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Abstract. We present an O(n) time algorithm for simultaneous embedding of pairs
of planar graphs on the O(n2)×O(n2) grid, with at most three bends per edge, where
n is the number of vertices. For the case when the input graphs are are both trees,
only one bend per edge is required. We also describe an O(n) time algorithm for
simultaneous embedding with fixed-edges for tree-path pairs on the O(n) × O(n2)
grid with at most one bend per tree-edge and no bends along path edges.

1 Introduction

Traditional problems in graph drawing involve the layout of a single graph. Problems in
simultaneous graph drawing, involve the layout of multiple related graphs. Visualization
of multiple related graphs, that is, graphs that are defined on the same set of vertices,
arise in many applications. Software engineering, databases, and social network analysis,
are all examples of areas where multiple relationships on the same set of objects are of-
ten studied. In evolutionary biology, philogenetic trees are used to visualize the ancestral
relationship among groups of species. Depending on the assumptions made, different algo-
rithms produce different philogenetic trees. Comparing the outputs and determining the
most likely evolutionary hypothesis can be difficult if the drawings of the trees are laid out
independently of each other.

Consider the case where a pair of related graphs is given and the goal is to visualize them
so as to compare the two. If drawings for the two graphs are obtained independently, there
would be little correspondence between the two layouts, since the viewer has no “mental
map” between the two graphs. When examining a graph the user constructs a mental view
of it, for example, using the positions of the vertices relative to each other. When viewing
multiple graphs the user has to reconstruct this mental view after examining each graph
and our goal should be to aid the user in this reconstruction while providing a readable
drawing for each graph individually.

In simultaneous graph embedding, the vertices are placed in the exact same locations
in all the graphs. Fixing the vertex positions in all the graphs preserves the mental map,
but at the expense of readability of the individual drawings, if edges are to be drawn with
straight-line segments. With this in mind, in this paper we consider the problem of drawing
planar graphs on the same point-set using few bends. We describe efficient algorithms for
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simultaneous drawing of pairs of general planar graphs on small integer grids. We also
describe better results for pairs of trees or tree-path pairs.

1.1 Previous Work

The existence of simultaneous geometric embeddings for pairs of paths, cycles, and cater-
pillars is shown in [3]. Counter-examples for pairs of general planar graphs, pairs of outer-
planar graphs, and triples of paths are also presented there. Modified force-directed al-
gorithms are used in [1, 9] to simultaneously visualize general graphs, while attempting
to preserve the user’s mental map and obtaining readable individual drawings. Dynamic
graph drawing techniques address some of the problems that arise in simultaneous graph
drawing [2, 14, 20].

Another related problem is the problem of graph thickness [13], defined as the minimum
number of planar subgraphs into which the edges of the graph can be partitioned into.
If a graph has thickness two then it can be drawn on two layers such that each layer
is crossing-free and the corresponding vertices of different layers are placed in the same
locations. Geometric thickness is a version of the thickness problem where the edges are
required to be straight-line segments [7]. Thus, if two graphs have a simultaneous geometric
embedding, then their union has geometric thickness two. Similarly, the union of any two
planar graphs has graph thickness two. Simultaneous geometric embedding techniques are
used in [8] to show that degree-four graphs have geometric thickness two.

The existence of straight-line, crossing-free drawings for planar graphs has been known
shown in [10, 17, 19]. These results are extended in [18] where it is shown that every 3-
connected planar graph has a convex drawing. These techniques, however, do not guarantee
anything about the resolution of the drawing and thus are not well-suited for automated
graph drawing. The vertex resolution problem is addressed in [6, 16] where it is shown
that any planar graph can be drawn with straight-lines and no crossings on a grid of size
O(n) × O(n).

Simultaneous drawing of multiple graphs is also related to the problem of embedding
planar graphs on a fixed set of points in the plane. Several variations of this problem have
been studied. If the mapping between the vertices V and the points P is not fixed, then the
graph can be drawn without crossings using two bends per edge in polynomial time [12].
However, if the mapping between V and P is fixed, then O(n) bends per edge are necessary
to guarantee planarity, where n is the number of vertices in the graph [15].

1.2 Our Results

Formally, the drawing D of a graph G = (V, E) is a function that maps each vertex u ∈ V
to a distinct point D(u) in the plane, and each edge (u, v) ∈ E to a simple Jordan curve
D(u, v) with endpoints D(u) and D(v). The problem of simultaneously embedding two
planar graphs G1 and G2 is the problem of finding drawings D1, and D2 with corresponding
vertices of G1 and G2 mapped to the same points in the plane. The following are three
variations of the simultaneous embedding problem for pairs of planar graphs:

Definition 1. Given two planar graphs G1 = (V, E1) and G2 = (V, E2) simultaneous
geometric embedding of G1 and G2 is the problem of finding plane straight-line drawings
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D1 and D2 of G1 and G2, respectively, such that every vertex is mapped to the same point
in the plane in both in D1 and D2.

Definition 2. Given two planar graphs G1 = (V, E1) and G2 = (V, E2) simultaneous
embedding of G1 and G2 with fixed edges is the problem of finding plane drawings D1 and
D2 of G1 and G2, respectively, such that every vertex is mapped to the same point in the
plane in both in D1 and D2 and every shared edge e ∈ G1 ∩ G2 is represented with the
same simple open Jordan curve in D1 and D2.

Definition 3. Given two planar graphs G1 = (V, E1) and G2 = (V, E2) simultaneous
embedding of G1 and G2 is the problem of finding plane drawings D1 and D2 of G1 and
G2, respectively, such that every vertex is mapped to the same point in the plane in both
in D1 and D2.

The definitions are inclusive in the given order: simultaneous geometric embedding is a
special case of simultaneous embedding with fixed edges, which is in turn a special case of
simultaneous embedding.

In Section 2 we present a simple non-existence proof for simultaneous geometric em-
bedding of a pair of graphs. Next, we present an O(n) time algorithm for simultaneous
embedding of pairs of planar graphs on the O(n2) ×O(n2) grid, with at most three bends
per edge, where n is the number of vertices. For the case when the input graphs are both
trees, we only need one bend per edge. We also describe an O(n) time algorithm for simul-
taneous embedding with fixed-edges for tree-path pairs on the O(n) × O(n2) grid with at
most one bend per tree-edge and no bends along the path edges. In Section 3 we briefly
describe the implementation of these algorithms, show some of the resulting layouts, and
conclude with several open problems.

2 Simultaneous Embedding

Simultaneous geometric embeddings are easy to find on small integer grids for pairs of paths,
pairs of cycles, pairs of caterpillars, etc. For pairs of general planar graphs, and even for
pairs of outer-planar graphs, simultaneous geometric embeddings do not always exist. This
is the main motivation for relaxing the conditions of simultaneous geometric embeddings,
to just simultaneous embedding, by dropping the straight-line edge constraint. Under these
weaker constraints, we can obtain simultaneous drawings with few bends per edge. Such
drawings are also useful for pairs of trees, as it is not known whether simultaneous geometric
embedding of pairs of trees is always possible.

2.1 Simultaneous Geometric Embedding

Here we briefly describe a simple case of a pair of planar graphs that do not admit simul-
taneous geometric embedding.

Theorem 1. There exists a planar graph G and a path P such that there is no simultaneous
geometric embedding of G and P .
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Fig. 1. A Planar graph G and a path P that do not allow a simultaneous geometric embedding.

Proof Sketch: Consider graph G and path P as shown in Fig. 1. Let G′ be the subgraph
of G induced on vertices {1, 2, 3, 4, 5}, and G′′ be the subgraph of G induced on vertices
{2, 6, 7, 8, 9}. Since G is 3-connected fixing the outer-face fixes an embedding for G. With
the given outer-face of G, the path P contains two crossings: one involving (2, 4), and the
other one involving (6, 8). Graph G′ has six faces and unless we change the outer-face of
G′ such that it contains the edge (1, 3) or (3, 5), the edge (2, 4) is involved in a crossing
in the path. Similarly for G′′, unless we change its outer-face such that it contains (2, 7)
or (7, 9), the edge (6, 8) is involved in a crossing in the path. However G′ and G′′ do not
share any faces and removing both crossings depends on taking two different outer-faces,
which is impossible. Thus, regardless of the choice for the outer-face of G, path P contains
a crossing. ut

2.2 Relaxing the Constraints

While some classes of planar graphs allow simultaneous geometric embedding, there are
other classes that do not, and still others for which it is not know whether simultaneous
geometric embeddings exist. Since latter two categories contain a great number of planar
graph classes (trees, outer-planar graphs, general planar graphs), it is natural to look for
simultaneous drawings with weaker constraints. One possible solution for larger classes of
graphs is to relax the constraints on the edges. Instead of restricting the edges to be straight-
line segments we allow each edge to be drawn as a sequence of straight-line segments.
Recall that such embeddings are called simultaneous embeddings (rather than simultaneous
geometric embeddings).

Note that it is trivial to find a simultaneous embedding of any two planar graphs, if
we are willing to accept a large number of bends per edge. Given a point-set P of size n
in the plane and a planar graph G with n vertices, together with a one-to-one mapping
between the vertices of G and the points in P , we can find crossing-free drawing of G
on P using edges with bends [15]. This allows us to embed any number of planar graphs
simultaneously. However, the resulting drawings contain O(n) bends per edge. Next, we
describe methods to simultaneously embed any two planar graphs so that each edge has
at most three bends.
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Fig. 2. (a) H1 and H2 drawn simultaneously. (b) Only the edges of G1 are shown. The edges inside
the hamiltonian cycle H1 have the same slope as the outermost edge and go inside the cycle. Similarly
the edges outside the cycle in the embedding are drawn outside the cycle.

2.3 Simultaneous Embedding with Few Bends

Since in this version of the problem we no longer insist on straight-line edges, the problem
of simultaneously embedding two graphs boils down to finding a point-set in the plane and
a mapping between the vertices of graphs and the points, with as few bends per edge as
possible. The following theorem summarizes our results for pairs of general planar graphs.

Theorem 2. Given two planar graphs G1 and G2 and a mapping between their vertices,
we can simultaneously embed G1 and G2 using at most three bends per edge. The resulting
drawing requires an integer grid of size O(n2)×O(n2) such that each vertex is placed on a
grid point, and the algorithm requires O(n) time, where n is the number of vertices.

Proof Sketch:
Vertex Placement: We make use of two techniques described in [3, 12]. Initially, we

assume the graphs are 4-connected. We show how to remove this assumption later in the
proof. First we find a hamiltonian cycle H1 of G1 and a hamiltonian cycle H2 of G2. We
can do this in linear time using the algorithm of [5]. Starting at a random vertex in H1

we traverse its vertices, assigning increasing x–coordinates to each vertex visited. Starting
at a random vertex in H2 we traverse its vertices, assigning increasing y–coordinates to
each vertex visited. Not considering the final edges enclosing the cycles, this gives us an
x–monotone path for H1 and a y–monotone path for H2; see Fig. 2(a).
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Fig. 3. (a) Removing separating triangles. (a) Edge e is part of the separating triangle (u, v, w). The
two faces containing e are (u, v, s) and (u, v, t). (b) The separating triangle is removed by deleting e,
introducing z and connecting it to u, v, s, and t.

Since both paths are monotone the edges of the paths are crossing-free. Let δ be the
largest slope of the edges on the path defined by H1. We complete the drawing of the cycle
H1 by drawing the final edge between the leftmost vertex and the rightmost vertex. It is
drawn with two segments such that the slope of the initial segment starting at the leftmost
vertex is δ′ and the slope of the second segment ending at the rightmost vertex is −δ′,
where δ′ is slightly larger than δ. Since G1 is hamiltonian, the cycle H1 divides the edges
into two groups: insides and outside edges (with respect to H1). Then each of the inside
edges is drawn with two line segments with slopes δ′ and −δ′ on the inside of H1. Similarly,
the outside edges are drawn with the same slopes on the outside of H1; see Fig. 2(b).

The edges of G2 are handled in the same way with respect to H2. It is easy to see that
the vertex set requires grid size n×n. The overall area of the drawing is larger, as the bend
points lie outside the original grid. It is easy to show, however, that the entire drawing fits
inside a O(n2) × O(n2) grid.

Making the Graphs 4-connected: For the case when the input graphs are not 4-connected,
we use techniques introduced in [12] to augment them. Given a 3-connected planar graph G
we create a 4-connected planar graph by introducing new vertices. This is done by removing
all the separating triangles in G. A separating triangle is a cycle of length 3 such that the
removal of the vertices of the cycle disconnects G. Separating triangles of G can be easily
found by the algorithm of [4]. Let e = (u, v) be an edge of a separating triangle in G such
that e is adjacent to the faces (u, v, s) and (u, v, t); see Fig. 3. We remove the separating
triangle by inserting a dummy vertex z on e, deleting the edge e, and introducing four new
edges: (u, z), (v, z), (s, z), (t, z). The newly introduced vertex z is not part of any separating
triangle, so each time we introduce such a vertex we decrease the number of separating
triangles. Doing the same operation on all the separating triangles gives us a 4-connected
planar graph.

Once G1 and G2 have been augmented to 4-connected graphs, we obtain the hamiltonian
cycles H1 and H2 of G1 and G2. We augment the edges of H2 with the extra vertices
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of G1 and augment the edges of H1 with the extra vertices of G2. The placement of the
hamiltonian cycles and the drawing of the remaining edges is done as before. After finishing
the placement we treat the dummy vertices as bend points and ignore the edges inserted
in the augmentation phase. As a result, an edge e = (u, v) that got split with a dummy
vertex z ends up having three bend points: one between u and z, one at the location of z,
and finally one between v and z. As there are O(n) dummy vertices, the bounds for the
integer grid remain unchanged.

Running Time: The two non-trivial operations are finding the separating triangles and
finding the hamiltonian cycles. Finding the separating triangles and making the graphs
4-connected takes linear time [4]. A Hamiltonian cycle in a 4-connected planar graphs can
be found in linear time [5]. ut

The corollary below follows from the above theorem by fixing the slopes of all the edges
and refining the grid.

Corollary 1. Given two planar graphs G1 and G2 and a mapping between their vertices,
we can simultaneously embed G1 and G2 using at most three bends per edge on an integer
grid of size O(n3) × O(n3), with all the vertices and bend-points at grid-points.

Proof Sketch: Consider the original n × n grid where H1 and H2 are placed. Let the
slope δ = 1/n, where δ and −δ are the slopes of all edge segments along edges drawn with
bends. Let e = (u, v) ∈ G1 such that u is placed to the left of v and e is drawn with a bend
point p. Let xdist, ydist be the x-coordinate and y-coordinate distances between u and v.
The x-coordinate distance between u and the point p is (n × xdist − ydist)/2n. If we place
a 2n × 2n grid inside each unit square of the original grid, then the x-coordinate distance
between u and p is an integer. Since the slope of the segment |up| is 1/n, the y-coordinate
distance between u and p is also an integer, and p is on a grid point. Similar argument
applies to the edges of G2 as well. The final grid area is O(n3) × O(n3). ut

If both input graphs are trees then it is easy to reduce the number of bends required to
only one per edge. The Theorem below follows from Theorem 2 and the above corollary.

Theorem 3. Given two trees T1 and T2 and a mapping between their vertices, they can
be simultaneously embedded in linear time, using at most one bend per edge, on an integer
grid of size O(n2) × O(n2) (or O(n3) × O(n3), if both the vertices and bend-points are on
grid points).

2.4 Simultaneous Embedding with Fixed Edges

Note that although the algorithm of the previous section simultaneously embeds two planar
graphs with the corresponding vertices mapped on the same positions (preserves the mental
map for the vertex set), there is a significant drawback in terms of the mental map of the
edges. In particular, edges common to both graphs are drawn differently in the two drawings
unless they happen to be on the paths defined by the hamiltonian cycles. Simultaneous
embedding with fixed edges, requires that shared edges be represented the same way in
both drawings. We describe an algorithm for simultaneous embedding with fixed edges for
a tree and a path below.
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Fig. 4. Constructing the hamiltonian cycle HT from H1 and H2. The common edges are shown in red.

Theorem 4. Given a tree T , a path P , and a mapping between their vertices they can be
simultaneously embed with fixed edges in linear time, using at most two bends per edge, on
an integer grid of size O(n)×O(n2) (or O(n2)×O(n3), if both the vertices and bend-points
are on the grid).

Proof Sketch: The main idea is the same as than in Theorem 2, except that we ensure
that the edges common to both T and P are in the hamiltonian cycle for the tree. Then the
path and the hamiltonian cycle (minus an edge) have a simultaneous geometric embedding.
The rest of the tree edges are routed as before, thus yielding a simultaneous embedding
with fixed edges for T and P .

Let ET,P be the set of edges common to both T and P . In order to obtain a hamiltonian
cycle for the tree T we augment it with edges until the resulting graph T ′ has a hamiltonian
cycle HT that contains all edges that are in common with the path. We use a recursive
divide-and-conquer procedure to construct HT : the input to the recursive call is a subtree
T and the output is the hamiltonian cycle HT and the modified graph T ′.

The base case for the recursion is a tree with just one node, T = {u}. In this case, let
HT = (u, u), and T ′ = T . For all other cases, we take an edge e = (u, v) ∈ ET,P from T if
such an edge exists. If not we take an arbitrary edge e = (u, v) ∈ T . Let T1, T2 be the two
trees obtained after the removal of e from T . Assume we can construct hamiltonian cycles
H1, and H2 of T1 and T2, respectively. Let T ′

1
and T ′

2
be the graphs that we get after these

constructions, corresponding to T1 and T2, respectively. We merge the two subtrees into
the tree T ′ = T ′

1
∪ T ′

2
by adding e to T ′.

In order to combine the hamiltonian cycles of the two subgraphs into a hamiltonian
cycle for union, we need to add one more edge between the two subgraphs (as the edge e
is a bridge). We add an edge between a neighbor unew of u to a neighbor vnew of v and
combine the two cycles by dropping the edges (u, unew) and (v, vnew).

Let H1 = (u, w1, w2, . . . , wn, u) and H2 = (v, w′

1
, w′

2
, . . . , w′

m, v). If T ′

1
has only one

vertex u we assign unew = u, and if it has two vertices u and u′ we assign unew = u′. We
do similar assignments for vnew if T ′

2
has one or two vertices. In order to find unew, vnew

for all other cases, we check the first and the last edges of the hamiltonian cycles.
Since P is a path, either (u, w1) /∈ ET,P , or (u, wn) /∈ ET,P (otherwise, vertex u must

have degree greater than 2 in the path). Without loss of generality, assume (u, w1) /∈
ET,P . We assign unew = w1. The same holds for H2, that is, either (v, w′

1
) /∈ ET,P or
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(v, w′

m) /∈ ET,P . Without loss of generality, assume (v, w′

1
) /∈ ET,P . We assign vnew = w′

1
.

We insert edge (unew, vnew) in T ′, if e 6= (unew, vnew). The new hamiltonian cycle becomes,
HT = (u, v, w′

m, w′

m−1
, . . . , w′

1
, w1, w2, . . . , wn, u); see Fig. 4.

Planarity: The above recursive procedure augments the tree T to a graph T ′ that has
a hamiltonian cycle which contains all the edges that T has in common with the path P .
We still need to show that the resulting graph T ′ is planar. Recall the recursive procedure
above and let us assume that T ′

1
and T ′

2
are planar. Then there exists a planar embedding

for T ′

1
so that the edge (u, w1) is on the outer-face and a planar embedding for T ′

2
so that

the edge (v, w′

1
) is on the outer-face. Since all the vertices u, w1, v, w′

1
are on the outer-faces

of their graphs, the inserted edges (u, v) and (w1, w
′

1
) do not have any crossings with the

edges of T ′

1
and T ′

2
. The resulting graph T ′ is planar, and the resulting embedding is a

planar embedding.

Running Time: We only need to show that the hamiltonian cycle construction takes
linear time, since the rest of the algorithm is the same as the one described in the previous
section. Note that we do not have to explicitly find planar embeddings of T ′

1
and T ′

2
at

each level of the recursion. The planar embedding of the final graph T ′ suffices. We can
find the planar embedding of T ′ in linear time[11]. The merging of the two hamiltonian
cycles requires constant number of operations at each recursive step and thus the overall
running time of the algorithm is O(n). ut

3 Conclusion and Future Work

We implemented the algorithms described above using the LEDA library in C++. Fig. 5 and
Fig. 6 show some of the resulting layouts for a path and tree and two trees, respectively.

All of the algorithms in this paper rely on the approach of augmenting planar graphs
to hamiltonian planar graphs, so as to obtain simultaneous embeddings and simultaneous
embeddings with fixed edges, using one, two, or three bends. However, for simultaneous
embedding with fixed edges, this technique cannot be extended from path and tree case to
pairs of trees (and hence cannot be extended to larger classes of planar graphs). It is easy
to see that two arbitrary trees cannot always be augmented to graphs with hamiltonian
cycles that contain all the common edges.

We do not know of an algorithm to simultaneously embed with fixed edges pairs of
trees. Neither do we have a counter-example. Similarly, the more restrictive problem of
simultaneous geometric embeddings of pairs of trees is still open.
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Fig. 5. A simultaneous embedding with fixed edges for a tree and a path. The path (0, 1, . . . , 10) is
shown on the top left. The tree is shown on the bottom left. Note that the path and the tree share
the edge (0,1). The combined view of the tree and the path is shown on the right.
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Fig. 6. A simultaneous embedding for two trees.
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