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Abstract—The advent of ubiquitous, mobile, personal devices
creates an unprecedented opportunity to improve our under-
standing of human movement patterns. In this work, we study
human mobility in Los Angeles and New York by analyzing
anonymous records of approximate locations of cell phones
belonging to residents of those cities. We examine two data
sets gathered six months apart, each representing hundreds
of thousands of people, containing hundreds of millions of
location events, and spanning two months of activity. We present,
compare, and validate the daily range of travel for people in these
populations. Our findings include that human mobility changes
with the seasons: both Angelenos and New Yorkers travel less
in the winter, with New Yorkers showing a more pronounced
decrease in mobility during the cold months. We also show that
text messaging activity does not by itself accurately characterize
daily range, whereas voice calling alone suffices. Finally, we
demonstrate that our methodology is accurate by comparing our
results to ground truth obtained from volunteers.

I. INTRODUCTION

An improved understanding of human mobility would yield
insights into a variety of societal issues. There are long-

standing examples in urban planning, where knowing how

people move can help determine where to deploy infrastructure
such as public transit stations [10]. Similarly, understanding

the ways in which disease spreads hinges on a clear picture of

the ways that humans themselves spread [1]. Of more recent
concern, determining how far people travel in the course of

their daily lives sheds light into their environmental impact.
Location information from cellular telephone networks has

the potential to revolutionize the study of human mobility.
Researchers have traditionally relied on surveys and observa-

tions of relatively small numbers of people to get a glimpse

into the way that humans move about. In contrast, cellular
networks must know the rough location of the millions of

active cell phones in their coverage areas in order to provide

the phones with voice and data services. Given the almost
constant physical proximity of cell phones to their owners,

location data from these networks has great promise as a tool
for the large-scale characterization of human mobility.

In this work, we use location information from a cel-
lular network to characterize human mobility in two large

metropolitan areas in the United States (US): Los Angeles

(LA) and New York (NY). Specifically, we analyze anonymous
records of approximate cell phone locations at discrete times

when the phones are in active use. These records are in two

datasets gathered roughly six months apart. Each dataset spans
two months of activity for hundreds of thousands of phones

and has hundreds of millions of location events.

We focus on aggregate statistics of daily travel. We define
daily range as the maximum distance that a phone, and by

assumption its owner, has been seen to travel in one day. We

proceed to make spatial and temporal comparisons of these
ranges. For example, as shown in Figure 1, cell phone users

in downtown LA have median daily ranges that are nearly

double those of their Manhattan counterparts.
In a previous workshop paper, we presented preliminary

results from our study of human mobility [9]. Our contribu-
tions in this paper go beyond our earlier ones in a number of

ways. One, we work with a second set of cell phone activity

records gathered at a different time of year. This added dataset
allows us to make comparisons across both time and space, for

example range comparisons between spring and winter. Two,

our new dataset includes text messaging activity in addition to
voice calling activity. This added data enables a comparison of

mobility estimates based on different types of activity: voice,

texting, and both types combined. Three, we compare our
range results to ground truth provided by opt-in volunteers

to verify whether cell phone activity in fact serves as a good

proxy for user locations.
Our main findings include the following: First, people travel

less during the winter than during the summer, with the effect
being more pronounced in NY than in LA. Second, text

messaging activity alone yields a vastly underestimated view

of daily travel, while voice calling activity is representative
of the full range. Third, daily ranges derived from cell phone

activity match the ground-truth ranges provided by volunteers,

thus validating our methodology. In addition to these new
findings, we observed many of the same human mobility

characteristics when using our winter dataset as we did with

our earlier spring dataset.
To summarize, this paper demonstrates that location infor-

mation from cellular networks can bring to light significant

aspects of human mobility. We have identified aspects that
vary across space and time, and other aspects that remain fairly

constant across populations. The rest of this paper describes

in more detail our datasets, our analysis methodology, our
validation of this methodology, and our range results.
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(a) Manhattan (b) Downtown Los Angeles

Fig. 1. Maps giving a visual representation of the median daily ranges of cell phone users in Manhattan and downtown Los Angeles. The
radii of the inner, middle, and outer circles represent the 25

th, 50
th, and 75

th percentiles, respectively, of these ranges across all users in a
city. Ranges for all users in a city are made to originate in a common point for clarity of display. Maps are drawn to the same scale.

II. DATASETS

A. Data Collection Methodology

Our datasets are comprised of anonymized Call Detail

Records (CDRs) from a random set of cellular phones whose

billing addresses lie within specific geographic regions.

Defining Geographic Regions of Interest

We first developed a target set of 891 ZIP codes located in

the Los Angeles and New York areas. In the LA area, the ZIP
codes cover the counties of Los Angeles, Orange and Ventura.

In the NY area, ZIP codes cover the five New York City

boroughs (Manhattan, Brooklyn, Bronx, Queens, and Staten
Island) and ten New Jersey counties that are close to New

York City (Essex, Union, Morris, Hudson, Bergen, Somerset,

Passaic, Middlesex, Sussex, and Warren). Our selected ZIP
codes cover similarly sized areas in LA and NY.

Anonymized CDR Contents

We then obtained anonymized CDRs for a random sample of
phones in each ZIP code. The CDRs contain information about

two types of events involving these phones: voice calls and text

messages. In place of the phone number, each CDR contains
an anonymous identifier consisting of the 5-digit billing ZIP

code and a unique integer. Each CDR also contains the starting

time of the voice or text event, the duration of the event, the
locations of the starting and ending cell towers associated with

the event, and an indicator of whether the phone was registered

to an individual or a business.

Excluded Categories of Phones

Our goal is to understand aggregate mobility of people

in particular regions of the country, and to compare them
analytically where possible. As such, our study omits from

consideration two sets of phones from the original CDRs.

First, we omitted phones registered to businesses, retaining

only phones registered to individuals. This step avoids, for
example, the situation where a cellular service reseller based

in a ZIP code of interest would cause us to study large numbers
of phones that are not representative of that ZIP code.

Second, we removed from our sample those phones that

appeared in their base ZIP code fewer than half the days they

had voice or text activity. We assumed that the owners of such
phones now live in other parts of the country but have retained

LA LA NY NY
Metric Spring Winter Spring Winter

Total Unique Phones 106K 97K 78K 71K
Total Unique CDRs 74M 247M 62M 161M

Median Calls Per Day 9 8 10 9
Median Texts per Day N/A 4 N/A 3

TABLE I
GENERAL DATA CHARACTERISTICS OF THE SPRING AND WINTER

DATASETS. TEXTING RECORDS WERE NOT COLLECTED IN THE SPRING.

their old billing addresses (e.g., they are college students).

Therefore, their daily travel patterns may not be representative

of the geographical areas we are interested in.

After these two filtering steps, our CDRs are a useful

representation of mobility and telephone usage in the regions
of interest. While there will always be some people using per-

sonal phones for business (and vice versa), we have compared

our filtered CDRs against US Census Data for the regions of
interest [18] and find a strong correlation between the expected

and actual number of users in each ZIP code.

B. Dataset Characteristics

Our overall methodology resulted in location data for hun-
dreds of thousands of phones split roughly evenly between

LA and NY, with the number of phones in each ZIP code

proportional to the population in that ZIP code. In addition to
collecting data for two geographic regions, we also collected

data for two time periods. The first period represents 62

consecutive days from March 15, 2009, to May 15, 2009. The
second period covers 78 days from November 15, 2009, to

January 31, 2010. We refer to these datasets as the Spring

and Winter datasets, respectively. Table I offers some general
characteristics of these datasets. As shown, each contains

hundreds of millions of location events, with on the order of
10 events per phone per day.

C. Privacy Measures

Given the sensitivity of the data, we took several steps to

ensure the privacy of individuals.

First, only anonymous records were used in this study. In
particular, personally identifying characteristics were removed
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from our CDRs. CDRs for the same phone are linked using an

anonymous unique identifier, rather than a telephone number.

No demographic data is linked to any user or CDR.

Second, all our results are presented as aggregates. That

is, no individual anonymous identifier was singled out for the

study. By observing and reporting only on the aggregates, we
protect the privacy of individuals.

Finally, each CDR only included location information for

the cellular towers with which a phone was associated at the
beginning and end of a voice call or at the time of a text

message. The phones were effectively invisible to us aside

from these events. In addition, we could estimate the phone
locations only to the granularity of the cell tower coverage

radius. Although the effective radius depends upon tower

height, radio power, antenna angle, and terrain, these radii
average about a mile, giving an uncertainty of about 3 square

miles for any event [17].

III. RANGE OF TRAVEL

A. Analysis Methodology

In this study, we use the locations of cellular towers with

which a phone is associated as approximations of that phone’s

locations. We compute a phone’s daily range by calculating
distances between all pairs of locations visited by the phone on

a given day; the maximum pairwise distance between any two

towers encountered on the same day is the daily range. Our
daily range is a lower bound because we calculate distances

“as the crow flies” and we do not necessarily see the phone at
its extremes of travel. Daily range can only be computed on

days in which at least one call or text message is observed.

By calculating the median and maximum values of these

daily ranges over the duration of a dataset, we arrive at
a phone’s median daily range and maximum daily range,

respectively. While the median daily range is an approximation
of the “common” daily distance traveled, the maximum daily

range corresponds to the longest trip taken across the dataset.

We categorize these ranges by whether they occurred on

weekends or weekdays. Our reasoning is that for many people,
a weekday range is more closely related to work-related travel

(e.g., commuting, business trips), while weekend travel is more
often done for pleasure.

We summarize our results with the help of boxplots and

histograms. The boxplots depict five-number summaries of the

complete empirical distributions of interest. The “box” repre-
sents the 25

th, 50
th, and 75

th percentiles, while the “whiskers”

indicate the 2
nd and 98

th percentiles. The horizontal axes
show miles on a logarithmic scale.

Nearly any difference between our medians is statistically

significant due to our large sample sizes. We could have shown
the variability in our data using “notched box plots” [13],

where the size of a notch around the median represents

the variation of the median. Boxplots whose notches do not
overlap would be considered to have come from distributions

with significantly different medians. However, because of the

large sizes of our datasets, our notches would be imperceptibly
small, about the same size as our median lines.

Finally, unless explicitly mentioned, all the figures in this

section are based on the Winter dataset. For space reasons,
we omit results involving the Spring dataset unless they are

substantially different from the Winter results.

B. Spatial Comparisons

In [9], we found a number of differences in the daily ranges
of people in the Los Angeles and New York areas based on

our Spring dataset. Here, we also have access to our Winter
dataset of locations for the same populations. As one would

hope, our earlier results also hold for this new dataset.
For example, we again find that Angelenos generally travel

farther than New Yorkers. Specifically, the median for week-
day daily range is 5.5 miles in LA and 4.0 miles in NY. One

likely explanation for this difference is that LA is generally

more spread out than NY, so that people in LA travel farther
while pursuing day-to-day activities. At the same time, we

again see that Manhattanites exhibit maximum trip lengths that

far exceed those of the most mobile Angelenos. In particular,
the 75

th percentile of the maximum daily range is nearly 4

times larger for Manhattan residents than for their downtown
Los Angeles counterparts. A possible explanation is the high

concentration of business travelers in Manhattan.
Other results that hold across our datasets are the striking

variations in mobility between subareas of the same city.
Variations in median daily ranges between LA subareas span

from 1.05 times at the 98
th percentile to 2.05 times at the

25
th percentile. Differences between NY subareas are even

greater, spanning from 1.01 to 3.03 times at the 98
th and

25
th percentiles, respectively. One subarea from each city

stands out. In NY, Manhattan tends to have significantly lower
median daily ranges. This result is consistent with the idea

that many people commute into the city center and those that
already live there do not need to travel far. Conversely, in

LA the outstanding region is Antelope Valley, which is on the

outskirts. In this case, it appears that those who live far away
from the city center tend to commute much further.

C. Temporal Comparisons

Figure 2 plots the comparison of the median daily ranges

between the Spring and the Winter datasets based on CDRs

from voice calls only. Since we did not have CDRs for text
messages in the Spring dataset, here we removed text CDRs

from the Winter dataset for a meaningful comparison.
The figure shows that, on average, people’s daily movement

tends to be less during the winter months than during the

spring. In NY, the 25
th percentile fell by 50% and the 75

th

percentile fell by 23%, whereas in LA, the 25
th percentile fell

by 37% and the 75
th percentile fell by 22%.

Although both LA and NY see drops in the daily ranges, it is

suggestive that NY’s drop is larger than LA’s in all quartiles.

Perhaps there is something intrinsic to the NY winter (e.g.,
inclement weather) that causes people there to move less than

during the spring, more so than in LA.
We also studied how the travel patterns changed between

the two datasets. To do so, we calculated the ratio between

each individual’s median daily range in the Spring dataset and

the Winter dataset. Figure 3 breaks the results by weekday and
weekend for NY and LA areas.

The results show an interesting trend. Although the 25
th

and the 50
th percentiles stayed roughly the same for both

LA and NY, the 75
th and the 98

th percentiles increased
significantly. Thus, although the quartile of the population that

falls between the 25
th and the 50

th percentiles did not change

their travel patterns, the half falling above the 50
th percentile

travelled farther during Spring. Also, the increase during the
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Fig. 2. Median daily range in Spring and Winter, using voice calls.
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Fig. 3. Ratio between median daily ranges in Spring and Winter.

weekends is higher than during the weekdays. The ratio for

the 75
th percentile during the weekends is higher than during

the weekdays by 34% in NY and 33% in LA.

Similarly, we can take the ratio of an individual user’s

median daily range on weekends to the same user’s median
daily range on weekdays. Figure 4 shows the result of taking

such a ratio. Over 50% of people move less during weekends

than weekdays, regardless of location. However, the decrease
is more pronounced in NY than in LA. In NY, the ratio of the

75
th percentile is 24% higher than in LA. Subregions exhibit

the same ratios as the region they are in, within about 10%.

Our analysis points toward people generally being more

mobile on weekdays than weekends. This is consistent with

users whose primary travel is to and from work. On days off,
a user may be likely to remain closer to home. This may also

explain the drop during the Winter dataset. With many people

on vacation around the end-of-year holidays, daily distances
traveled by commuters could drop sharply. We note, however,

that since we can only measure mobility when people use their

 0.1  1  10  100

all NY

all LA

manhattan

900XX

Ratio

0

0

0

0

0.8

0.8

0.8

0.9

9.0

9.6

16.2

13.5

1.8

1.8

2.3

2.2

1.1

1.1

1.1

1.2

Fig. 4. Ratio between median daily ranges during the weekend and
weekday (weekday/weekend). The plot uses only the Winter dataset.
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Fig. 5. Median day and night ranges. People travel much shorter
distances during the evening hours.

phones, our results could also be skewed by people using their
phones less on weekdays vs. weekends, or using their cell

phones less where they have access to landlines.

Nevertheless, our data readily shows the effects of holidays

on human mobility. For example, Thanksgiving and Christmas

clearly stand out as days when many people exhibit their
maximum daily ranges within the Winter dataset.

Finally, Figure 5 examines how people move during the
“daylight hours” (defined as 7am to 7pm) as opposed to “night

time hours”. As expected, people move 1.56-2.86x farther

during the day than the night, across quartiles. The result,
in and of itself, is not a surprise, but the fact that we are

able to detect this movement pattern lends legitimacy to our

methods. In addition we once again observe the general trend
of Angelenos traveling more than New Yorkers. This trend,

then, seems to hold regardless of time of day.

D. Voice Calls vs. Text Messages

Recall that the Winter dataset includes CDRs from both

voice calls and text messages. We studied the effect of each
type of event on the median daily ranges. Figure 6 shows the

median daily range computed using CDRs from voice calls

only, text messages only, or both voice and text.

The results show that by using CDRs from voice calls only,

we would underestimate the median daily ranges by 41% at
the 25

th percentile, 20% for the 50
th percentile, and 11% at

the 75
th percentile. Also, the results show that CDRs for text

events only are unsuitable for estimating median daily ranges,
though they serve well as a supplement.

Although it is not clear what causes the low apparent mo-
bility when considering only text messages, it is possible that

some of the effect is due to demographics of the users. Because

text messages are used primarily by younger generations [12],
the mobility estimates would capture a generation that travels

mostly to and from school, perhaps a shorter average trip than

that of their working parents.

E. Ground Truth for Daily Range

To validate our methodology, we set out to verify whether
travel ranges derived from Call Detail Records correspond to

actual ranges covered by people. To this end, we recruited five

volunteers who agreed to log their actual locations and let us
extract location information from their CDRs.

More specifically, the logs captured how long the volun-

teers spent at which locations throughout the day. Volunteers
recorded their logs in whatever form was most convenient to
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Fig. 7. Differences between daily ranges from 28 days of logs and
Call Detail Records for 5 opt-in volunteers. All figures are in miles.

them. For example, some used calendar applications on their

mobile phones. We later provided them with a web-based tool
in which they could enter a street address or select a point on

a map, and the tool would return the latitude and longitude for

the address or point. They used this tool to convert the place
names in their logs to lat-long pairs. We obtained 28 days of

such logs for each of the 5 volunteers.

Figure 7 shows the differences between the median daily

ranges calculated from the logs and from the CDRs. The

volunteers reported median daily ranges from 0.98 to 25.81
miles while the CDRs had daily ranges from 0.63 to 24.48

miles. In general, median errors per day were always less then

1.5 miles with the majority of errors being much lower. Only
one user had egregious errors caused by not making calls at the

end points of long journeys. These errors account for roughly

1% of all errors. Overall, our agreement with ground truth
gives us confidence in our range of travel results.

F. Daily Distance vs. Daily Range

We define the daily distance as the sum of all the distances

between consecutive CDRs for a user in one day. Thus, the
daily distance is always at least as large as the daily range,

and is a tighter lower bound on the total distance traveled by

an individual. However, this metric provides less sense of the
area over which the user travels, since it can be inflated by,

say, making a large number of very short trips.

Table II compares the median daily distances to the median

daily ranges in the NY and LA areas, broken down by weekend

and weekdays. Although daily distances may differ from daily
ranges by up to 10x, the median values remain about 2x. We

Median Median
Daily Daily

City Days Distance Range Ratio

NY
Weekdays 5.93 3.19 1.86
Weekends 4.18 2.39 1.75

LA
Weekdays 9.18 4.50 2.04
Weekends 6.03 3.50 1.80

TABLE II
COMPARISON OF THE MEDIAN DAILY DISTANCE TO THE MEDIAN DAILY

RANGE IN THE WINTER DATASET.

can use these ratios to roughly convert between daily ranges

and daily distances as appropriate. One would expect the daily
distance to be at least twice the daily range since it should

capture travel to and from the farthest destination. Some ratios

in Table II are less than 2 because not all people make phone
calls or send texts at the end points of their journeys.

The ratio of distance to range is roughly the same in the two

cities and across the time periods. Thus, conclusions that we
were able to draw from daily ranges are still valid when daily

distances are discussed, although the numbers themselves are
higher. For example, Angelenos continue to have median travel

on weekends that is about 45% higher than New Yorkers (46%

by daily range, 44% by daily distance).

IV. RELATED WORK

The usefulness of cellular network operational records has

not gone unnoticed in the research community. González,
Hidalgo and Barabási [7] used such records from an unnamed

European country to form statistical models of how individuals

move. From the 6 million phone users in their data set, their
study focused on 100,000 users who made at least one call

per day over a 6-month period. Whereas they were interested
in modeling an individual, we are interested in differences in

behavior between large populations.

Song et al. [17] study similar cellular network data from
the point of view of predicting an individual’s movements.

Specifically, the authors consider the towers associated with

phone users and show that given sufficient past history, one
could guess the current location of a given user with high

accuracy. These results are based on a more dense data set of

50,000 users over 3 months, selected from a larger set of 10
million, with the selection focusing on users who make at least

one call every two hours. In the same paper they argue that age,

gender, population density, and income have little impact on
the accuracy of the prediction. Finally, they argue that different

days of the week also have little impact, with weekends being
slightly easier to predict. Once again, this work focuses on

modeling the movements of individuals. However, our goal

is to understand the differences at a more macroscopic level.
Ultimately, we aim to attribute differences between cities to

the geography, demographics, and development patterns of

those cities, something that Song et al. explicitly remove from
consideration. Thus, the work presented by Song et al. is in

some ways orthogonal to our own. Nevertheless, it would be

interesting to test their model on our datasets.

Other attempts at performing studies of user mobility also

tend to focus on finer-grained movement patterns of individual

users. Sohn et al. use GSM data to determine mobility modes,
such as walking or driving, of three individuals [16]. Similarly,
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Mun et al. have developed PEIR [14] to track the environ-

mental impact of individual users of the system. In addition

to studying a much larger data set, we look at a completely
different metric. Our goal is to look on a more macro scale at

the ways in which whole populations behave.
In a step away from studying the patterns of individual

users, Pulselli et al. and Ratti examine how call volume can be

used as a proxy for population density in Milan [15]. Although

call volumes allow them to infer general trends of motion
through the city, we feel that our discrete location events

provide a more direct picture of human mobility.
Work by Girardin et al. used cell phone usage within cities

to find locations of users in Rome [4] and New York City [5].

They were able to find where people clustered in these cities
and major paths people take through the cities. They were

also able to find differences between the behavior of locals

and tourists. In addition to cell phone records, they relied on
tagged photos uploaded to popular photo sharing websites.

Girardin et al. look at short-term travel patterns to find detailed

routes through a single city. We use a much broader dataset
that expands our area of interest well beyond the borders of a

single city, capturing calls made anywhere in the United States.
We have also developed metrics that are general enough to

allow comparisons between cities. Further, we have performed

longitudinal comparisons into the stability of the datasets that
Girardin’s team have not be able to perform. Finally, we have

a fundamentally different goal than Girardin et al. They aim

to find dense regions of a city, while we aim to examine the
differences in distances people travel.

Finally, there is a large body of work that examines social

relations in the context of mobile communication networks.
González, Lind and Herrmann [6] propose a model of social

networks based on a system of mobile agents. Hidalgo and
Rodriguez-Sickert [8] study the correlations between the struc-

ture of a mobile phone network and the persistence of its social

links. Eagle and Pentland [2] introduce a system for sensing
social systems with data collected from mobile phones over

the course of several months. In a followup paper, Eagle and

Pentland [3] show that they can identify the structure inherent
in daily behavior with models of individuals and communities

within the social networks of a population. Lambiotte et al.

analyze statistical properties of social networks constructed
from the records of a mobile phone company [11]. Our work

so far has not explored the relationship between social links

and human mobility, but it would be an interesting avenue of
future research. We instead aim at developing metrics that can

be used to quantify the differences in the ways that people

from a particular region move.

V. CONCLUSIONS

Cellular phone networks can help solve important problems
outside the communications domain because they can provide

rich insights into the way people move. Scientists, practition-

ers, and policy makers in many fields can use human mobility
data to explore existing problems and anticipate future ones.

By analyzing anonymized records of cell phone locations,

we have been able to draw novel conclusions regarding how
people move in and around two major cities in the United

States: Los Angeles and New York.
Using the concept of a daily range of travel, we have shown

concrete differences between the mobility of Angelenos and

New Yorkers. By comparing statistics drawn from different

time frames, we have also found general truths about human

movement that seem not to be tied to the metropolitan region
in which people live. We have validated our methodology by

comparing daily ranges drawn from cellular phone activity to

ground-truth ranges provided by volunteers.
This paper demonstrates our approach to characterizing

human mobility patterns on a large scale and without vio-

lating individual privacy. Our methodology has wide-ranging
applications that can be used, for example, to examine corre-

lations between human movements and world events such as

disease outbreaks. We have already demonstrated that events
such as national holidays are immediately evident. A better

understanding of how such events affect human movement can
inform a range of pursuits, from urban planning to disaster

response. We plan to collaborate with researchers in these

disciplines on applying our data to their problems.
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