristic
to promote dynamic cluster stability, an optimal color assignment algorithm to
maximize color stability between maps, and heuristics to improve layout stability.
Additional details can be found in [21].

4.1 Dynamic Maps: A Motivation

Consider the problem of computing a “good” distance measure between a set of
known DNA samples that is based on multiple similarity measures (e.g., NRY and
mtDNA), with the goal of creating a “canonical map” of the DNA space spanned
by these samples. In this map, DNA samples are nodes, two nodes are close to each
other if they have a high similarity, and groups of similar nodes are clustered into
“countries.”

Next an unknown DNA sample can be compared to the known ones and then
placed on the map, in a way that minimizes its distance to the most similar
known samples. In order to do this, we must compute such a “good” distance
measure from multiple similarity metrics, for example, by assigning weights to each
metric and taking a weighted sum, or some non-linear combination thereof. Once
appropriate weights have been assigned we can create the canonical map where we
will place unknown DNA samples.

Thus the main problem here is figuring out how to appropriately combine a set
of different similarity metrics. Given two different similarity metrics on the same
set of DNA samples, a simple way to visualize them is to create two static maps.
This, however, is not very helpful to the scientists who would like to understand
the correspondences and differences between these two metrics, as node positions
on the static maps are likely to be unrelated. In addition, color assignment for the
countries are random, making it even harder to understand the relationships.

Viewing Abstract Data as Maps 77

Fig. 9 Visualizing multiple maps requires both layout stability and color stability. (a): original
map. (b): a new map based on different similarity data, and with node layout computed
independently. It is difficult to see the corresponding nodes in the two maps. (c): the new map
computed to optimize node layout stability with regard to (a), which makes it possible to compare
nodes, while clusters are still hard to compare. (d): the new map with optimal node layout and
color assignments, which makes it easy to compare with (a); e.g., it is clear that two clusters in the
top left of (a) are now merged

The maps in Fig.9 show the nature of the problem. In Fig.9a, 39 subjects
are embedded in 2D space based on mtDNA similarity, using multi-dimensional
scaling, and clustered and mapped. In Fig. 9b we have re-embedded the subjects
using a different similarity metric (NRY DNA similarity), independent of Fig. 9a.
Compared with Fig. 9a, the layout changed significantly. Furthermore, although the
same color palette is used, colors are assigned independently, making it even harder
to figure out the relationship between Fig. 9b,a. In Fig. 9c, the embedding of NRY
DNA similarity is done to minimize the difference to that of the embedding based
on the mtDNA similarity measure, making it possible to see that node positions
are largely unchanged. However due to the color assignment, it is still difficult to
compare it with the map in Fig. 9a. Finally, in Fig. 9d, colors are properly matched
such that clusters with mostly the same nodes are colored using the same colors.
This makes it easy to compare Figs. 9a,d. For example, we can clearly see that two
countries in the top left are now merged in a single country.

From this example, we can see that to give the viewer a stable mental map when
viewing dynamic maps, we first have to ensure that the layout is done such that
the same node should appear at the same or a nearby position if possible (layout

78 E.R. Gansner et al.

Fig. 10 Trajectories of randomly selected nodes with three different layout stability methods.
(Left) independent layout with average distance traveled 21.41; (Middle) layout initialized with
positions from the previous frame with average distance traveled 13.19; (Right) initialized positions
and Procrustes transformation, with average distance traveled 8.43

stability); secondly, the clustering of the data should be stable, without losing the
quality of the clustering (clustering stability). Finally, coloring of the maps should
be done so that clusters with more or less the same nodes should be associated with
the same color if possible (color stability).

4.2 Stable Dynamic Graph Layout

Abstractly, the problem of dynamic map layout is that of computing node positions,
which is related to the well-known readability versus mental map preservation
problem for dynamic graph drawing. Traditionally, given a sequence of graphs,
one can compute node positions for the current graph in the sequence by starting
with the node positions from the previous graph in the sequence and followed by
local node position refinement. One shortcoming of such an approach is that even
with the node-position initialization, two consecutive graphs in the sequence with
very similar topologies can have very different drawings, causing node-jumping
between frames, and failing to preserve the mental map. One technique that can
help to moderate the change in position is to apply a Procrustes transformation of
the coordinates of the nodes, so that the new layout matches the old layout as much
as possible by using scaling, translation and rotation.

Another dynamic layout approach is to “anchor” some, or all, of the nodes, or
to limit node movement by adding artificial edges linking graphs in different time
frames [8]. However, such approaches can introduce biases that were not in the data
itself, which is undesirable when analyzing highly sensitive real-world data, such as
DNA similarity.

To evaluate the different layout stability approaches, we compare the trajectories
of a set of randomly selected nodes from the dataset in Fig.9. Figure 10 (left)
shows such node trajectories, where the position of a node in the new graph
is obtained by an independent MDS computation of the two layouts. Figure 10
(middle) shows the node trajectories, when using an MDS layout of the current
frame, where the position of each node is initialized with the position obtained

Viewing Abstract Data as Maps 79

from the previous frame. Finally, Fig. 10 (right) shows node trajectories, where the
position of each node is initialized with the position obtained from the previous
iteration and combined with a Procrustes transformation to fit the previous frame.
In all cases we experimented with, the last strategy was the best one, its
trajectories the least jittery. We quantify these strategies by computing the average
node-travel distance per frame (over all nodes in the graph, not just the random
sample shown in the figure). In this example the distances traveled are 21.41, 13.19
and 8.43 pixels, respectively. This confirms that there are non-trivial improvements
when we use the initial nodes position together with a Procrustes transformation.

4.3 Stable Clustering

We now consider the clustering problem on dynamic graphs, where the changes are
adding/removing nodes, adding/removing edges, and modifications in node weights
and edge weights. For the purpose of mental map preservation, we seek to preserve
the clustering structure between the iterations as much as possible, provided that
doing so does not result in suboptimal clustering.

One commonly used clustering for graph data is based on minimizing the
modularity of a partition of the nodes. Here the modularity of a partition is defined as

1 kik; : ,
Q=5 > vy =5, FB(CH).C() 4)

ijev

where w; ; is the weight of the edge between i and j. The scalar k; = Z,’ A;jis
the sum of the weights of the edges attached to node i, and C (i) is the cluster node i
is assigned to. The §— function §(C (i), C(j)) is 1 if C(i) = C(j) and O otherwise,
andm = % Zi’j A; ; is the sum of all edge weights.

We describe a simple heuristic to combine the two objectives of modularity and
cluster stability for dynamic clustering. This heuristic is a dynamic variation of the
agglomerative clustering algorithm of Blondel et al. [2]. Heuristics are a reasonable
approach, as the dynamic modularity clustering problem is also NP-Hard [17].

We begin with each node as a singleton. During the first level of clustering,
we consider merging only node pairs which belong to the same cluster in the
clustering of the previous iteration. When no more node pairs are left for merging,
the current clustering is used to construct a “contracted graph” with each cluster as
a super node and appropriately adjusted adjacencies and edge weights. We proceed
iteratively with the contracted graph as input. The clustering of the previous iteration
is explicitly used in the first level and afterwards we apply the algorithm of Blondel
et al. [2].

We evaluate the effectiveness of our heuristic with a measure of cluster similarity
given by Rand [33]. This measure is based on node-pair clustering as follows. Let C
and C’ denote two clusterings of a graph G, and let S1; denote the set of pairs that

80 E.R. Gansner et al.

are clustered together in both clusterings, and Sgo denote the set of pairs that are in
different clusters. Then the Rand distance between the two clusterings is given by
rand(C.C') = 1 — 2(IS11] + [Sool))
nn—1)
The value will be 0 if the two clusterings are identical, and 1 if one clustering is a
singleton clustering and the other one is that of all nodes in the same cluster.

With the data from Fig.9, we evaluated the quality between each pair of
successive iterations and averaged these values over all successive pairs. Without
our heuristic, the average Rand measure was 0.0631, and with the heuristic, it was
0.0252. This shows an improvement of a little more than 60 % with the heuristic.

4.4 Stable Map Coloring

Color stability, that is, using the same color for countries on the two maps that share
most of their nodes, is an essential ingredient in visualizing dynamic maps. In order
to maintain color stability, we need to match the best pairs of clusters in different
maps.

Given two maps, let C,;4 and C,,, be vectors representing clustering information
of these two maps. We have to minimize the number of nodes whose cluster is
different in Cy;y and C,. Let s(Cyryq, Cyey) be the number of nodes that do not
undergo clustering change.

S(Cald s Cnew) = Z S(Cald (u), Cnew(u)); (6)

ueV

8(u,v) = 1 if u = v, and O otherwise.

The cluster matching problem is to find a permutation I1 of the clustering
Chew, such that [1(Cy.,) maximizes s(Coiq,I1(Cyey)). For example, let
Cora = {1,1,2,2,3} be the clusters assigned to the five nodes vy, vy, v3, v4, vs;
let Cpey = {2,2,1,3,4} be the new clustering in which v3 and v4 split into two
clusters. Clearly s(Cyjq, Chew) = 0. The optimum matching is the permutation
IT : {1,2,3,4} — {2,1,4,3}. The resulting clustering, I1(Cpey) = {1,1,2,4,3}
gives S(Calds H(Cnew)) =4

The problem can be modeled with a maximum weighted matching (MWM)
of a bipartite graph. The corresponding bipartite graph G¢ has node set
{1,2,...,|Coql} x {1,2,...,|Cprewl|}. The edge weight, w(i, j), corresponds to
the number of nodes that are common between cluster i of C,;; and cluster j of
Cnew-

wii, j) =Y ¢, ju) (7)

uevV

¢, j,u)=1if Cog(u) =i and Cyey(u) = j.

Viewing Abstract Data as Maps 81

The maximum weighted bipartite matching of G¢ gives a matching IT between
the clusters C,;; and C,,,, that will maximize s(Cy4, I[T(Cyer)). The MWM for
bipartite graphs can be found using the Hungarian algorithm [26]. For bipartite
graphs, an efficient implementation of the Hungarian algorithm using Fibonacci
heaps [11] runs in O(mn + n*logn), where m and n are the number of edges
and nodes in G¢, respectively. If we assume that a cluster in the old clustering does
not split into more than a constant number of clusters in the new clustering, then
m = O(n). This yields a O(n?logn) algorithm for MWM. Since w(i, j) are all
integers in the range 0 to |V|, the algorithm by Gabov and Tarjan algorithm [13]
for MWM can be implemented with O(n% log(n|V])) complexity. In practice, the
number of clusters is typically small and the Hungarian algorithm is fast enough.

5 Case Studies

In this section, we walk through some sample views of graphs as maps derived from
real-world data and note aspects found in the drawings that might be perceived by a
typical user. As noted above, the technique is intended for fairly large graphs.

Gleaning information from the maps, as with any large data set, typically involves
an interactive, multi-scale process, similar to that used for exploring geographic
maps. One can view the map at small scale to sense the overall layout, the major
regions, and how they relate to each other. One then zooms in to see local detail,
and to traverse the map along small features. At some point, one may zoom out
again to put the local details into a global context.

Based on this style of use, our figures are most effectively displayed as a large
image, often a meter or more in width, or via an interactive viewer. In the former
case, the user can physically move to change the scale. In the latter case, the viewer
provides the scale change and, at the same time, can provide some version of
semantic zoom, so that more detail is added the more the user zooms in. In addition,
an interactive viewer can provide such additional features as textual search or
links connecting a feature on the map to some external information. For example,
clicking one of the books shown in Fig. 5 might take the user to the books entry at
Amazon.com or to a Wikipedia article on the author.

It is important to note that in all cases the countries and their geography in the
resulting maps are not part of the input data, but emerge from the graph layout and
clustering algorithms. This gives the user a potential tool to discover structure based
solely on local data. On the other hand, if a desired clustering is known, this can be
used as the basis for “country” construction.

82 E.R. Gansner et al.
5.1 Maps and Recommendations

Recommender systems provide a motivating reason for displaying graphs as maps.
Many content providers, both to assist their customers in making choices and to
motivate them to make more selections, have systems to suggest additional picks
based on various individual and group statistics, processed and refined with various
algorithms. Typically, the user is provided with a small list or table of options,
perhaps with some associated numbers giving some clue as to how the selections
were made.

We feel that the map metaphor can give the user the relevant information in a
more familiar way, with country placement and the underlying edges suggesting the
connections. In addition, with the appropriate GUI, the user has access to a large
volume of data, rather than a pruned list. With the full map, the user is not limited
to a small region but can explore the map, following connections far from initial
centers of interest. Guided to the movie The Exorcist, the user may wander down to
Babylon 5.

The examples in the next two sections can be viewed as visual bases for
recommender systems for movies and television shows, respectively. Indeed, the
provenance of the movie data is directly tied to recommender systems.

5.2 A Map of Movies

Figure 11 shows a map derived from the data used for the Netflix competition to
invent a better recommender algorithm. The underlying graph uses movies (and
television shows) as nodes. Closely related shows are connected with an edge.
In addition, the edges are weighted based on how strong the connection is. The
base graph contains 11,283 nodes and 71,449 edges. Using a minimum edge weight
as a threshold, we obtain a graph with 11,831 edges. Most of this graph resides in
a single connected component with 3,407 nodes and 11,116 edges. It is this final
graph that is used in the figure.

Zooming in, one can readily identify various countries. In the north, one finds
a country of teen/adult animation (Fig. 12) containing the likes of The Simpsons,
Futurama and South Park, with some Dave Chappelle shows pulled into the mix.
These last form a segue to the purple country to the right (Fig. 13) containing shows
with a certain style of adult humor, such as Saturday Night Live, George Carlin and
Chris Rock.

At the bottom of the map, we find two adjacent countries (Fig. 14). The more
southerly consists of classic, space-based science fiction shows such as Star Wars,
Star Trek, Stargate and The X-Files. To the north we discover the eerier science
fiction of The Twilight Zone and The Outer Limits. Moving clockwise around the
periphery of the map, we encounter clearly defined regions of Japanese films;
Mystery Science Theater 3000 shows; Michael Moore documentaries; cerebral

Viewing Abstract Data as Maps 83

Fig. 11 A map of movies and TV shows (3,407 nodes, 11,116 edges)

Fig. 12 Mostly teen/adult animation

British detectives such as Campion and Lord Wimsey abutting a whole separate
country of British mysteries; Ken Burns documentaries; horror films such as
Nightmare on Elm Street; and several contiguous countries of juvenile fare.

5.3 Personalized Recommendations

Most of the maps we have seen so far have been constructed independent of any
particular person, with data based on the aggregate behavior of many people. This
information can then be tailored to an individual. For example, starting from a map
of related TV shows, we could generate a personalized heat map version where
regions of low interest are colored with cool colors, and regions containing highly

84 E.R. Gansner et al.

BaEreay e LI S B e R

Saturday Hight Live: The Bast of Jon Levite

Saterday Night Live: The Dest of Dan Aykroyd
Saturday Night Live: The Beat of Tom Hanks
Saturday Night Live: Christmas Saturday Hight Live: The Beat of Chris Rsck

Saturday Night Live: The Best of Steve Wartin Saturday Night Live: Hallowssn

Saturday Night Live: The Beat Walken ¥ Fee: The Best of Uike Uyers
‘Saturduy Night Live: The Beat of Chris Farlay Saterday Night Live: The Best of Adam Sasdier Saturday Night Live: 25ih Anniversary e
Saterday Night Live: The Dest of Will Ferrell Saterday Night Live: The Best of Dana Canvey
Saturduy Hight Live: The Bast of Phil Hartman Saturday Hight Live: The Bast of Wil Fameil 3
—— o
Night Live: The Beat of £ddie Murphy
Chappelie’s Show: Season Pallsch

Gearge Carlin: Personal Favorites Caerka: Firat Cut (Nst Theatrea

‘What It's Werth G Carila; George's Bast Stwn
George Carlin: Casiin on Campus |

Champlos George Caria: What Am | Dolag in New Jerssy? George Carlin: Dain’ It Agas

Rock: Diggetk Blackar GUSTGe Casila: On Location WIth GeorghCariin George Carlin: You are All Dissased George Carlin: Jammin' In Naw Yerk / Dein’ 18 & Sha's Teo Yousg

Gesrge Carlin Againl Richard Pryor: Live & Smokin
Guorge Carila; Playing with Yeur He

srge Cartis: Dack In To Cariln: Complainis and Grie:

Kaho Nas Pyaas Hal

in Love and War

Eye of God Coasplracy Oecarand Lucinds &

Richard Pryor: Live on the Sussst 8iMp Intreduciag Dorsthy Da
he Pentagen Papers The Naxi Officer's Wife
The Crossing Guard fad et

Tralsing Oay Tin Men
rays Owtnumbered, Always Oulgunned

ot Pasic Clawdl
> ‘Without Limits
Nare 7\ Maivin and Howard
Ve Moustain o Nrs. Dalloway
Angeia's Avhes A Moath by the Laks._ Macing with t
Hardson's Flowers Muiqeerade
1f Thewe Walls Could
ceol, Dry Prace Ailated Misatssippl Masala Holter Skeitar; D)

The Emperor's Club Danaing at Lughssss Primary Colers
S B oA of the Spirit A Map of the Warld The Acsidantal X Mumer of Angeis
This Is My Father With the Wiite Dog
Hosnd @ The "7‘—/\ The Waterdance /
58 A Bridas Tos Sttt

Fig. 13 Saturday Night Live and friends

recommended shows are colored with a hot color. Figure 15 shows such a heat map,
where shows are scored using a factorization based recommender [22], with dark
colors for shows that score low, and light for shows that score high. Such maps
would be generated dynamically based on the viewing preference of an individual,
and based on what TV shows are available at this moment in time, much like a
personalized weather forecast, but for TV shows. These maps uniquely capture the
viewing preferences of the user or household, and evolve as the availability of TV
shows, and the user’s taste, change with time. We can also generate a heat map
profile, determined by how often the user watches certain shows over a fixed time
period, say, a week or a month. Handling such fluid scenarios well requires the
dynamic techniques discussed in Sect. 4 to be well honed.

Note that this approach could be extended to social networks: What recommen-
dations could be made that might appeal to my friends on Facebook as a group?

Viewing Abstract Data as Maps 85

wllight Zone: Vol. 31 The Twilight Zone: Vel. 1 The Twilight Zone: Vol. 40 The Twilight Zone: Vol. 13 The Twill

The Twilight Zone: Wol. 25 The Twilight Zone: Vol. 21 Star Trek: The ¢

The Twllight Zone: Vol. 27
e Outer Limits: The Original Serles: Season 1

light Zone: Vel. 10 The Twilight Zone: Vol. 16 The Twilight Zone: Vol. Twilight Zone: Vol 43 The X-Flles: Sea

The Twilight Zone: Vol. 35
Star Trek: The Original Serles: Vols. 16-28
the Jed The Twilight Zone: Vol. 11
Vi: The Undiscovered Country

Star Trek: Deep Space Nine: Season 4
rason 2 Star Trek: Deep Space Nine: Season

te SG-1: Season 6 Star Trek: Voyager: Season 7

12 Star Trek: Ente : Season 2
Stargate SG-1: Season 2 rpea Star Trek: Voyager: |

Star Trek: The Next Generation: Season 2
Stargate SG-1: Season 4

Fig. 14 Parts of two science fiction countries

Fig. 15 Sample heat map giving personalized recommendations

5.4 Trade

Figure 16 is a map visualizing the trade relations between all countries. Bilateral
trade data between each of the 209 countries and its top trading partners were
acquired from Mathematica’s CountryData package. The font size of a label is

86 E.R. Gansner et al.

Fig. 16 A map of trade relations between countries

proportional to the logarithm of the total trade volume of the country, and the color
of a label reflects whether a country has a trade surplus (black) or deficit (red).

The label color gives an easy way to spot the oil-rich countries with large
surpluses, which are distributed all over the world as well as in our map: Middle
East (Saudi Arabia, Kuwait), Europe (Russia), South America (Venezuela), Africa
(Nigeria, Equatorial Guinea). On the other hand, the countries with huge deficits are
mostly in Africa (Sierra Leone, Senegal, Ethiopia) with the United States, the clear
outlier.

Many countries in close geographic proximity end up close in our map, e.g.,
Central American countries like Honduras, El Salvador, Nicaragua, Guatemala and
Costa Rica are close to each other in the northeast. Similarly the three Baltic
republics, Latvia, Lithuania and Estonia, are close to each other in the northwest.
This is easily explained by noting that geographically close countries tend to trade
with each other. There are easy-to-spot exceptions: North Korea is not near South
Korea, Israel is not particularly close to Jordan or Syria.

The G8 countries (Canada, France, Germany, Italy, Japan, Russia, United
Kingdom, and the United States) are all in close proximity to each other in the
center of the map. Two of the largest and closest countries in our map are China
and the United States. Clearly, the proximity is due to the very large trade volume
rather than geographic closeness. All these countries are in the largest cluster which
is dominated by European countries in the west, Asian countries in the east, and
Middle Eastern countries in the south.

Viewing Abstract Data as Maps 87

Interestingly, we see from the map that African countries are distributed in
several clusters in close proximity to China (a major trading partner to many African
countries), the United States (trading less with Africa these days), and around former
colonizers (e.g., Togo, Cameroon and Senegal, which are all close to France). On
the other hand, Caribbean and South and Central American countries form several
clusters in the north of the map. In addition, these clusters are mostly contiguous,
essentially forming a supercluster. This differentiation between Latin America and
Africa is clearly brought out by the GMap figure.

Finally, we note that the periphery of the map contains small countries from
around the world, and countries with few trading partners.

6 Final Thoughts

One rule that most researchers in information visualization discover is that people
tend to be most comfortable and adept when they see data the way they have always
seen it. Ignoring this can lead to a “demonstrably” better but alien visualization
being rejected by its intended users. For us, this provides a strong argument for the
effectiveness of displaying graphs and clusters as geographic maps to promote a
more human centric visualization. At present, we have mostly anecdotal and non-
scientific evidence that this is a preferable way for viewing relational data. But we
have seen people spend long periods of time poring over these maps. It would
be desirable to perform more extensive user studies to explore how well maps
compare to other metaphors, and to explore more ways to use maps. At the same
time, there is still much work to be done enhancing and tuning the underlying
algorithms, especially in the context of dynamic graphs.

Acknowledgements We would like to thank Stephen North and Chris Volinsky for helpful
discussions and encouragement.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for the visualization of Graphs.
Prentice-Hall (1999)
2. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large
networks. Journal of Stat. Mechanics: Theory and Experiment 2008, P10,008 (2008)
. Brewer, C.: ColorBrewer - selecting good color schemes for maps. www.colorbrewer.org
4. Cappanera, P.: A survey of obnoxious facility location problems. Technical Report TR-99-11,
Dipartimento di Informatica, Universit a di Pisa (1999)
. Cleveland, W.S.: Visualizing Data. Hobart Press, Summit, New Jersey, U.S.A. (1993)
6. Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via
color space embeddings. In: 14th Symposium on Graph Drawing (GD), pp. 294-305 (2006)
7. Duarte, A., Marti, R., Resende, M., Silva, R.: GRASP with path relinking heuristics for the
antibandwidth problem. Networks (2011). Doi: 10.1002/net.20418

(95}

V)]

www.colorbrewer.org

88

10.

11.

12.

13.

14.

15.

16.
17.

18.
.Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps.

19

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

E.R. Gansner et al.

. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.V.: Graphael: Graph animations

with evolving layouts. In: G. Liotta (ed.) Graph Drawing, Lecture Notes in Computer Science,
vol. 2912, pp. 98-110. Springer (2003)

. Fabrikant, S.I., Montello, D.R., Mark, D.M.: The distance-similarity metaphor in region-

display spatializations. IEEE Computer Graphics & Application 26, 34-44 (2006)

Fabrikant, S.I., Montello, D.R., Mark, D.M.: The natural landscape metaphor in information
visualization: The role of commonsense geomorphology. JASIST 61(2), 253-270 (2010)
Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization
algorithms. J. ACM 34, 596-615 (1987). DOI http://doi.acm.org/10.1145/28869.28874. URL
http://doi.acm.org/10.1145/28869.28874

Fuchs, G., Schumann, H.: Visualizing abstract data on maps. In: Proceedings of the Information
Visualisation, Eighth International Conference, IV 04, pp. 139-144. IEEE Computer Society,
Washington, DC, USA (2004). DOI 10.1109/1V.2004.152. URL http://dx.doi.org/10.1109/IV.
2004.152

Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput.
18, 1013-1036 (1989). DOI 10.1137/0218069. URL http://portal.acm.org/citation.cfm?id=
75795.75806

Gansner, E.R., Hu, Y.F,, Kobourov, S.G.: Gmap: Drawing graphs as maps. http://arxiv1.library.
cornell.edu/abs/0907.2585v1 (2009)

Gansner, E.R., Hu, Y.F,, Kobourov, S.G., Volinsky, C.: Putting recommendations on the
map - visualizing clusters and relations. In: Proceedings of the 3rd ACM Conference on
Recommender Systems. ACM (2009)

Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software
engineering. Softw., Pract. Exper. 30(11), 1203-1233 (2000)

Gorke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic
graphs. In: 9th Symp. on Experimental Algorithms, pp. 436-448 (2010)

Graphviz graph visualization software. www.graphviz.org/

IEEE Computer Graphics and Applications 30(6), 54-66 (2010)

Hu, Y., Kobourov, S., Veeramoni, S.: On maximum differential graph coloring. In: Proceedings
of the 18th international conference on graph drawing (GD’10), pp. 274-286. Springer-Verlag
(2011)

Hu, Y., Kobourov, S., Veeramoni, S.: Embedding, clustering and coloring for dynamic maps.
In: Proceedings of IEEE Pacific Visualization Symposium. IEEE Computer Society (2012)
Hu, Y.F, Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 8th
IEEE International Conference on Data Mining (ICDM), pp. 263-272 (2008)

Hu, Y.F, Scott, J.A.: A multilevel algorithm for wavefront reduction. SIAM Journal on
Scientific Computing 23, 1352-1375 (2001)

Keim, D.A., Panse, C., North, S.C.: Medial-axis-based cartograms. IEEE Computer Graphics
and Applications 25(3), 60-68 (2005)

van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Comput. Geom. 37(3),
175-187 (2007)

Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics ~ Quarterly — 2(1-2), 83-97 (1955). DOI 10.1002/nav.3800020109.
URL http://dx.doi.org/10.1002/nav.3800020109

Kuhn, W., Blumenthal, B.: Spatialization: spatial metaphors for user interfaces. In: Conference
companion on Human factors in computing systems: common ground, CHI 96, pp. 346-347.
ACM, New York, NY, USA (1996). DOI 10.1145/257089.257361. URL http://doi.acm.org/10.
1145/257089.257361

Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT
35, 1-32 (1997)

Leung, J.Y.T., Vornberger, O., Witthoff, J.: On some variants of the bandwidth minimization
problem. SIAM J. Comput. 13, 650-667 (1984)

http://doi.acm.org/10.1145/28869.28874
http://dx.doi.org/10.1109/IV.2004.152
http://dx.doi.org/10.1109/IV.2004.152
http://portal.acm.org/citation.cfm?id=75795.75806
http://portal.acm.org/citation.cfm?id=75795.75806
http://arxiv1.library.cornell.edu/abs/0907.2585v1
http://arxiv1.library.cornell.edu/abs/0907.2585v1
www.graphviz.org/
http://dx.doi.org/10.1002/nav.3800020109
http://doi.acm.org/10.1145/257089.257361
http://doi.acm.org/10.1145/257089.257361

Viewing Abstract Data as Maps 89

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press
(2011)

Lloyd, S.: Last square quantization in pcm. IEEE Transactions on Information Theory 28,
129-137 (1982)

Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci.
USA 103, 8577-8582 (2006)

Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. of the American
Statistical Association pp. 846-850 (1971)

Raspaud, A., Schroder, H., Sykora, O., Torok, L., Vrt'o, I.: Antibandwidth and cyclic
antibandwidth of meshes and hypercubes. Discrete Mathematics 309, 3541-2552 (2009)
Salvini, M.M., Gnos, A.U., Fabrikant, S.I.: Cognitively plausible spatialization of network
data. In: Proceedings of the 20th International Cartographic Conference (2011)

Scott, J., Hu, Y.: Level-based heuristics and hill climbing for the antibandwidth maximization
problem. Technical Report RAL-TR-2011-019, Ritherford Appleton Laboratory, UK (2011)
Skupin, A.: A cartographic approach to visualizing conference abstracts. IEEE Computer
Graphics & Application 22(1), 50-58 (2002)

Skupin, A.: The world of geography: Visualizing a knowledge domain with cartographic
means. Proc. National Academy of Sciences 101(Suppl. 1), 5274-5278 (2004)

Skupin, A.: Discrete and continuous conceptualizations of science: Implications for knowledge
domain visualization. Journal of Informetrics 3(3), 233-245 (2009)

Skupin, A., Buttenfield, B.P.: Spatial metaphors for visualizing information spaces. In: Proc.
AUTO-CARTO 13, pp. 116-125 (1997)

Skupin, A., Fabrikant, S.I.: Spatialization. In: Handbook of Geographic Information Science,
pp- 61-80. Blackwell Publishers (2008)

Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices. International
Journal for Numerical Methods in Engineering 23, 239-251 (1986)

Steele, J., Iliinsky, N.: Beautiful Visualization: Looking at Data through the Eyes of Experts,
Ist edn. O’Reilly Media, Inc. (2010)

Ullman, J.D.: Elements of ML programming - ML 97 edition. Prentice Hall (1998)

	Viewing Abstract Data as Maps
	1 Introduction
	2 Making the Map
	2.1 Laying Out the Boundaries

	3 Map Features
	3.1 Map Coloring

	4 Dynamic Maps
	4.1 Dynamic Maps: A Motivation
	4.2 Stable Dynamic Graph Layout
	4.3 Stable Clustering
	4.4 Stable Map Coloring

	5 Case Studies
	5.1 Maps and Recommendations
	5.2 A Map of Movies
	5.3 Personalized Recommendations
	5.4 Trade

	6 Final Thoughts
	References

