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Abstract. GraphAEL extracts three types of evolving graphs from the Graph Draw-
ing literature and creates 2D and 3D animations of the evolutions. We study cita-
tion graphs, topic graphs, and collaboration graphs. We also create difference graphs
which capture the nature of change between two given time periods. GraphAEL can
be accessed online at http://graphael.cs.arizona.edu.

1 Introduction

While static graphs arise in many applications, dynamic processes give rise to graphs
that evolve through time. Such dynamic processes can be found in software engineering,
internet/telecommunications traffic, and social networks, among others. Typically, the un-
derlying graph structures are large, and depending on the time-granularity, may contain
from a few to a large number of timeslices. The graph representing a particular timeslice
may contain fewer/more vertices/edges than the one representing the previous timeslice, or
it may differ in some other graph attributes, such as node-weights, edge-weights, or labels.

We describe algorithms and techniques for visualization of dynamic graph processes, us-
ing the evolution of the graph drawing literature as an example of such a process. GraphAEL
is composed of three distinct components:

1. a relational database that stores and catalogs the data;
2. a graphical user interface (GUI) for querying the database and for graph creation;
3. a toolkit for interactive visualization of the resulting graphs.

We built a MySQL database and populated it with all the papers from the graph
drawing proceedings in the period 1994-02. The database can be queried online via a GUI.
In addition to standard queries and responses, we can generate graphs that evolve through
time. In particular, we generate citation graphs, co-authorship graphs, and topic graphs

at varying time-granularity. Each of these types comes in two flavors, individual graphs

and cumulative graphs. To study the underlying graph processes, we also extract difference

graphs which facilitate visual discovery of new trends and patterns. The evolution of the
underlying graphs and the difference graphs can be studied via 2D and 3D animations.

2 Related Work

The visualization techniques for graphs that evolve through time are related to previous
work in dynamic graph visualization. A number of papers use modifications of static graph
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drawing algorithms [4, 13, 19]. Incremental graph drawing is used in DynaDag [18]. Bayesian
decision theory, together with a force-directed method are used in [3] to model dynamic
graphs. Sequences of graphs are considered in [7] in order to create smoother transitions.
Special classes of graphs such as trees, series-parallel graphs and st-graphs have also been
studied in dynamic models [5, 16].

More recently, several papers consider larger graphs that evolve through time. In [2] a
system for visualizing network evolution is presented, in which each modification is shown
in a separate layer of 3D representation with vertices common to two layers represented as
columns connecting the layers. Along these lines, Collberg et al [6] describe a graph-based
system for visualization of software evolution, which uses a modification a force-directed
algorithm for visualization of large graphs [10]. Using a preliminary version of our system we
analyzed the ACM digital library database, focusing on collaboration graphs and category
graphs but the lack of citation data prevented us from extracting citation graphs [8].

3 The Relational Database

We gathered data about the graph drawing community, more specifically the nine years
of published proceedings from the International Symposium on Graph Drawing. This data
came from three sources: an XML file with information from the DBLP Computer Science
Bibliography, a GML file used in the 2001 graph drawing contest [1], and the proceedings
themselves. We designed a schema that maps the data to all necessary relations for creation
of collaboration, topic, and citations graphs; see Fig. 1. The database schema consists
of seven tables storing information about articles, authors, proceedings, and publishers.
Rectangles represent entities, circles represent attributes, and diamonds represent binary
relationships. The primary key for each entity is underlined. Each relationship is also
subscripted to in oder to indicate whether the two entities share a one-to-one, one-to-many,
or many-to-many relationship.

Fig. 1. The bibliographical database schema in Extended Entity-Relationship format.

We used MySQL version 4.0.12, a powerful open-source database system, to implement
this schema. The XML file obtained from DBLP contains bibliographical information for
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Fig. 2. The Graphical User Interface, shown here displaying a GML file.

every paper published in the GD proceedings. It does not, however, contain citation infor-
mation. We built an XML parser to extract the relevant bibliographical data from DBLP.
The citation data for the period 1994-00 was gathered from the the 2001 graph drawing
contest GML file. Citation data for 2001 and 2002, was manually entered directly from the
proceedings. We intend to update the database with new entries from the latest proceed-
ings of the symposium on graph drawing, on an yearly basis. The database can be accessed
and queried online at http://graphael.cs.arizona.edu.

4 Graphical User Interface

To interact with the database we created a graphical user interface; see Fig. 2. The GUI,
written in Java, is available as both a web-based Java applet and a downloadable Java
application. The applet version makes use of a PHP script as a servlet to maintain the
security of the database server. The GUI allows users to query general dataset statistics,
search for specific authors and papers, and query citation data by referencer and referencee.
In addition, users can generate collaboration, topic, and citation graphs on the fly in the
form of GML files with varying time-granularity. The applet opens a new browser window
displaying the GML file, which can be saved locally. All of these queries can be limited in
scope by date and the amount of results requested.

The top panel of the GUI contains buttons that allow the user to change the querying
parameters. The left panel of the GUI contains buttons representing the different types of
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results and GML files that can be obtained. The ’Go’ button, activates a servlet that will
then query the database located on the server. The server returns the results to the servlet
which then hands them to the applet where they are displayed. The following queries are
supported by the GUI:

– Database Statistics: lists data statistics, including number of article and authors;
– General Query: allows for search by author name, or title words;
– Co-authorship GML: creates a co-authorship graph, for the given parameters;
– Referencer Search: finds all papers that references a particular paper;
– Referencee Search: finds all papers that are referenced from a particular paper;
– Citation GML: creates a citation graph, for the given parameters;
– Topic Graph GML: creates a topic graph, for the given parameters;
– Top X Lists: lists the most productive authors, most collaborative authors, etc.;

While many of our results are obtained by directly querying the database, some of
our more complex queries and the generation of GML files require the use of additional
programs. These are written in Icon.

5 Interactive Visualization of Evolving Graphs

GraphAEL calculates the layout for evolving graphs quickly. The underlying graph drawing
algorithm is a modification of the GRIP algorithm [10, 11]. Given a graph G = (V, E), GRIP
computes a hierarchical sequence of vertex filtrations given by a sequence of m subsets of
V . Let Vi, Vj be two filtrations such that i < j, then Vi ⊂ Vj and Vm = V . The graphs
defined by this filtration sequence are laid out in order, with the layout of the graph at
each level i providing a basis to guide the layout of the graph at level i + 1. In this way
large-scale structures of the graph are quickly captured by the filtration levels with low
indices, and the small-scale details are refined in the layout of the levels with high indices.

The layout of each filtration level is calculated with the force-directed placement method
of Kamada-Kawai [14]. For a vertex v in G, the displacement of v is calculated by:

F KK(v) =
∑

u∈Ni(v)

( ‖pos[u] − pos[v]‖2

distG(u, v)2 · edgeLength2
− 1

)

(pos[u] − pos[v])

This equation is convenient because it calculates the displacement on each vertex based
only upon its physical and graph distances from other vertices in the graph. Since in general,
vertices in a particular filtration level are not adjacent to any other vertex in the level, but
are instead connected to other vertices in the higher levels through a sequence of edges,
using graph distances is a reasonable approach. Only in the last level of of filtration does
the adjacency make sense, since the last level is the same as the initial graph. Thus at this
level, it is possible to use force directed placement methods which depend on a notion of
adjacency. The Fruchterman-Reingold method [9] is for calculating the displacement of a
vertex v, F FR(v) = F a,FR + F r,FR, where the attractive and repulsive force vectors are
given by:

F a,FR =
∑

u∈Adj(v)

‖pos[u] − pos[v]‖2

edgeLength2
(pos[u] − pos[v])

F r,FR =
∑

u∈Ni(v)

s
edgeLength2

‖pos[u] − pos[v]‖2 (pos[v] − pos[u])
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5.1 GraphAEL’s Layout Algorithm

While GRIP does a decent job of laying out large static graphs, there is no appropriate
mechanism to assign the vertices and edges of a graph attributes, such as weights, which
might affect the layout. This is a major drawback in visualizing certain relations and even
more so in visualizing evolving graphs. For instance, in visualizing the GD citation graph,
it is useful to have a notion of both the weight of a vertex, (which might represent the
number of times a paper is cited), and a temporal notion (which might represent the year
the paper was written). In contrast, GraphAEL supports the layout of graphs with node-
weights and edge-weights, as well as the notion of a timeslice which is used to visualize
graphs with a temporal component (evolving graphs).

GraphAEL tries to place heavy nodes well away from each other and to place vertices
connected by heavy edges, closer to each other. Appropriate modifications to the force-
directed algorithm were made to accommodate these characteristics. Each edge in a graph
is given an ideal length that it will attempt to attain, although this is not always possible.
An edge e of weight we connecting vertices u, v of weight wu, wv respectively is given an
ideal length of

√
wu · wv/we.

Since the Kamada-Kawai method is used to determine parts of the layout, it is nec-
essary to come up with a modified graph distance for weighted graphs. Because of the
computational or space requirements of calculating the effects of all paths between two
vertices, or of computing the shortest weighted path between them, GraphAEL uses an ap-
proximation. Let p1, p2, . . . , pn be the sequence of vertices in the shortest unweighted path
in G connecting two vertices, u and v. The modified Kamada-Kawai vector is given by
FKK(v) =

∑

u∈Ni(v)

(

2‖pos[u]− pos[v]‖2

optDistG(u, v)2 · edgeLength2 + ‖pos[u]− pos[v]‖2
− 1

)

(pos[u] − pos[v]),

where optDistG(u, v) is defined by:

optDistG(u, v) =

n
∑

i=2

√
wpi

· wpi−1

wepipi−1

.

To achieve an aesthetically pleasing layout of the graph, it is also necessary to modify
the Fruchterman-Reingold vectors. As in GRIP, the Kamada-Kawai calculation results in a
good approximate layout so that the Fruchterman-Reingold calculations can quickly ”tidy
up” the layout. The modifications needed to support weighted graphs with the ideal edge
lengths described earlier are simple:

F a,w,FR =
∑

u∈Adj(v)

we · ‖pos[u] − pos[v]‖2

edgeLength2
(pos[u] − pos[v])

F r,w,FR =
∑

u∈Ni(v)

s
edgeLength2 · √wu · wv

‖pos[u] − pos[v]‖2 (pos[v] − pos[u])
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5.2 Timeslices and Animation

To visualize a series of graphs, embodying the evolution of a set of relationships over
time, we associate another attribute, called a timeslice, with each vertex. The timeslice
of a vertex is simply a label associated with a vertex. We use the timeslice attribute to
partition the vertices of a graph into groups by time. Several simple modifications to the
layout algorithm are needed to accommodate timeslice information. Repulsive forces should
only exist between vertices in the same timeslice, and thus the optimal distance between
vertices in different timeslices which are connected by an edge is zero. In the Kamada-Kawai
vectors, the only alteration required is that the the function optDistG(u, v) be redefined
so that for two vertices u, v with timeslice indices of tu and tv respectively:

optDistG(u, v) = δtutv
·
√

wu · wv

we

,

where δtutv
is 1 if tu = tv and 0 otherwise. The modifications needed for the Fruchterman-

Reingold calculations are similar. Repulsive forces are simply eliminated between vertices
in different timeslices, F r,w,t,FR = δtutv

· F r,w,FR while the attractive forces remain un-
changed, F a,w,t,FR = F a,w,FR.

The timeslice information alone is not enough to nicely layout evolving graphs; it is
also to necessary arrange edges between the timeslices so that the resulting layouts can be
used for animation. Perhaps the most straightforward and common case is when one has a
series of “snapshots” of a graph taken at some interval over a period of time. When laying
out such a graph there are normally two types of constraints which need to be met: Each
timeslice should have a pleasing layout, and the layout of consecutive timeslices should be
similar, that is, the mental map should be preserved. Another way of formulating this latter
constraint is that vertices on one timeslice should tend toward their positions in adjacent
timeslices. To meet these constraints the timeslices are combined into a single graph and
edges are added between vertices with the same labels in adjacent timeslices.

Since vertices in different timeslices have no repulsive forces between them (but the
edges between them retain their attractive forces) these additional edges attract each vertex
toward the vertices associated with it in adjacent timeslices. The trade-off between layout
within a timeslice and mental map preservation can easily be adjusted by altering the
weights of the inter-timeslice edges. Heavier weights lead to better mental map preservation
and lighter weights improves the layout of each timeslice. For the visualization of the graphs
in this paper the weight of an inter-timeslice edge connecting two vertices of weights wu

and wv is given a weight of (wu + wv)/2, causing heavier vertices to stay in the same
position over multiple timeslices.

One disadvantage of this method of adding edges is that although the movements of a
vertex from one timeslice to the next are minimized, it is still possible that over a span of
many timeslices vertices will drift far from their initial positions. If this is an undesirable
effect it can be prevented by adding additional edges between vertices in distant timeslices.
A straight-forward approach is to create a clique of all the occurrences of each vertex over
all timeslices. GraphAEL has both options implemented.

Once the layout of the evolving graph has been computed, several visualization op-
tions can be used. A static view, capturing all timeslices can be displayed. Each timeslice
can be restricted to its own 2D plane or can be drawn in 3D and the individual graphs
arranged on top of each other. Edges connecting different timeslices can be shown or hid-
den. Alternatively, the evolution can be shown via an animation between the timeslices
in 2D or 3D. The animation uses an interpolation between timeslices and fading in/out
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Fig. 3. Top left: cumulative citation graph for the period 1994-02. Bottom Left: view of the area
enclosed in the red rectangle from top left. Right: Labeled vertices in a “symmetry” cluster. Directed
edges go from light/source to dark/target. The color of the nodes corresponds to the year it was
published: the lighter the node, the older the paper.

of appearing/disappearing vertices and edges. Edge and vertex coloring is used to convey
additional information. For example, in the citation graphs we indicate the direction of an
edge by gradually varying the color from light(source) to dark(target) and the vertex color
indicates the relative age of a particular paper.

Finally, GraphAEL can generate and display difference graphs. The difference graph
between two adjacent timeslices captures the difference between the two underlying graphs.
For example, when visualizing the topic graph we may miss significant growth in an area
with a few papers if the corresponding vertices are relatively small. With this in mind,
the difference graph captures the percentage change between levels. We create a series of
difference graphs and at it is an evolving graph we can use all the tools for evolving graphs.

6 Interactive Visualization of the Graph Drawing Literature

In this section we consider three types of evolving graphs extracted from the MySQL
database: citation graphs, topic graphs, and collaboration graphs. We also calculated some
general statistics about the data and we include gnuplot charts and tables for the data in
the Appendix.

6.1 Citation Graphs

The citation graph for a given time period is a simple vertex-weighted directed graph in
which the vertices correspond to distinct articles. A directed edge connects two articles,
with the article that cites as the source and the cited article as the target. The weight of a
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Fig. 4. Individual topic graphs for the period 1994-02, restricted to the top 20 title words, shown in
timeslices of 3 consecutive years each: 1994-96 on the bottom, 1997-99 in the middle, and 2000-2002
on the top. On the left are all the labeled nodes in each timeslice with invisible edges.

vertex is determined by the number of citations an article received, divided by the number
of years since its publication. The citation graphs can reveal information about influential
papers in the field, and their relation with the rest of the graph. Fig 3 shows several views
of the citation graph. The size of a vertex reflects its weight, i.e. a large vertex corresponds
to an article that is cited many times relative to its age. The vertex color indicates the age
of the article, the darker a vertex the more recent the corresponding article is. The edge
color changes from yellow to blue to indicate direction, where the blue end of the edge is
the target vertex.

6.2 Topic Graphs

The topic graph for a given time period is a simple vertex-weighted and edge-weighted
undirected graph in which vertices correspond to title words and edges are placed between
title words that co-occur in research papers. The weight of a vertex in the topic graph
is proportional to the number of papers that contain the corresponding word in their
titles. Similarly, the edge weight is proportional to the number of papers in which the
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Fig. 5. The three graphs on the left represent 2D views of each timeslice from Fig. 4. The two graphs
on the right represent the individualdifference graphs capturing the change from 1994-96 to 1997-99
(bottom) and 1997-99 to 2000-02 (top). Dark nodes indicate growth and light nodes indicate decline.
Note the percentage increase in “large” and decline in “interactive”.

two corresponding words co-occur in the title. Topic graphs can reveal information about
related topics, the concentration of research on a specific topic and the trends as they
evolve through time. Fig. 4 contains several visualizations of the topic graph. The edges
connecting same vertices in adjacent timeslices help with mental map preservation and are
used to determine the vertex locations in the animation between timeslices.

We also construct topic difference graphs in which the weight of a vertex is the percent-
age of its weight change between adjacent timeslices. The edge weight is proportional to the
corresponding percent-change between two time periods. Together with the topic graphs,
the topic-change graphs can be effectively used to visualize the evolution of GD research
focus through time. Fig. 5 shows the topic-change graph corresponding to the topic graph
in Fig. 4.
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Fig. 6. Screenshots from the animation of the cumulative collaboration graph in the period 1994-02.
Each timeslice represents a one year period. A movie of the actual animation can be seen at the
GraphAEL webpage.

6.3 Collaboration Graphs

Collaboration graphs are simple undirected node-weighted and edge weighted graphs. Ver-
tices represent unique authors and there is an edge between two vertices if the respective
authors have collaborated on a research paper. The weight of a vertex is determined by the
author’s collaborativeness and productivity. The weight of an edge represents the strength
of the collaborative ties between two authors. Fig 6 shows the evolution of the cumulative
collaboration graph, i.e., each timeslice adds to the previous timeslice. Once an interesting
timeslice to be viewed is found it is easy to get a detailed visualization of that specific
timeslice. For example, Fig 7 shows the collaboration graph for the period 1994-97. For a
more detailed view we zoom in one of the areas where there is a concentration of several
well-connected components.
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Fig. 7. Top left: collaboration graph for the period 1994-97. Bottom Left: view of the area enclosed
in the red rectangle from top left. Right: closer view with more details.

6.4 Statistical of the Graph Drawing Literature

We compared the data from the GD database, with the data from two computer science
databases, the ACM database [8] and the NCSTRL database [17]. Table 1 shows a summary
of the overall statistics and they are examined in the detail in the appendix.
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Appendix A

Authors per Paper In mathematics, the average number of authors per paper has
increased from about 1 per paper in 1935 to about 1.5 in 1995 [12]. Averages in medicine
and physics are often higher, about 9 collaborators per paper [17]. The number of authors
per paper in GD is comparable to that in ACM; see Fig. 8.

Size of Giant Component In the theory of random graphs it is known that increasing
the density of the edges leads to the formation of a giant connected component. While
the size of the giant component in a typical scientific collaboration graph is 80%-90% the
number seems to be much smaller for the computing literature [17]. Our GD data indicates
that the size of the giant connected component is about 49%. In other words, about half
of the authors in the GD database are connected via a path of co-authors.

Average and Maximum Distances We can also find the shortest path from one author
to another in the co-authorship graph. This information is useful in the sense that it creates
a chain of references of intermediate scientists through whom contact between two authors
may be established [15]. The average and maximum distances for the GD database seem
to be much smaller than the other computer science databases, most likely because of the
small size of the GD dataset.

Clustering Coefficient A useful measure for the strength of the ties between authors is
the clustering coefficient. Let Nu denote the set of neighbors of vertex u in the collaboration
graph and let ENu

be the set of edges e such that both of the vertices incident to e are in
Nu. The clustering coefficient for u is defined as:

Cu = 2× |ENu
|

|Nu| × (|Nu| − 1)

In other words, the clustering coefficient of u tells us how collaborative the co-authors
of u are among themselves. We have found that the average clustering coefficient for the
collaboration graph is 0.60, which is comparable with the clustering coefficient of the
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Name Num. of papers

Liotta, Giuseppe 23

Eades, Peter 23

Mutzel, Petra 19

Battista, Giuseppe Di 17

Tollis, Ioannis G. 15

Junger, Michael 15

Tamassia, Roberto 13

Kaufmann, Michael 12

Didimo, Walter 12

Whitesides, Sue 12

Name Num. of co-authors

Liotta, Giuseppe 35

Mutzel, Petra 28

Whitesides, Sue 26

Battista, Giuseppe Di 25

Junger, Michael 23

Eades, Peter 21

Wood, David R. 18

Brandes, Ulrik 18

Marks, Joe 17

Gutwenger, Carsten 17

Table 2. Authors with highest number of papers and collaborators.

other databases. This indicates that the tendency to form strongly tied computing re-
search groups is as high as in other research areas, despite the relatively small size of the
giant connected component.

Number of Papers and Collaborators The average number of papers per author is
2.09, while the average number of collaborators is nearly double at 3.74. Table 2 shows the
most productive and most collaborative authors.

Popular Title Words Parsing the paper titles allows us to look for “buzzwords” in the
different years. Fig. 9 shows the most popular four words (as percent of the total) used
each year starting in 1994, not including words such as for, the and the two most popular
words graph and drawing. “Interactive” seems to have been popular in 1997 and 1998, while
“orthogonal”, and “algorithms” are consistently popular.

 0.5

 1

 1.5

 2

 2.5

 3

 1994  1995  1996  1997  1998  1999  2000  2001  2002  2003  2004  2005

%
 o

f O
cc

ur
en

ce

Year

"abstract"
"3d"

"visualization"
"approach"

"system"
"layout"

"interactive"
"embedding"

"crossing"
"grid"

"orthogonal"
"planar"

"algorithm"
"upward"

Fig. 9. Title popularity

14


