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Contact Representation of Graphs

Different contact flavors:
circles, segments, triangles, boxes, ...
point contact vs. side contact
unweighted vs. weighted
rectilinear vs. many slopes
convex regions vs. arbitrary
with holes vs. without holes
2D, 3D
...



Contact Representations

vertices: polygons
edges: non-trivial borders
parameters: complexity, convexity, holes

vertex weight⇒ area of polygon



Proportional Contact Representations

vertices: polygons
edges: non-trivial borders
parameters: complexity, convexity, holes
vertex weight⇒ area of polygon



Rectilinear Contact Representations
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rectilinear polygons, side-contacts, hole-free
unweighted representation: a.k.a. rectilinear dual



Rectilinear Proportional Representations
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rectilinear polygons, side-contacts, hole-free
proportional representation: a.k.a. rectilinear cartogram



Contact Representation Problem

Goal: represent the graph with simple polygons

Minimize polygonal complexity
Minimize holes (unused areas)
Use convex polygons (when possible)
Realize the given weights by areas
(value-by-area representation)
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Motivation

Architectural Floorplanning

room topology: graph
pre-specified room areas
land management



Motivation cont.

VLSI Layout

VLSI modules: polygons
connections: adjacencies
module sizes: areas



Motivation cont.

Data Representation

Redrawing of
geographic maps
Population
cartograms



Related Work

contact with circles [Koebe, 1936]
contact with triangles [de Fraysseix et al., 1994]
contact with 3D cubes [Felsner and Francis, 2011].



Related Work cont.

Point contact representation of both the primal and the dual
graph with triangles [ Gonçalves et al. 2010].



Related Work cont.

Rectilinear Duals: Eight-sided rectilinear polygons are always
sufficient and sometimes necessary for maximal planar graphs
[Yeap and Sarrafzadeh 1993, He 1999, Liao et al., 2003].



Related Work cont.

Rectilinear Duals: Rectangles are sufficient for 4-connected
maximal planar graphs [Ungar 1953, Kozminski and Kinnen
1985, Kant and He, 1997]



Related Work cont.

Rectilinear Cartograms

Lower bound on the complexity is 8, even for the
unweighted case [Yeap and Sarrafzadeh, 1993]
Upper bound on the polygonal complexity:

– from the initial 40 [de Berg et al. 2006]
– to 34 [Kawaguchi and Nagamochi, 2007]
– to 12 by [Biedl and Velázquez, 2011]

– to 10 [Alam et al., ISAAC’11]
– to 8 [Alam et al., SoCG’12]
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Related Work cont.
Connections...

The edges of any maximal planar graph can be partitioned
into 3 edge-disjoint spanning trees [Nash 1961, Tutte 1961]

Schnyder realizer was defined and used for straight-line
drawing [Schnyder 1990]
Canonical order defined and used for straight-line drawing
[de Fraysseix, Pach and Pollack 1990]
Relations between canonical order, Schnyder realizer used
to prove various results [de Fraysseix, Kant, He, Felsner,
Fusy, Ueckerdt,...]
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Canonical Order

Ordering of the vertices
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Schnyder Realizer

partition of the internal edges into three spanning trees
every vertex has out-degree exactly one in T1, T2 and T3

vertex rule: ccw order of edges: entering T1, leaving T2,
entering T3, leaving T1, entering T2, leaving T3
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Schnyder Realizer cont.
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From Canonical Order to Schnyder Realizer

When a new vertex is inserted in the canonical order:

leftmost edge is outgoing blue
rightmost edge is outgoing green
remaining (0 or more edges) incoming red
(it gets its outgoing red when it is “closed off”)
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Outerplanar: Contact Representation
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[Kobourov et al. GD 2010]
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Outerplanar: Proportional Contact Representation

OP graphs are T3G’s; proportional OP graphs are T4Gs
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Contact Representation of Maximal Planar Graphs
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Lower Bound

We showed how to do it with 6 sides; 6 is also necessary:

add a vertex in each internal face and triangulate
“how can it be otherwise” argument follows...
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Cartograms for Maximal Planar Graphs

Left Box
Right Box

Base

S
tu

m
p

Union of 4 rectangles: base, stump, left box, right box.

red outgoing adjacency through top of stump
blue outgoing adjacency through left of base
green outgoing adjacency through right of base
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Cartograms for Maximal Planar Graphs

rectangular Layout and each segment is “one-sided”
can realize any specified set of areas for the rectangles
[Alam et al. SoCG 2012]
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Matching Lower Bound

Lower bound on the complexity for a maximal planar graph
is 8 [Yeap and Sarrafzadeh, 1993].

So our 8-sided result is optimal in terms of complexity
However, we don’t have a polynomial time algorithm!
(We do have a linear-time Algorithm for complexity 10)
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Stack blocks for vertices in order of the Hamiltonian cycle

Extend “arms” left and right to reach neighbors
Horizontal sweep line pass to realize correct areas
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Lower Bound for Hamiltonian Graphs

Complexity 8 is sometimes necessary:

Optimal polygonal complexity 8, optimal O(n) time computation
[Alam et al. SoCG 2012]
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Algorithm for Planar 3-Trees

Planar 3-trees: either a 3-cyle or a planar graph G with vertex
v , s.t., deg(v) = 3 and G − v is a planar 3-tree

proportional rectilinear 8-sided representation

linear time exact computation for max planar 3-trees

Matches lower bound complexity of 8
Optimal polygonal complexity 8, optimal O(n) time
computation [Alam et al. ISAAC 2011]
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Summary of Results: Contact Representations

For side contact representation, without weights
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Summary of Results: Rectilinear Representations
For rectilinear proportional side contact representation:

Class of Graphs LB UB Time
Maximal Planar Graphs [8] 8∗ ?
Maximal Planar Graphs [8] 10∗ O(n)

Planar 3-Trees 8 8 O(n)
Hamiltonian Max-Planar Graphs 8 8 O(n)

Maximal Outerplanar Graphs 4/6∗∗ 4/6∗∗ O(n)

∗ Existential proof for 8, linear-time algorithm for 10.
∗∗ Complexity 6 if representation fits into a rectangle; else 4.
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Contacts in 3D

A planar graph has a representation using axis-parallel
boxes in 3D, where two boxes have a non-empty
intersection iff their corresponding vertices are adjacent. It
holds with contacts rather than intersections.
[Thomassen 1986]
A planar graph has a representation using axis-parallel
cubes in 3D, where two boxes touch iff their corresponding
vertices are adjacent.
[Felsner and Francis 2011]



More 3D Results

We study proper contact representations by boxes:
generalization from 2D side contact to 3D face contact where
touching cubes have non-trivial-area face overlap

Deciding unit cube proper contact is NP-Complete
Planar 3-trees have proper cube contact representation
Two new proofs of Thomassen’s proper box contact

[Bremner, Evans, Frati, Heyer, K., Lenhart, Liotta, Rappaport,
Whitesides, GD’2012]



Box Representation via FPP

Theorem
(Thomassen) Planar graphs have touching boxes contact
representation.
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Cube Representation for Planar 3-Trees

Theorem
Every (partial) planar 3-tree has a proper contact
representation by cubes.

Recall planar 3-trees: either a 3-cycle or a planar graph G with
vertex v , s.t., deg(v) = 3 and G − v is a planar 3-tree
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Unit Cube Graphs

Grid graphs can be represented by unit cubes:
square, triangle, pentagonal, hexagonal, parabolic
Not clear for subgraphs thereof...
Deciding unit cube proper contact is NP-Complete:
logic engine reduction [Eades and Whitesides 1996]
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Proportional Box Representation
Two straightforward theorems:

Theorem
Every internally triangulated 4-connected planar graph has a
proper proportional contact representation with boxes.

Use 2D rectangle contact rep.; “grow” in 3D to get volumes.

Theorem
Every (partial) planar 3-tree has a proper proportional contact
representation with boxes.



Proportional Box Representation

Theorem
Every (partial) planar 3-tree has a proper proportional contact
representation with boxes.

Proof.
– compute representative tree T for G (aka 4-block tree)
– Uv : the set of the descendants of v in TG including v .
– predecessors of v are NG(v) that are not in Uv

– scale weights so that w(v) ≥ 1 ∀v ∈ G
– let v1, v2 and v3 be the three children of v in TG

– define W (v) = Π3
i=1[W (vi) + 3

√
w(v)]

– compute bottom up



Future Work and Open Problems

Contact Representations
recognition algorithms
characterizations
3D proper cube contact

Proportional contact representations
polytime T8G algorithm?
4-connected planar graphs: T6G or T8G?
3D proper proportional box contact

Tradeoffs
complexity vs convexity
complexity vs holes
overall vs max complexity
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Thanks!

D. Knuth
Graph drawing is the best possible field I can think of. It merges
aesthetics, mathematical beauty and wonderful algorithms. It
therefore provides a harmonic balance between the left and
right brain parts.



Segment Contact Graphs

Planar bipartite graphs (axis-aligned segments)
[de Fraysseix, de Mendez, Pach 1991]
Four-connected 3-colorable planar graphs
[de Fraysseix, de Mendez 2007]
Triangle-free planar graphs (only three slopes)
[Castro et al. 2002]
Planar Laman graphs (arbitrary number of slopes)
[Alam, Biedl, Felsner, Kaufmann, K., GD’11]



Laman Graphs

Laman graphs: n-vertex connected graph with 2n − 3 edges
and every k -vertex subgraph has at most 2k − 3 edges.

minimally rigid; not all planar
mechanics, robotics, chemistry

Planar Laman graphs
series-parallel graphs, outer-planar graphs, planar 2-trees
graphs that can be drawn as pointed pseudotriangulations
[Rote et al. 2005]



Henneberg Construction

Laman and planar Laman graphs can be labeled v1, v2, . . . vn
such that G3 is a triangle and from Gi−1 we obtain Gi via two
operation (aka, Henneberg construction):

let x , y ∈ Gi−1: add vi together with the edges (vi , x) and
(vi , y).
let (x , y) ∈ Gi−1 and z ∈ Gi−1: remove (x , y) and add vi
together with the three edges (vi , x), (vi , y), and (vi , z).

vi

x

y

vi+1

x y

z



Laman Graphs and Tree Cover

recall, maximally planar graphs can be decomposed into 3
edge-disjoint spanning trees (|V | = n, |E | = 3n − 6)
planar Laman graphs can be decomposed into 2
edge-disjoint spanning trees (|V | = n, |E | = 2n − 3)



Angle Labeling

Planar Laman Graphs have an angle labeling such that:
Vertex rule: Around v 6= v1, v2 we have: exactly one angle
labeled 3, zero or more angles labeled 2, exactly one angle
labeled 4, zero or more angles labeled 1. All angles at v1 are
labeled 1, all angles at v2 are labeled 2.
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Face rule: Around every face we have exactly one angle
labeled 1, zero or more angles labeled 3, exactly one angle
labeled 2, zero or more angles labeled 4.



Edge Labeling

Planar Laman Graphs have an edge labeling such that:
Vertex rule: Around v 6= v1, v2, we have: exactly one outgoing
red edge, zero or more incoming blue edges, zero or more
incoming red edges, exactly one outgoing blue edge, zero or
more incoming red edges, and zero or more incoming blue
edges. At v1: incoming and red; at v2 incoming and blue.
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2
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Face rule: For every inner face f there exist red sink r and a
blue sink b: every red edge on f is directed from b towards r ,
and every blue edge is directed from r towards b.



Computing the Edge Labeling

Theorem
Given n-vertex planar Laman graph G, a red-blue edge labeling
can be computed in O(n2) time.

Proof.
Compute angle graph AG (vertices and faces become vertices,
edges b/n adjacent face-vertex pairs). Then extract an angular
tree T from AG.
An angular tree of a 2-connected plane graph G with special
edge (v1, v2) is a set T of edges of AG such that:
Vertex rule: Every vertex v 6= {v1, v2} of G has exactly 2
incident edges in T .
Face rule: Every face of G has exactly 2 incident edges not in
T .



Computing the Edge Labeling, cont.

Proof.
Build Laman graph G and angular tree T simultaneously,
following the Henneberg construction. The Laman construction
requires O(n2) using [Bereg, SoCG 2005] and angular tree can
also be constructed without adding much to the complexity.
Use angular tree T to compute angle labeling and red-blue
edge labeling for G.



Red-Blue Laman Realizer

Theorem
A red-blue edge labeling (Er ,Eb) of a 2-connected plane graph
G has the following two properties:

1 The graph Er ∪ E−1
b (Eb ∪ E−1

r ) is acyclic;
2 The graph Er (Eb) is a spanning tree of G \ {v2} (G \ {v1})

with all edges directed towards v1 (v2).

Use combinatorial structures to do some geometry...
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L-Contact Graphs

Definition
A graph G is an L-contact graph if there exist non-crossing
L-shapes L(v) for each v ∈ V , such that L(u) and L(v) make
contact if and only if (u, v) ∈ E .

match edges of L-contact graphs to endpoints of L-shapes.
extreme endpoints (N,E,S,W) cannot correspond to edges.

III

III IV

L1

L2

L3

L4

⊕⊕	⊕

		 ⊕	

(a) L types (b) valid contacts (c) invalid contacts



L-Contact Graphs

Definition
An L-contact representation is maximal if every non-extreme
endpoint makes a contact, and there are at most three
endpoints that do not make a contact.
A maximal L-contact representation is proper if every inner face
contains the right angle of exactly one L. An L-contact graph is
proper if it has a proper L-contact representation.



Characterization of L-Contact Graphs

Theorem
Plane Laman graphs are precisely proper L-contact graphs.

Proof.
construct the angular tree
use it to construct angle labeling
use that to construct edge labeling
assign type to each vertex (I, II, III, IV)
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Creating L-Contact Graphs

Theorem
An L-contact representation of a n-vertex planar Laman graph
G can be computed on an n × n grid in O(n2) time, where n is
the number of vertices of G.

[Kobourov et al., SODA’13]
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