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Abstract—We present a conceptually simple approach to generalizing force-directed methods for graph layout from Euclidean

geometry to Riemannian geometries. Unlike previous work on non-Euclidean force-directed methods, ours is not limited to special

classes of graphs, but can be applied to arbitrary graphs. The method relies on extending the Euclidean notions of distance, angle, and

force-interactions to smooth non-Euclidean geometries via projections to and from appropriately chosen tangent spaces. In particular,

we formally describe the calculations needed to extend such algorithms to hyperbolic and spherical geometries. We also study the

theoretical and practical considerations that arise when working with non-Euclidean geometries.

Index Terms—Force-directed algorithms, spring embedders, non-Euclidean geometry, hyperbolic space, spherical space, graph

drawing, information visualization.
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1 INTRODUCTION

SOME of the most flexible algorithms for calculating
layouts of simple undirected graphs belong to a class

known as force-directed algorithms. Also known as spring
embedders, such algorithms calculate the layout of a graph
using only information contained within the structure of the
graph itself, rather than relying on domain-specific knowl-
edge. Graphs drawn with these algorithms tend to be
aesthetically pleasing, exhibit symmetries, and tend to
produce crossing-free layouts for planar graphs.

However, existing force-directed algorithms are re-
stricted to calculating a graph layout in Euclidean geome-
try, typically IR2, IR3, and, more recently, IRn for larger
values of n. There are, however, cases where Euclidean
geometry may not be the best option: Certain graphs may
be known to have a structure which would be best realized
in a different geometry, such as on the surface of a sphere or
on a torus. In particular, 3D mesh data can be parameter-
ized on the sphere for texture mapping or graphs of genus
one can be embedded on a torus without crossings.
Furthermore, it has also been noted that certain non-
Euclidean geometries, specifically hyperbolic geometry,
have properties which are particularly well suited to the
layout and visualization of large classes of graphs [16], [17].

We present a method by which a force-directed
algorithm can be generalized so that it can compute a
graph layout in any of a large class of geometries (known
as Riemannian geometries), so long as the mathematics
describing how the geometries behave are well described.
Because of the particular usefulness of hyperbolic
geometry and spherical geometry, with respect to graph
drawing, information visualization, and graphics, we also
present these mathematical properties for the case of HH2,

two-dimensional hyperbolic space, and SS2, spherical space.
Our method relies on extending the Euclidean notions of
distances and angles to Riemannian geometries via projec-
tions to and from appropriately chosen tangent spaces. The
extended abstract [13] contains a summary of the results,
whereas here we elaborate on the mathematical details and
discuss some of the practical considerations of working
with non-Euclidean geometries.

From a practical point of view, the hyperbolic and
spherical cases are fairly straightforward and we have
implemented spring embedder algorithms for both geo-
metries. Thus, we are able to compare layouts obtained
with the traditional Euclidean force-directed methods and
those obtained with the generalized force-directed meth-
ods in hyperbolic space and in spherical space, such as
those in Fig. 1.

2 FORCE-DIRECTED METHODS

Graph drawing has applications in many areas where
relational data needs to be visualized, such as VLSI,
software engineering, and databases; see the survey paper
by Herman et al. [10]. It is the subject of an annual
symposium and several books on the subject are available
[2], [12]. While many algorithms have been developed for
special classes of graphs, such as trees, tree-like graphs, and
planar graphs, general graphs are most often visualized
using force-directed methods.

Going back to 1963, the graph drawing algorithm of
Tutte [24] is one of the first force-directed graph drawing
methods, based on barycentric representations. More
traditionally, the spring layout method of Eades [3] and
the algorithm of Fruchterman and Reingold [6] both rely on
Hooke’s law for spring forces. In these methods, there are
repulsive forces between all nodes, but also attractive forces
between nodes which are adjacent.

Alternatively, forces between the nodes can be computed
based on their graph theoretic distances, determined by the
lengths of shortest paths between them. The algorithm of
Kamada and Kawai [11] uses spring forces proportional to
the graph theoretic distances. Other force-directed methods
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include that of Sugiyama and Misue [23], based on
magnetic fields.

In general, force-directed methods define an objective
function which maps each graph layout into a number in
IRþ representing the energy of the layout. This energy
function is defined in such a way that low energies
correspond to layouts in which adjacent nodes are near
some prespecified distance from each other, but in which
nonadjacent nodes are well-spaced. A layout for a graph is
then calculated by finding a (often local) minimum of this
objective function; see Fig. 2.

One particularly useful way to find such a local
minimum is through a gradient descent method. In this
model, we calculate forces (often via the negative gradient
of the energy function) which result from the interaction
between the nodes in the graph. The nodes are then moved
according to the net force acting upon them and the process
is repeated until a steady state is reached or a maximum
number of iterations is exceeded.

While early force-directed algorithms work well for
small graphs, recently such algorithms have been extended

to deal with graphs with hundreds of thousands of vertices.

Harel and Koren [9] use a multiscale technique and Gajer

et al. [7] combine this idea with intelligent placement of

nodes to avoid local minima. Koren et al. [14] use

techniques from spectral graph theory to quickly obtain

layouts for even larger graphs.
With few exceptions, spring embedders thus far have

been restricted to n-dimensional Euclidean space. This

restriction is due in part to the simplicity of the algorithms

when formulated in Euclidean space and in part to a

reliance on the convenient structure of Euclidean space with

well-defined notions of distances and angles.
Ostry [21] considers constraining force-directed algo-

rithms to the surface of three-dimensional objects. This

work is based on a differential equation formulation of the

motion of the nodes in the graph and is flexible in that it

allows a layout on almost any object, even multiple objects.

Since the force calculations are made in Euclidean space,

however, this method is inapplicable to certain geometries

(e.g., hyperbolic geometry).
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Fig. 1. Layouts of a title-word graph, obtained in HH2, SS2, and IR2. The graph has 27 nodes and 50 edges.



Another example of graph embedding within a non-
Euclidean geometry is described in the context of generat-
ing spherical parameterizations of 3D meshes. Gotsman
et al. [8] describe a method for producing such an
embedding using a generalization to spherical space of
planar methods for expressing convex combinations of
points. The implementation of the procedure is similar to
the method described in this paper, but it may not lend
itself to geometries other than spherical.

3 HYPERBOLIC GRAPH DRAWING

Much of the work on non-Euclidean graph drawing has been
done in hyperbolic space, which offers certain advantages
over Euclidean space; see Munzner [17] and Munzer and
Burchard [19]. For example, in hyperbolic space, it is possible
to compute a layout for a complete tree with both uniform
edge lengths and uniform distribution of nodes. Further-
more, some of the embeddings of hyperbolic space into
Euclidean space naturally provide a fish-eye view of the
space, which is useful for “focus+context” visualization, as
shown by Lamping et al. [16]. Previous algorithms for
calculating the layouts of graphs in hyperbolic space,
however, are either restricted by their nature to the layout
of trees and tree-like graphs or to layouts on a lattice.

The hyperbolic tree layout algorithms function on the
principle of hyperbolic sphere packing and operate by
making each node of a tree, starting with the root, the center
of a sphere in hyperbolic space. The children of this node
are then given positions on the surface of this sphere and
the process recurses on these children. By carefully
computing the radii of these spheres, it is possible to create
aesthetically pleasing layouts for the given tree.

Although some applications calculate the layout of a
general graph using this method, the layout is calculated
using a spanning tree of the graph and the extra edges are
then added in without altering the layout [18]. This method
works well for tree-like and quasi-hierarchical graphs or for
graphs where domain-specific knowledge provides a way
to create a meaningful spanning tree. However, for general
graphs (e.g., bipartite or densely connected graphs) and
without relying on domain specific knowledge, the tree-
based approach may result in poor layouts.

Methods for generalizing Euclidean geometric algo-
rithms to hyperbolic space, although not directly related
to graph drawing, have also been studied. Recently,
van Wijk and Nuij [25] proposed a Poincaré’s half-plane

projection to define a model for 2D viewing and navigation.
Eppstein [4] shows that many algorithms which operate in
Euclidean space can be extended to hyperbolic space by
exploiting the properties of a Euclidean model of the space
(such as the Beltrami-Klein or Poincaré). Our work follows a
similar vein in that we use the Poincaré model to implement
the hyperbolic case of our technique, though it differs in
that this mapping alone is not sufficient as the notions of
distance and linearity in the Poincaré model do not match
their Euclidean counterparts.

Hyperbolic and spherical space have also been used to
display self-organizing maps in the context of data
visualization. Ontrup and Ritter [20] and Ritter [22] extend
the traditional use of a regular (Euclidean) grid, on which
the self-organizing map is created, with a tessellation in
spherical or hyperbolic space. An iterative process is then
used to adjust which elements in the data set are
represented by the intersections. Although the hyperbolic
space method seems a promising way to display high-
dimensional data sets, the restriction to a lattice is often
undesirable for graph visualization.

4 NON-EUCLIDEAN SPRING EMBEDDING

Current implementations of force-directed algorithms per-
form their calculations in IRn, the standard Euclidean space.
Euclidean geometry has properties which afford many
conveniences for calculating a graph layout with a force-
directed method. In particular, Euclidean space has a very
convenient structure; it is easy to define distances and
angles and the relationship between the vector representing
the net force on an object and the appropriate motion of that
object is quite straightforward.

A non-Euclidean geometry does not afford all of the
conveniences above, so it is more difficult to define how the
forces acting upon a graph should be calculated and how
those forces should affect the layout of the graph. There is,
however, a straightforward way to do this, provided we
restrict ourselves to geometries which are smooth. Such
geometries are known as Riemannian geometries.

We begin with a brief description of Riemannian
geometry and manifolds. A manifold is a topological space
that is locally Euclidean, that is, around every point, there is
a neighborhood that is topologically the same as the open
unit ball in IRn. We then show how the properties of
manifolds can be used to extend force-directed calculations
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Fig. 2. An overview of a spring embedder in 2D Euclidean space.



to Riemannian geometries, such as spherical geometry, SS2,

and hyperbolic geometry, HH2.

4.1 Basics of Riemannian Geometry

In 1894, Riemann described a generalization of the

geometry of surfaces, which had been studied earlier by

Gauss, Bolyai, and Lobachevsky. Two well-known special

cases of Riemannian geometries are the two standard non-

Euclidean types, spherical geometry and hyperbolic geo-

metry. This generalization led to the modern concept of a

Riemannian manifold.
Riemannian geometries have less convenient structure

than Euclidean geometry, but they do retain many of the
characteristics which are useful for force-directed graph

layouts. A Riemannian manifold M has the property that,

for every point x 2 M, the tangent space TxM is an inner

product space. This means that, for every point on the

manifold, it is possible to define local notions of length and

angle. In effect, the tangent plane provides a bug’s-eye view

of the manifold; see Fig. 3.
Using the local notions of length, we can define the

length of a continuous curve � : ½a; b� ! M by

lengthð�Þ ¼
Z b

a

jj�0ðtÞjjdt:

This leads to a natural generalization of the concept of a

straight line to that of a geodesic, where the geodesic
between two points u; v 2 M is defined as a continuously

differentiable curve of minimal length between them. These

geodesics in Euclidean geometry are straight lines and, in

spherical geometry, they are arcs of great circles; see Fig. 4.

We can similarly define the distance between two points,

dðx; yÞ, as the length of a geodesic between them.

4.2 Application to Spring Embedders

As mentioned above, one of the convenient properties of

Riemannian manifolds is that, at every point, there exists a

well-structured tangent space. We utilize these tangent

spaces to generalize spring embedders to arbitrary Rie-

mannian geometries.
In Euclidean space, the relationship between a pair of

nodes is defined along lines: The distance between the two
nodes is the length of the line segment between them and

forces between the two nodes act along the line through

them. These notions of distance and forces can be extended

to a Riemannian geometry by having these same relation-

ships be defined in terms of the geodesics of the geometry,

rather than in terms of Euclidean lines.

The tangent space is also useful in dealing with the
interaction between one point and several other points in
non-Euclidean geometries. Consider three points x, y, and z
in a Riemannian manifold M where there is an attractive
force from x to y and z. As can be easily seen in the
Euclidean case (but also true in general), the net force on x
is not necessarily in the direction of y or z and, thus, the
natural motion of x is along neither the geodesic toward y
nor that toward z; see Fig. 5. Determining the direction in
which x should move requires the notion of angle.

Since the tangent space at x, being an inner product
space, has enough structure to define lengths and angles,
we do the computations for calculating the forces on x in

TxM. In order to do this, we define two functions for every
point x 2 M as follows:

�x : M ! TxM

��1
x : TxM ! M:

These two functions map points in M to and from the

tangent space ofM at x, respectively. We require that �x and
��1
x satisfy the following constraints:

1. ��1
x ð�xðyÞÞ ¼ y for all y 2 M.

2. jj�xðyÞjj ¼ dðx; yÞ.
3. �x preserves angles about the origin.

Using these functions, it is now easy to define the way in
which the nodes of a given graph G ¼ ðV ;EÞ interact with

each other through forces. In the general framework for this
algorithm, we consider each node individually and calculate
its new position based on the relative locations of the other
nodes in thegraph (repulsive forces) andon its adjacent edges

(attractive forces). Pseudocode for a traditional Euclidean
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Fig. 3. The tangent plane: a bug’s eye view of a Riemannian manifold.

Fig. 4. A curve and its derivative in the tangent space.



spring embedder and its non-Euclidean counterpart are in
Fig. 6.

Given a node vi 2 V ðGÞwith position x, we use �x to map
the positions of the relevant nodes of G into TxM (nodes
that are used in computing x’s new location). A standard
force equation can then be used to calculate the force, f ,
upon vi as a vector in TxM. Given the vector in TxM, the
new position, x0 of vi in TxM is calculated using standard
techniques, typically by multiplying f by a scalar. The
desired position of vi in M is then given by ��1

x ðxÞ. An
overview of the process is in Fig. 7.

5 HYPERBOLIC GEOMETRY

5.1 Motivation

One of the most useful applications for our non-Euclidean
force-directed method is that it allows the layout of a
general graph to be calculated in hyperbolic space (space of
constant negative curvature). This provides a functionality
beyond current hyperbolic graph layout techniques. Such
functionality is desirable because of both the geometric
properties of hyperbolic space and of the properties of some
of the more common ways of mapping hyperbolic geometry
into Euclidean space.

The study of hyperbolic geometry began in the
18th century [1]. Hyperbolic geometry is particularly well
suited to graph layout because it has “more space” than
Euclidean geometry—in the same sense that spherical
geometry has “less space.” To illustrate this, consider the
relationship between the radius and circumference of a circle
in a two-dimensional geometry. In Euclidean geometry, the
relationship is linear with a factor of 2�. In spherical
geometry, however, the circumference is bounded above by
a constant (the circumference of a great circle on the sphere).
With hyperbolic geometry, the opposite is the case: The
circumference of a circle increases exponentially with its
radius.

The applicability of this geometric property to graph
layout is well illustrated with the example of a tree. The
number of nodes at a certain depth in the tree typically
increases exponentially with the depth. Thus, layouts in
Euclidean space result in characteristic long edges near the
root and short edges near the leaves. In hyperbolic space,
however, it is possible to lay out the tree with a uniform
distribution of the nodes and with uniform edge lengths.

5.2 Hyperbolic Projections

In order to display a layout in hyperbolic geometry, it is
necessary to map the figure into the (two-dimensional)
Euclidean geometry of a computer monitor. There are
numerousways of doing this, two of themost common being
the Poincaré disk and Beltrami-Klein projections. In both of
these cases, the hyperbolic space is mapped onto the open
unit disk fz 2 IR2 : jzj < 1g. To obtain such projections, it is
necessary to distort the space, which, in these cases, takes the
form of compressing the space near the boundary of the unit
disk, giving the impression of a fish-eye view. This naturally
provides a useful focus+context technique for visualizing the
layouts of the graph; see Fig. 10.

In the Beltrami-Klein projection, straight lines are
mapped to straight lines, but angles are not necessarily
preserved. Thus, each line in hyperbolic space is mapped to
a chord of the unit disk and two lines are nonintersecting if
their associated chords are nonintersecting. Furthermore,
the distance between two points, ðx; yÞ and ðu; vÞ, in the
Beltrami-Klein model is not given by their Euclidean
distance, but, rather, by

arccos
1� xu� yvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� x2 � y2Þð1� u2 � v2Þ
p

" #
:

The Poincaré disk model preserves angles, but distorts
lines. A line in hyperbolic space is mapped to a circular arc
which intersects the unit circle at right angles (chords
passing through the origin are considered to be such arcs).
As with the Beltrami-Klein model, distances in the projec-
tion are not equal to the the hyperbolic distances between
the points. The Poincaré disk model also compresses the
space slightly less at the edges, which, in some cases, can
have the advantage of allowing a better view of the context
around the center of projection. In this paper, we focus on
an implementation which uses the Poincaré disk model.

5.3 Tangent Space Mapping

There are many possible ways to compute the mapping to
and from the tangent space. Here, we present the details
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Fig. 5. Computing the net force on a node x as a result of its interaction

with two other nodes, y and z.

Fig. 6. A generic Euclidean spring embedder and its non-Euclidean

counterpart.



about one such mapping, which we also implemented. As
illustrated in Fig. 6, the problem reduces to defining the
mappings �x and ��1

x so that they meet the three criteria
from Section 4.1.

Internally, each node in the graph is assigned a position
z ¼ ðx; yÞ within the unit disk, representing the Poincaré
coordinates of that node. Using the Poincaré coordinates for
the positions of points allows us to take advantage of the
property that, in a Poincaré projection, angles are preserved
and circles and lines are mapped to circles and lines. Since
hyperbolic space is uniform, we can “recenter” the
projection about any point, z0, by applying a conformal
(angle preserving) mapping which maps z0 to the origin, the
boundary of the unit circle to itself, and which maps circles
and lines to circles and lines. By treating the position of the
node as a complex number, we can define such a mapping
as the linear fractional transformation:

fz0ðzÞ ¼
z� z0
1� �z0z0z

:

It is also easy to compute the inverse of this function:

f�1
z0

ðzÞ ¼ �z� z0
� �z0z0z� 1

:

By using f to recenter the projection about z0, we force all
geodesics passing through z0 to be projected as line segments
passing through the origin. Furthermore, the Euclidean angle
formed between two such lines is equal to the angle bywhich
the two corresponding geodesics intersect. This satisfies
criteria 1 and 3 for the function �z, but the norm of the points
(their distances from the origin) after the mapping f is not
equal to their distances from z0 in the hyperbolic space (as a
consequence, the range of the inverse function is also only the
unit disk). To remedy this, we rescale the points such that
their distances from the origin are indeed equal to their

hyperbolic distance from z0. Note that this does not alter
angles at the origin. This is accomplished with another
mapping, denoted by g, as follows:

gz0ðzÞ ¼
z

jjzjj log
1þ jjzjj
1� jjzjj

� �
:

It is also possible to find the inverse of this mapping:

g�1
z0
ðzÞ ¼ z

jjzjj
1� ejjzjj

1þ ejjzjj

����
����:

Now, we can define �z0 by composing these two mappings:

�z0 ¼ g � f:

Similarly, we can define ��1
z0

as:

��1
z0

¼ f�1 � g�1:

It can be verified that �z0 and ��1
z0

, as defined above,
indeed satisfy the three criteria for functions mapping to
and from the tangent space and, thus, these two functions
are sufficient to implement a spring embedder in hyperbolic
geometry.

6 SPHERICAL GEOMETRY

As a further example for generalizing spring embedders to
non-Euclidean geometry, we also consider spherical geo-
metry. As with hyperbolic geometry, spherical geometry
has a constant curvature and the equations for mapping to
and from the tangent space can be calculated analytically.

Each point x in a spherical geometry is defined by its
coordinates, � 2 ½0; 2�Þ and � 2 ½0; �Þ, representing the
longitude and latitude of the point, respectively. This
spherical geometry can then be embedded as a sphere in
three-dimensional Euclidean space by the parameterization
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Fig. 7. An overview of a non-Euclidean spring embedder.



embðxÞ ¼ ðcos � sin�; cos�; sin � sin�Þ. We can calculate the
tangent plane at any point on the sphere by taking the space
spanned by the two partial derivative vectors:

ux ¼ ð� sin � sin�; 0; cos � sin�Þ;
vx ¼ ðcos � cos�;� sin�; sin � cos�Þ:

Note that, if applied at either of the poles, these
equations fail to yield a valid space, so, in these cases, the
u and v vectors can be hard-coded to, for example, ð1; 0; 0Þ
and ð0; 0; 1Þ.

We can now compute �xðyÞ for any points x and y in the
spherical geometry by projecting the embedding of y, embðyÞ
onto the tangent plane at xwith ðembðyÞ � ux; embðyÞ � vxÞ. To
complete the mapping, we have only to set the length of this
vector equal to the length of the geodesic between x and y:

r � arccos sin�x sin�y cos �y � �x þ cos�x cos�y

� �
;

where r is the radius of curvature of the geometry. An
illustration of this mapping can be seen in Fig. 8.

The inverse of thismapping ��1
x ðyÞ, illustrated inFig. 9, can

also be computed in a similar geometric manner. First, we
compute a vector, p, perpendicular to that from �xðyÞ in the
tangent space (for example, by px ¼ �xðyÞy, py ¼ ��xðyÞx).
The vector p is then mapped to the corresponding vector in
three-dimensional space by upx þ vpy. This vector is
perpendicular to the plane containing the origin, ��1

x ðxÞ
and ��1

x ðyÞ. Thus, the desired point ��1
x ðyÞ can be obtained

by rotating ��1
x ðxÞ about this axis so that the arc length

traveled by ��1
x ðxÞ is equal to the norm of ��1

x ðyÞ. In radians,
this angle is jyj

r . Since this rotated vector is in Euclidean
space, the calculation can be completed by projecting it back
onto the sphere by calculating � ¼ arctan z

x , � ¼ arccos y.

7 PRACTICAL CONSIDERATIONS

We have implemented both the hyperbolic and the
spherical layouts as a part of the graphael system [5]. In
addition to specifying the tangent space mappings which
define how the nodes of a graph respond to the forces of
other nodes, there are further practical considerations to be
addressed, particularly in the layout of larger graphs. Some
of these considerations are specific to the space in which the
graph is to be embedded, as, for example, hyperbolic space

is susceptible to different layout problems than spherical.

We present some of the images we obtained as well as
describe some of the practical challenges posed by the non-

Euclidean geometries.

7.1 Example Layouts in HH2 and SS2

Fig. 1 shows a title-word graph obtained from the graph

drawing literature. This graph has 27 nodes and 50 edges.

The graph nodes correspond to title-words from papers in
the Proceedings of the 1999 Symposium on Graph Drawing [15].

The size of a node is determined by the frequency of the

corresponding word and an edge is placed between two

nodes if they cooccur in at least one paper.
The images in Fig. 1 show layouts of the same graph

obtained in HH2, SS2, and IR2, obtained using our implementa-

tion of the algorithms described in this paper. Fig. 10 shows

four views of the graph using different centers of attention

and nicely illustrates the focus+context properties of hyper-
bolic space. Fig. 11 shows four views of the same graph in

spherical space, again using different centers of attention.

7.2 Curvature Considerations

We have found that, for spaces of high curvature (both

spherical and hyperbolic), there is a tendency to reach a

local minimum that does not correspond to a visually
pleasing layout. In spherical space, this typically occurs

when the space is too small to accommodate an optimal

layout of the graph. In such situations, the repulsive forces

between nodes dominate and the layout “locks” into an
unsatisfactory state.

In hyperbolic space, it is possible for a similar problem to

occur. In this case, rather than due to lack of enough space

to achieve a satisfactory layout, an overabundance of space

allows the nodes to space themselves out too easily. For
some intuitive explanation, consider that, since the circum-

ference of a circle grows exponentially with its radius, in a

space of high enough curvature (or, equivalently, large

enough edge length), it is possible to lay out any fixed
number of nodes near the boundary of the circle so that the

distance between neighboring nodes on the circle is equal to

the diameter of the circle. Thus, adjacent nodes are as likely
to be neighboring on the circle as they are to be at opposite

ends. This often results in a layout with many undesirable

edge crossings.
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Fig. 8. Mapping to the tangent space via mapping to the tangent plane,

followed by a renormalization for the length of the vector in the tangent

space.

Fig. 9. Mapping from the tangent space via a rotation. The dotted line

represents the axis of rotation, upx þ vpy.



We have considered ways to address the curvature

problem. It is likely that multiscale layout methods along

the lines of [7] and [9] will be of some help in reducing these

effects. It is also likely that force equations designed

specifically to work well within a particular geometry

could avoid such unsatisfactory layouts. Finally, we have

also found that better layouts can be achieved by beginning

the iterative layout process in a space which is nearly

Euclidean, then gradually increasing the magnitude of the

curvature of the space during the layout process until it

reaches the desired value.
It is worth noting that some graphs are better suited to

non-Euclidean spaces than other. A regular grid, for

example, is well suited to Euclidean space. In a hyperbolic

space of high curvature, however, the layout of the grid is

quite distorted. This can be thought of as the inverse case of

the distortion that is necessary to embed a tree in Euclidean

space. How well hyperbolic space suits a given graph can

be observed by looking at a plot of the sum of all the

magnitudes of the forces acting in a graph versus the

curvature of the space the graph is embedded in; see Fig. 12.

In graphs that can be embedded well in hyperbolic space,

such as trees, after a certain curvature, we see monotoni-

cally decreasing stress. In graphs better suited to Euclidean

space, such as grids, we instead see an early decrease

followed by monotonically increasing stress.

7.3 Multiscale Considerations

Multiscale layout methods are needed even in the

Euclidean case, in order to apply spring embedder algo-

rithms. These methods typically greatly improve the speed

and quality with which large graphs can be laid out. In
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Fig. 10. Layouts of the title-word graph with different centers of attention in hyperbolic space.



addition, multiscale layouts may be useful in avoiding

highly suboptimal layouts. Unfortunately, such methods

often employ techniques which cannot be directly applied

using the framework for non-Euclidean graph layouts that

we have set up. Consider, for example, estimating the

position of a new node by interpolating the positions of

already laid-out nodes [7]. For three or more nodes, this

interpolation cannot be directly expressed in a general

Riemannian geometry using the tools we have described.

Although it is possible to analytically calculate such

interpolations for certain geometries, it is not always

necessary to do so. Since such techniques often function

as rough heuristics, in many cases, it is possible to perform

the calculations in the tangent space of one of the nodes

involved. For example, to interpolate the positions of some

set of nodes, one node could be selected at random, and the

calculations done within the tangent space of this node.

7.4 Oscillations in SS2

Many spring embedders use a heuristic intended to

expedite the graph’s convergence to a steady layout—nodes

which are changing their direction are slowed down while

nodes moving in a straight line are sped up. This dampens

oscillations in the layout process and normally improves

layout quality. In spherical space, however, it is possible for

a node to oscillate and move in a straight line, as occurs

when a node repeatedly travels around the entire space. In

such cases, these heuristics can actually degrade the layout

by reinforcing this sort of motion. While such heuristics

seem to pose no fundamental problems, they should be

used with care.
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7.5 Precision in HH2

Hyperbolic space also has its own set of problems which

must be surmounted in calculating the layout of certain

graphs. This problem arises from one of the most useful

features of hyperbolic space—that the circumference of a

circle grows exponentially with its radius. This means that,

to achieve a given spatial resolution, floating-point repre-

sentations of positions in hyperbolic space must use a

number of bits proportional to the distance between nodes

in the layout. If points are not represented in this manner,

the layout of a large graph can be subject to serious floating-

point errors. While the precision problem can be addressed

with the traditional arbitrary precision floating-point

representation, this would impose a speed penalty, prohi-

bitively large for large graphs.
Note, however, that the further away two nodes are, the

less accurately we need to calculate their absolute positions
in tangent space. This makes it desirable to use a point
representation better suited to calculating the relative
position of nodes than their absolute positions. One such
representation would be a discrete lattice over the hyper-
bolic plane, such as a hyperbolic tessellation. The position of
each node can then be stored as a combination of a
designation for the nearest lattice point and an offset from
that point. This offset can be stored as a point in the
Poincaré disk, with the origin being the nearest lattice point.
The relative positions of two points can then be compared
by taking the offset into account and walking the lattice
from one to the other.

8 CONCLUSION AND FUTURE WORK

We presented a simple algorithm for generalizing a spring
embedder to an arbitrary Riemannian geometry. This
method relies on only very general features of spring
embedders and, thus, can be applied in principle to most
force-directed layout methods. We also presented the
details for the specific cases of hyperbolic and spherical

geometries as well as some layouts obtained with our
implementation.

Although the methods presented here are sufficient to
generalize a spring embedder into any Riemannian geome-
try, there are still many practical concerns that need to
addressed. While the mathematics needed to determine �x
and ��1

x are relatively simple for the cases of hyperbolic and
spherical geometries, this is not always the case. It is not even
possible, in general, to analytically calculate the geodesic
between two points in an arbitrary geometry. It is likely the
case that, for more complex geometries, approximate
methods will have to be used to determine �x and ��1

x .
Perhaps most importantly with regard to information

visualization,wewould like tomake ourmethod scalable. As
with traditional force-directed algorithms, our method does
notworkwell forvery largegraphs. Finding lowenergystates
becomes increasingly difficult as the input graphs get larger.
Multiscale methods and high dimensional embedding have
been successfully used to extend Euclidean spring embed-
ders. Generalizing the non-Euclidean spring embedders
along the lines of [7] and [9] should be possible. This would
allow us to experiment with the layouts of very large graphs
in these geometries and, thus, to fully exploit their properties
to better visualize large data sets.
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