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Abstract. We consider the problem of intersection-free planar graph
morphing, and in particular, a generalization from Euclidean space to
spherical space. We show that there exists a continuous and intersection-
free morph between two sphere drawings of a maximally planar graph,
provided that both sphere drawings have convex inscribed polytopes,
where sphere drawings are the spherical equivalent of plane drawings:
intersection-free geodesic-arc drawings. In addition, we describe a mor-
phing algorithm along with its implementation. Movies of sample morphs
can be found at http://www.cs.arizona.edu/∼mlandis/smorph.

1 Introduction

Morphing refers to the process of transforming one shape (the source) into an-
other (the target). Morphing is widely used in computer graphics, animation,
and modeling; see a survey by Gomes et al. [8]. In planar graph morphing we
would like to transform a given source graph to another pre-specified target
graph. A smooth transformation of one graph into another can be useful when
dealing with dynamic graphs and graphs that change through time where it is
crucial to preserve the mental map of the user. The mental map preservation is
often accomplished by minimizing the changes to the drawing and by creating
smooth transitions between consecutive drawings.

In this paper we consider the problem of morphing between two drawings,
Ds and Dt, of the same maximally planar graph G = (V, E) on the sphere,
where maximally planar graphs (or fully-triangulated graphs) are planar graphs
in which every face is a triangle. The source drawing Ds and the target drawing
Dt are sphere drawings (generalizations of Euclidean plane drawings to spherical
space). The main objective is to find a continuous and intersection-free morph
from Ds to Dt. Note that the restriction to maximally planar graphs is not a
loss of generality, as planar graphs are easily augmented to maximally planar.

1.1 Previous Work

Morphing has been extensively studied in graphics, animation, modeling and
computational geometry, e.g., morphing 2D images [10], polygons and poly-
lines [14], 3D objects [11] and free form curves [13].

⋆ This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.
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Graph morphing, refers to the process of transforming a given graph G1 into
another graph G2. Early work on this problem includes a result by Cairns in
1944 [4] who shows that if G1 and G2 are maximally planar graphs with the same
embedding, then there exists a non-intersecting morph between them. Later,
Thomassen [16] showed that if G1 and G2 are isomorphic convex planar graphs
with the same outer face, then there exists a non-intersecting morph between
them that preserves convexity. Erten et al. show how to morph between drawings
with straight-line segments, bends, and curves [6]. This algorithm makes use
of compatible triangulations [2] and the convex representation of a graph via
barycentric coordinates [7, 17].

While Thomassen [16] proved that an intersection-free morph exists, his ap-
proach neither provides a polynomial bound on the number of steps needed, nor
yields a practical morphing algorithm. Floater and Gotsman [7] and Gotsman
and Surazhsky [10, 15] describe practical morphing techniques, although these
approaches neither compute explicit vertex trajectories, nor guarantee a polyno-
mial bound on the complexity of these trajectories. Recently, Lubiw et al. [12]
developed the first algorithm for intersection-free morphing with well-behaved
complexity for a special case of graphs drawings, namely, orthogonal graph draw-
ings. This work follows an earlier result by Biedl et al. [3] where each edge has
the same bends in the same direction in the source and target drawings.

As the sphere and the plane are topologically the same, it is natural to at-
tempt to generalize the non-intersecting morph algorithm from Euclidean space
to spherical space. Alfeld et al. [1] and Gotsman et al. [9] define analogues of
barycentric coordinates on the sphere, for spherical Bernstein-Bézieri polynomi-
als and for spherical mesh parameterization, respectively. However, barycentric
coordinates are problematic in spherical space. One problem is that unlike on
the Euclidean plane, three points on a sphere define two finite regions. A sys-
tem of barycentric coordinates must distinguish between these two regions. A
second problem arises from the non-linearity introduced by the sphere. The sys-
tem of equations used to determine the drawing at any stage of the morph has
non-unique solutions, and it is not easy to guarantee smoothness of the morph.

1.2 Our Results

Our approach to morphing spherical drawings focuses on affine transformations
of the inscribed polytopes of the given spherical drawings. The inscribed poly-
tope of a spherical drawing is obtained by replacing the geodesic edges by
straight-line segments. We apply rotations, translations, scaling and shearing
to the inscribed polytope, while projecting its endpoints onto the surface of
the sphere throughout the transformations. At an intermediate stage, we use
the intersection-free morphing algorithm for plane drawings together with a
gnomonic projection to/from the sphere. Our approach yields a continuous and
intersection-free morph for sphere drawings of maximally planar graphs, pro-
vided that the source and target drawings have convex inscribed polytopes.
Note that in general, the inscribed polytope of a sphere drawing is star-shaped,
though not necessarily convex. Therefore, while we do not resolve the general
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problem of morphing spherical drawings, we describe an approach which works
for a subclass of spherical drawings and which hopefully can be used to resolve
the general problem.

2 Background

We begin with some mathematical background about sphere drawings and spher-
ical projections. The concept of a straight line in Euclidean space generalizes to
that of a geodesic in Riemannian spaces, where the geodesic between two points is
defined as a continuously differentiable curve of minimal length between them.
Thus, geodesics in Euclidean geometry are straight lines, and in spherical ge-
ometry they are arcs of great circles. The generalization of an intersection-free
straight-line drawing of a planar graph in spherical space uses geodesics instead
of straight-lines.

Definition 1. A sphere embedding of a graph is a clockwise order of the neigh-
bors for each vertex in the graph. A drawing is a drawing of an embedding if
neighbors of nodes in the drawing match the order in the embedding. Note that
3-connected planar graphs in general, and maximally graphs in particular, have
a unique sphere embedding, up to reflection.

Definition 2. A geodesic-arc sphere drawing of a graph is the sphere analogue
of a straight-line drawing of a graph. The drawing is determined entirely by a
mapping of the vertices of the graph onto the sphere. An edge between two nodes
is drawn as the geodesic arc between them. We assume that no two nodes are
antipodal, as there is no unique geodesic arc between two antipodal points.

Definition 3. An intersection-free, geodesic-arc sphere drawing of a graph is a
sphere drawing of the graph in which no two edges intersect, except at a node
on which they are both incident. We refer to such drawings as sphere drawings

for short. Note that sphere drawings are a generalization of straight-line plane
drawings from Euclidean space to spherical space.

Definition 4. Given a sphere drawing D of a planar graph G, the inscribed

polytope P of D is obtained by replacing the (geodesic) edges in the spherical
drawing by straight-line segments. The inscribed polytope P is by definition
simple and star-shaped, though not necessarily convex.

Definition 5. The gnomonic projection is a non-conformal map projection ob-
tained by projecting a point on the surface of the sphere from the sphere’s center
to the point in a plane that is tangent to the south pole. Since this projection
sends antipodal points to the same point on the plane, it can only be used
to project one hemisphere at a time. In a gnomonic projection, geodesics are
mapped to straight lines and vice versa [5].

Note that a stereographic projection from the sphere to the plane, with the
north pole as the focus of the projection, unambiguously maps each point from
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Fig. 1. Screenshots from our implementation, illustrating the morphing sequence: Ds →
D′

s → D′′

s → D′′

t → D′

t → Dt.

the sphere to a point on the plane. In this case, however, a sphere drawing
is mapped to an intersection-free drawing of the graph in the plane but that
drawing is not a straight-line one. As the graph morphing algorithm for plane
drawings assumes edges are straight-line segments, we use a gnomonic projection.

3 Morphing between sphere drawings

The algorithm for morphing between two sphere drawings Ds and Dt of the
same underlying graph G can be broken into several stages:

1. Choose an outer face f0 of the underlying graph;
2. Morph the source sphere drawing Ds of G into D′

s, where D′
s is a sphere

drawing of G such that the north pole is inside f0 and the entire drawing is
below the equator;

3. Morph the target sphere drawing Dt of G into D′
t, where D′

t is a sphere
drawing of G such that the north pole is inside f0 and the entire drawing is
below the equator;

4. Project D′
s and D′

t using a gnomonic projection onto the plane tangent to
the south pole to the drawings D′′

s and D′′
t ;

5. Morph D′′
s into D′′

t using the morphing algorithm for plane drawings [6].

In practice, step 3 of the above algorithm is used in the reverse direction and
altogether, the morphing sequence is: Ds → D′

s → D′′
s → D′′

t → D′
t → Dt; see
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(a) (b)

Fig. 2. (a) Projecting from a polytope that contains the origin to the surface of the sphere;
(b) Gnomonic projection to and from the sphere.

Fig. 1. By the definition of a gnomonic projection, since D′
s and D′

t are both
strictly in the lower hemisphere, their projections D′′

s and D′′
t onto the plane

tangent to the south pole are plane drawings. This implies the correctness of
steps 4 and 5 and so, to argue the correctness of the overall approach, we must
show that steps 2 and 3 of the algorithm above can be accomplished without
introducing crossings in the morph.

3.1 Maintaining a Smooth and Intersection-Free Morph

Our approach to morphing sphere drawings uses a series of affine transformations
to the inscribed polytope of the underlying graph (steps 2 and 3). We also rely
on the barycentric morphing approach for plane drawings (steps 4 and 5). Thus,
throughout the morph of our sphere drawing, we often track two positions for
each vertex: the actual position of the vertex on the sphere in the sphere drawing,
and the other, in some other construct, such as a 3D polytope, as in Fig. 2(a),
or a plane drawing, as in Fig. 2(b). When transformations to the construct are
applied, the positions of the vertices on the sphere change appropriately. A useful
visualization for this approach is to imagine a spoke for each vertex, going from
the origin of the sphere through both positions associated with that node. As
one position changes, so does the other. For simplicity, assume the sphere is
centered at (0, 0, 0) with radius 1 and that the projection plane is z = −1.

Our first results deal with projecting a polytope on the surface of a sphere
and the effect of affine transformations on the polytope to its projection.

Theorem 1. A strictly convex polytope containing the center of a sphere yields

a sphere drawing of that polytope’s skeletal graph when its vertices are normalized

to lie on the sphere.
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Proof Sketch: First, note that the geodesic arc between two vertices on the
sphere is the same as the projection of the straight line between those two vertices
of the polytope. Suppose that the projection of the polytope onto the sphere has
a crossing. Consider the point p on the sphere where two edges intersect. This
point must be the projection of two different polytope edges onto the sphere.
This implies that there exists a ray that starts at the center and intersects two
separate edges of the polytope. Let p1 and p2 be the two points obtained from
the intersection of each of these edges with the ray through the origin. Without
loss of generality, let p1 be the point that is further from the center. Then there
exists a line segment from the center of the sphere to p1 that passes through p2.
This contradicts the assumption that the polytope is strictly convex. Hence, the
resulting sphere drawing must be intersection-free. ⊓⊔

Affine transformations of a convex polytope result in a convex polytope [5].
This observation, together with Theorem 1 yields the following Theorem:

Theorem 2. Affine transformations to a convex polytope P that contains the

center of a sphere, result in sphere drawings of that polytope’s skeletal graph

when its vertices are normalized to lie on the sphere, if the origin remains inside

P throughout the transformation.

As we are not assuming that the inscribed polytope obtained from a sphere
drawing contains the origin, and we propose to deal with sphere drawings strictly
contained in the lower hemisphere, we need an analogous theorem dealing with
polytopes not containing the origin.

Theorem 3. A strictly convex polytope P not containing the center of a sphere

yields a sphere drawing of that polytope’s skeletal graph when its vertices are

normalized to lie on the sphere if, for some face f1, the ray from the origin to

any point on the polytope intersects f1 before any other part of the polytope, and

none of the faces of P lie in planes containing the origin.

Proof Sketch: The face f1 acts as a shield for rays emanating from the origin.
Given a point p of the polytope we can determine its projection p′ on the surface
of the sphere by taking the intersection of the ray from (0, 0, 0) through p with
the sphere. As in Theorem 1, we may have a crossing in the spherical drawing
if the ray passes through more than one edge of P . Since P is convex, the ray
intersects P ’s faces in at most two places. If the ray hits fewer than two faces,
then clearly it is not going to intersect two edges.

Consider the cases where the ray enters P through face f1 (by assumption,
it must) and exits through some other point. If the ray does not intersect an
edge of f1 at its entry point, then the only place at which it can intersect an
edge of P is its exit point. There can thus be at most one intersection, and we
cannot have a crossing from this. If the ray hits an edge of f1 at its entry point
then, since f1 shields all other faces from the origin, for the ray to hit another
edge at its exit point, there would have to be a face adjacent to f1 lying in a
plane containing the origin (such that the ray would pass through the edge of f1
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(a) (b)

Fig. 3. Linear scaling of the vertices to the southern hemisphere may introduce crossings:
(a) the endpoints of the long edge are below those of the short edge; (b) linear scaling
could bring all the vertices to the southern hemisphere but at some intermediate stage the
two edges intersect.

and remain in the adjacent face until it exits P through another of that face’s
edges). This case is disallowed by another of the theorem’s assumptions. ⊓⊔

3.2 Sliding Sphere Drawings to the Equator

The obvious method of “sliding” a sphere drawing down to the lower hemi-
sphere is to do a simple linear scale of the drawing, either by z-coordinates in
Euclidean coordinates, or by φ in spherical coordinates. This approach, how-
ever, does not always work. It is easy to construct an example with two non-
intersecting geodesics in the upper hemisphere that must cross on their way to
the lower hemisphere if linear scaling is used; see Fig. 3. Therefore, we consider
the approach where we manipulate the inscribed polytope.

Theorem 4. There exists a continuous and intersection-free morph that moves

a sphere drawing D, of a maximally planar graph G, to a drawing of G such

that the vertices of a chosen face f0 are on the equator and all others are strictly

below the equator, provided that the inscribed polytope P of D is convex.

Proof Sketch: Consider the inscribed convex polytope P corresponding to the
sphere drawing D. We have two cases: either P contains the origin or it does
not.

Case 1 (P contains the origin): First rotate P so that the outward normal
to f0 is parallel to (0, 0, 1). Let v0 be the average of the points of f0. Since P

is convex, the segment between the origin and v0 lies entirely within P . We
can thus apply to P a translation along the vector −v0 and be assured that
P contains the origin throughout the transformation, hence Theorem 1 applies.
Now f0 lies within the xy-plane, so when we project its points onto the sphere,
they lie on the equator. Since P is convex, we know all other points of P are on
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one side of f0. Since the outward normal of f0 is pointing up, the other points
are then below f0, and hence below the equator.

Case 2 (P does not contain the origin): Here we rely on Theorem 3,
instead. First we need to show that its preconditions are true: that there exists
some face f1 that acts as an shield that eclipses the rest of the polytope from
the origin, and no faces lie in planes containing the origin.

Since P does not contain the origin, there exists some plane that passes
through the origin such that P lies entirely on one side of that plane. Thus D

has one face, which we conveniently call f1, which encompasses a half-sphere.
The face f1 must eclipse the rest of P from the origin. The edges in D that make
up f1 match the edge of the spherical region eclipsed by f1 in P . Since f1 is the
outermost face, there can be no nodes outside of this region.

The second condition is straightforward: the only way three points on a
sphere can lie on a plane containing the origin is if they all lie on a great circle
(a circle whose center is the same as the sphere’s). A face made by three such
points is either defined by a great circle, in which case the face itself, and hence
P , contains the origin (so we would have already dealt with it by case 1), or the
three points all lie within a half-circle, in which case the arc between the two
most distant completely overlaps the arcs between the other two pairs, in which
case we did not have a valid sphere drawing to begin with.

We have shown Theorem 3 applies, and can thus apply any affine transfor-
mations to P that maintains f1’s eclipse of the rest of the polytope. We use
shearing, as it is an affine transformation and straight lines remain straight. If
the application of a transformation were to negate f1’s “eclipse” property, then
it would have to introduce a clear path from the origin to some edge in P not
on f1.

Shearing and rotation do not affect the origin, so we can apply these transfor-
mations (around the origin, anyway) while maintaining a valid sphere drawing
in the projection. Let v0 be the centroid of f1. We rotate P so that v0 lies in the
xy-plane on the line y = x. Now v0 lies at (a, a, 0), for some a. Simultaneously
shear P in x and y with the factor −1, so that v0 ends up at the origin. We
now have a convex polyhedron that contains the origin, and we have reduced
the problem to case 1. ⊓⊔

3.3 Sliding Sphere Drawings to the Lower Hemisphere

From Theorem 4 we know that we can transform D into a drawing such that
the vertices of a face f0 are on the equator and all the rest are strictly below
the equator. At this stage it is easy to argue that there exists an ǫ > 0 such
that we can translate the polytope by an additional ǫ vertically down, so that
all the points on the sphere (including those that form f0) are strictly below the
equator.

In practice, however, the valid values of ǫ can be arbitrarily small, making
this simple approach unattractive for morphing. The value of ǫ depends on the
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placement of the vertices of f0 around the equator. If two vertices of f0 are near-
antipodal, then the edge between them can pass arbitrarily close to the south
pole when we translate P strictly below the equator. This would make it diffi-
cult to prevent crossings in the spherical drawing. Instead, we use scaling and
shearing (both affine transformations) of the polytope P to make f0 an equilat-
eral triangle. We consider f0 by itself in the plane, calculate the transformations
necessary to make it equilateral (shear around its centroid until it is isosceles,
and then scale to make it equilateral), and apply them to P as a whole.

Our goal is to move all vertices outside of f0 low enough on the sphere so that
we can guarantee f0 blocks their view of the origin. As we show below, it suffices
to move the rest of the points below the Antarctic circle (66oS, z ≈ −0.9135)
to ensure that they are eclipsed by an f0 whose vertices lie on the Tropic of
Capricorn (23.5oS, z ≈ −0.3987). These two values also provide a bound on
the area of the straight-line plane drawing obtained as the gnomonic projection
of the sphere drawing. With the next theorem we derive the general relation
that must exist between these two latitudes in order to guarantee we obtain an
intersection-free sphere drawing, as per Theorem 3, and it is straight-forward to
verify that that these two values satisfy the relation.

Theorem 5. There exists a continuous and intersection-free morph that moves

a sphere drawing D, of a maximally planar graph G, to a drawing of G such that

all the vertices are strictly below the equator, provided that the inscribed polytope

P of D is convex.

Proof Sketch: Here is the outline of the proof. We begin with f0 as a triangle
in the xy-plane. We apply scaling and shearing to P to transform f0 into an
equilateral triangle. We choose a value z1 that we want to translate f0 down
to, and calculate a scaling factor s as a function of z1 and z3, the highest z-
coordinate of any point outside f0. We scale P in x and y by a factor of 1

s
,

and project it back onto the sphere. Note that this leaves f0 in the xy-plane.
The scaling factor was computed so that when we translate P down by z1 the
face f0 eclipses the rest of P , yielding a valid sphere drawing at each stage by
Theorem 3. Since f0 is now strictly below the equator, and all other nodes are
below f0, the entire drawing is below the equator. Next we provide some of the
details about this argument.

We begin where Theorem 4 left off. The inscribed polytope P has the desig-
nated face f0 on the equator and all other vertices in the southern hemisphere.
We skip the details about scaling and shearing to P to transform f0 into an equi-
lateral triangle, and focus on calculating the scaling factor s needed to ensure
that when we translate P below the equator, the spherical drawing contains no
crossings.

Since we have transformed f0 into an equilateral triangle, we know exactly
where its arcs lie, and can calculate the lowest point on the sphere covered by f0.
We would like to translate P down so that f0 lies in the plane z = z1 (say, the
Tropic of Capricorn). Rotate P so that one of f0’s vertices lies on the y-axis. Then
the coordinates of that point are (0,

√

1 − z2
1 , z1). Since f0 is equilateral, we can
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easily find that its other two points are at (
√

3y1

2
, −y1

2
, z1) and (−

√
3y1

2
, −y1

2
, z1).

Since these two are symmetric around the y-axis, we can use the arc between
these to find the lowest point of f0 on the sphere. The midpoint of the spherical
arc is the projection of the midpoint of the Euclidean line between these two
points, given by the average of the two points:

m = (0,
−y1

2
, z1) = (0,

−
√

1 − z2
1

2
, z1)

We need its magnitude to project it onto the sphere:

||m|| =

√

−
√

(1 − z2
1
)

2

2

+ z2
1 =

√

1 − z2
1

4
+ z2

1 =

√

1

4
+

3

4
z2
1 =

1

2

√

3z2
1 + 1

The midpoint m had a z-coordinate of z1 and so, when projected onto the sphere,
it has a z-coordinate of z1

||m|| . Thus, the lowest point z2 of f0 on the sphere would

be

z2 =
z1

||m||
=

2z1
√

3z2
1 + 1

.

If we move all points of D not in f0 below z2, then we can translate P

down and guarantee that f0 still eclipses P from the origin, and thus maintain
a valid sphere drawing throughout. Using the Tropic of Capricorn for z1 yields
a value for z2 that is above the Arctic Circle, so using the two familiar latitudes
guarantees valid sphere drawings throughout. To make sure all vertices outside
f0 are below z2, we scale P down around the z-axis by some constant factor s.
This scaling has the effect of moving all the vertices not in f0 towards the south
pole. We can calculate the scale-factor s necessary to move all nodes below z2

as follows.
Let z3 be the maximum z-coordinate of any node in D not in f0. We would

like to scale the point (x, y, z3) to (x

s
, y

s
, z3), such that when it is projected back

onto the sphere, its z-coordinate is below z2. To project (x

s
, y

s
, z3) onto the sphere

we first find its magnitude. Since the original point lies on the sphere, we have
x2 + y2 = 1 − z2

3 and the magnitude is given by:

√

x2

s2
+

y2

s2
+ z2

3
=

√

x2 + y2

s2
+ z2

3
=

√

1 − z2
3

s2
+ z2

3
.

As our goal is to have the scaled, projected point lie below z2, so we need to find

a value for s such that: z3
r

1−z
2
3

s
2

+z2

3

< z2. Solving for s gives us: s >

√

1−z2

3

z
2
2

z
2
3

−z2

3

.

Using the scaling factor guarantees all points outside f0 fall below f0’s arcs
on the sphere when projected, and thus f0 eclipses P throughout the translation,
and we can move f0 on the sphere down to the plane z = z1 with the translation
(0, 0,−z).

⊓⊔
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Fig. 4. The polytope P has a face f0 on the equatorial plane. The highest z-coordinate of
a vertex not on f0 is given by z3. We would like to translate the polytope straight down so
that f0 is on the Tropic of Capricorn plane, given by z = z1. We ensure that all vertices
other than those in f0 are below the Antarctic circle, given by plane z = z2.

3.4 The Complete Morph

We have shown that we can morph a sphere drawing to another sphere drawing
that is entirely in one hemisphere. Then, starting with the source drawing Ds we
can morph it to a drawing D′

s that is strictly below the equator. We can do the
same with the target sphere drawing Dt and morph it to a sphere drawing D′

t

that is strictly below the equator. We then obtain the gnomonic projections D′′
s

and D′′
t of the two drawings onto the plane tangent to the south pole. We then

apply the planar morph algorithm to morph between these two plane drawings.
Throughout the planar morph, the sphere drawing is the inverse gnomonic pro-
jection of the current state of the plane drawing. Finally, we invert the Dt → D′

t

morph to arrive at the target drawing.

In order to perform the planar morph, we must ensure that the outer face in
D′′

s and D′′
t is the same. We must match the upper faces in D′

s and D′
t. Theorem 4

allows us to use whichever face we wish, therefore matching is not a problem.

4 Conclusions and Open Problems

We have shown that under certain conditions we can morph between spherical
drawings such that the morph is continuous and intersection-free. More images
and movies are available at http://www.cs.arizona.edu/∼mlandis/smorph.
Several important open problems remain:

1. Does there exist a continuous and intersection-free morph between any pair
of sphere drawings of an underlying 3-connected graph?
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2. In the planar morph stage, what is actually computed is not the trajectories
of the vertices, but their locations at any stage in the morph. Is there a
morph with trajectories of polynomial complexity?

3. Is there a more direct way to use spherical barycentric coordinates with
interpolating between convex representations of graph to obtain a spherical
morph, that does not involve reducing the problem to a planar morph?
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