
A System for Graph-Based Visualization of the Evolution of Software

Christian Collberg1∗ Stephen Kobourov1† Jasvir Nagra2‡ Jacob Pitts1 Kevin Wampler1†

1 Department of Computer Science,

University of Arizona, Tucson, AZ 85721.

{collberg,kobourov,jpitts,wamplerk}@cs.arizona.edu
2 Department of Computer Science,

University of Auckland, Auckland, New Zealand.

jas@cs.auckland.ac.nz

Abstract

We describe Gevol, a system that visualizes the evolution
of software using a novel graph drawing technique for visu-
alization of large graphs with temporal component. Gevol

extracts information about a Java program stored within a
CVS version control system and displays it using a tempo-
ral graph visualizer. This information can be used by pro-
grammers to understand the evolution of a legacy program:
Why is the program structured the way it is? Which pro-
grammers were responsible for which parts of the program
during which time periods? Which parts of the program ap-
pear unstable over long periods of time and may need to be
rewritten? This type of information will complement that
produced by more static tools such as source code browsers,
slicers, and static analyzers.

1 Introduction

There are many situations when a programmer is faced with
having to learn and understand an existing large and com-
plex software system. Consider, for example, the following
scenarios where Bob is a programmer and P is a large legacy
program:

• Bob is asked to add new functionality to P ;

• Bob is asked to fix bugs in P ;

• Bob is asked to determine whether algorithms exist in
P that violate intellectual property rights;

• Bob is asked to rewrite P in a new programming lan-
guage;

∗Partially supported by the NSF under grant CCR-0073483 and

by the AFRL under contract F33615-02-C-1146.
†Partially supported by the NSF under grant ACR-0222920.
‡Partially supported by the New Economy Research Fund of New

Zealand.

• Bob is asked to port P to a new operating system or
architecture.

In many cases Bob will find that the program is undocu-
mented, unstructured, and poorly written. Worse, the orig-
inal developers may not be available to explain how the sys-
tem works. Before he can start modifying the program he
therefore needs to build a mental model of its structure. To
aid in this discovery process he can run the program, exam-
ine the source code, and read any available documentation.
Various tools such as source code browsers and static ana-
lyzers may be helpful in this respect.

In this paper we will describe a new tool — Gevol —
that aid in the discovery of the structure of legacy systems.
Gevol discovers the evolution of a program by visualizing
the changes the system has gone through. In particular,
Gevol extracts information about Java programs that are
stored within a CVS version control system. It then extracts
inheritance graphs, call graphs, and control-flow graphs of
the program and displays the changes the graphs have gone
through since the inception of the program. Gevol allows
Bob to visualize

• when particular parts of the program were first created;

• during which periods which parts of the program were
most heavily modified;

• which parts of the program seem to have been unstable
for a long period of time and therefore may be in need
of being rewritten;

• which programmers have modified which parts of the
code when;

• which parts of the program have grown in complexity
over a long period of time.

Gevol is not intended as a stand-alone system. Rather,
our ultimate goal is to integrate it with other tools such

as source code browsers. This will allow a programmer to
examine the source code, control-flow, inheritance structure,
and call structure of a program — as they change over time
— in order to understand every aspect of the system.

Gevol is in active development. We are currently in
the process of integrating several software complexity met-
rics [6,15,16,19,25] within the system. This will allow the
graph visualizations to be driven by how the complexity of
a class or a method is changing over time. Figure 1 shows
an overview of the design of Gevol.

The remainder of this paper is structured as follows. In
Section 2 we present the types of visualizations our system
is capable of. In Section 3 we discuss the Tgrip tempo-
ral graph visualization system on which Gevol is based.
In Section 4 we describe how information is collected from
CVS repositories. In Section 5 we present related work, in
Section 6 we discuss our findings, and in Section 7 we sum-
marize our results.

2 Temporal Visualization Models

We are hoping Gevol will be a useful tool when learning
about a new code-base. Not only will we be able to view
a current snapshot of the code, we will be able to visualize
the entire history of the development process. This may lead
to interesting insights that could not otherwise be gleaned
from examining the mere source.

Our goal is to develop a system that allows the visual-
ization of all evolutionary aspects of a program. We are
therefore extracting all available information from the CVS
repository of a Java program, expressing it as graphs, and
using a temporal graph drawing system to visualize the in-
formation. We are currently extracting the following data:

1. The author of each change of each file.

2. The control-flow graphs of each method in the program.

3. The change in each basic block in the control-flow
graphs.

4. The inheritance graph of the program.

5. The call-graphs of the methods of the program.

6. The time of each change to each file.

Every piece of information is collected for every time-slice.
The temporal granularity is configurable but in our current
system the size of each slice defaults to one day.

This information allows us to visualize the evolution of
a program in several useful ways:

• We color-code nodes depending on how long they have
been unchanged. All nodes start out being red, then
grow paler and paler for every time-slice they have re-
mained unchanged until they are finally drawn a pale
blue. When a node changes again it returns to red and
the process repeats. As the user moves through the
time-slices this will draw his attention to parts of the
system that are in flux at different points in time.

• When the user notices an interesting event (say, a code
segment changing heavily for a long period of time) he
can click on a node to examine the set of authors who
have affected these changes.

• If the user notices that an area of the graph remains
constantly red, but does not grow significantly, this
may mean the area is a site of constant bug fixes and
may need to be redesigned or better tested.

3 Visualization of Large Evolving Graphs

In theory, every problem can be encoded as a graph prob-
lem, by representing the input/output in binary and treat-
ing them as graphs (adjacency matrix or list). In this case,
the problem becomes that of finding the transformation
that takes the input graph into the output graph. While
this approach is not practical in many applications, it does
make sense in visualizing programs, in particular, inheri-
tance graphs, call graphs, and control-flow graphs. Visu-
alizing such graphs can lead to discovery of unsuspected
relationships, patterns, and trends.

In this paper we consider the problem of interactive vi-
sualization of large graphs that have a temporal component.
We develop new techniques, models and algorithms that al-
lowed us to implement a prototype system for interactive vi-
sualization of large temporal graphs arising from large soft-
ware development.

The main algorithmic challenge is to develop techniques,
models, algorithms and data structures for interactive tem-
poral graph visualization. Consider a graph that evolves
through time. The changes in the graph include adding and
removing vertices and adding and removing edges. The vi-
sualization of such data must ensure that:

• the drawing is readable

• the drawing preserves the mental map of the underlying
structure

A readable layout for a graph is one that shows the un-
derlying relationships. For example, if the graph contains a
clique of nodes, we would like these nodes to be uniformly
placed on a sphere and not, say along a straight-line seg-
ment. The mental map of the user is preserved if the same
parts of the graph that appear in different frames remain
in the same position. This is usually too restrictive and in-
stead selected landmarks can be chosen that remain in the
same position while other parts are allowed to deviate from
their previous positions. A naive approach to displaying a
sequence of graphs would be to draw each one from scratch.
If we were to layout each graph independent of the others,
it is unlikely that the mental map will be preserved. Con-
versely, if we were to layout each graph incrementally from
the previous one, we would preserve the mental map but
the quality of the layout will likely suffer dramatically when
global changes are not allowed.

We propose an approach that combines both readabil-
ity and mental map preservation. Let G1, G2, . . . , Gn be
the sequence of graphs that we would like to visualize as a
time-series. Define the aggregate graph, G∗, to be the graph
obtained by adding all the graphs in the sequence. That is,
G∗ is a weighted graph in which a vertex has weight that
corresponds to the number of frames in which the vertex ap-
pears (edge weights are defined analogously). The problem

CVS repository

...

Day 1

Day n

Day 2

view

...

Inheritance
Graph

Call Graph
CFG

CFG

Zoom
Next
Day

Prev
Day

Pan

TGrip Graph Visualizer

Day 2

extract

Day 2

⇒

⇓ check out

⇒

Figure 1: Overview of the Gevol system.

becomes that of finding a readable layout for the aggregate
graph, taking into account the edge and vertex weights and
using the placement of the vertices in each time-frame.

The algorithm used to display the various program struc-
ture graphs is based on GRIP [13,14]. GRIP can layout very
large graphs in reasonable time by computing a hierarchical
filtration of the graph. This set of filtrations of a graph G
forms a sequence {Vn} of subsets of the nodes of G such that
for every Vi, Vj ∈ {Vn}, i < j ⇒ Vi ⊂ Vj . In practice, it is
usually the case that |Vi+1| ≥ 2|Vi|, so a filtration does not
normally contain very many elements. The filtrations are
laid out from smallest to largest (smallest index to largest
index) and the layout of Vi is used to provide an outline of
the layout of Vi+1.

The layout of each filtration proceeds by using an ap-
proach related to the spring-embedder of Eades [10] and the
force-directed method of Kamada and Kawai [17,18]. The
main underlying principle of these methods is that vertices
repel each other, while edges, prevent adjacent vertices from
getting too far from each other. Thus, for a given node v in
G, the displacement of v is calculated by:

~FKK(v) = (1)�
u∈Ni(v)

�
‖p[u] − p[v]‖2

dG(u, v)2 · edgeLen2
− 1 � (p[u] − p[v])

where p[u] is the position of node u, Ni(v) is the the
neighborhood of node v, dG(u, v) is the distance between
nodes u and v in graph G, and edgeLen is the predefined
optimal edge length. In the last level of the filtration a
Fruchterman-Reingold calculation [12] for the force vector
is used:

~Fa,FR =
�

u∈Adj(v)

‖p[u] − p[v]‖2

edgeLen2
(p[u] − p[v]) (2)

~Fr,FR =
�

u∈Ni(v)

s
edgeLen2

‖p[u] − p[v]‖2 (p[v] − p[u]) (3)

The displacement of a node v is then simply ~FFR(v) =
~Fa,FR + ~Fr,FR.

3.1 Dynamic Graph Visualization

GRIP [13,14] is designed to quickly layout graphs with tens
of thousands of vertices without assuming any information
about the underlying graphs. This makes it a good base for
the visualization of graphs that evolve through time. How-
ever, before we can employ the aggregate-graph approach
to GRIP, we need to modify it so that attributes such as
weights on the nodes or edges of a graph are taken into ac-
count. To accommodate the kinds of information which is of-
ten of interest in software visualization, GRIP was extended
to support two additional attributes: weights of nodes and
of edges, and time-slice information. The meaning of the
weight information is self-evident, and a time-slice is a label
associated with each node representing which snapshot of
the state of the system being analyzed the node is in. A dy-
namic graph will then consist of a series of time-slices, each
of which is a graph representing the state of the system at
a given point in time. Edges can be arranged between the

Figure 2: Snapshot of the Gevol system viewing SandMark’s inheritance graph. A subset of the classes have been labelled.

time-slices in various ways depenging on what properties we
are interested in.

3.2 Node and Edge Weights

Modification to the forces that act on the nodes were made
to accommodate weights and achieve the following goals:

1. Two nodes connected by an edge of weight 0 should
behave as if not connected by an edge at all;

2. An edge connecting two nodes, each of weight zero,
should have a natural length of zero;

3. Heavy nodes should be placed further apart;

4. Heavy edges should be shorter;

5. If an edge of weight w connects two nodes of weight w,
the edge’s ideal length should be the same as an edge
of weight 1 connecting two nodes of weight 1, but the
larger the w, the stronger the connection should be.

Given these considerations, an edge, e of weight we con-
necting nodes u, v of weight wu, wv, respectively, is given an
ideal length of:

√
wu · wv

we

(4)

This formula will lead to a division by zero if we = 0. The
resulting infinite distance is indeed the correct ideal distance
for the Fruchterman-Reingold force based calculations, since
two disconnected nodes have only repulsive forces between
them. In practice, however, this is undesirable and thus we
ensure that all edges of weight zero are removed.

To account for the layout constraints of weighted graphs,
the graph distance between two nodes is replaced with the
ideal distance between the nodes. Because of the compu-
tational and space requirements of calculating the effects of

1 2 3 4 5

A

B

C

D

Figure 3: Snapshots of the SandMark inheritance graph. Nodes are colored by author and by latest change. When a node
first appears it is given the color of its author. In this example author 1 is red , author 2 is yellow , other authors
are green , and author-less classes (such a library or system classes) are black. For every time-step that a node does not
change, its color will fade to blue. Nodes belonging to author 1 will go through the color progression 〈 , , , , 〉,
while author 2’s nodes will go through 〈 , , , , 〉.

1 2 3

A

B

Figure 4: Snapshots of the SandMark call-graph. Nodes start out red. As time passes and a node does not change, it turns
purple and, finally, blue. When another change is affected the node again becomes red.

all paths between two nodes, or of computing the shortest
weighted path between them, an approximation is used. Let
p1, p2, . . . , pn be the sequence of nodes in the shortest un-
weighted path in G connecting two nodes, u and v. Then
we define:

optDG(u, v) =

n−1�
i=1

√
wpi

· wpi−1

wepipi−1

(5)

In pratice this approximation works both quickly and
well. The final force calculation used in the modified
Kamada-Kawai method is:

~FKK(v) = (6)�
u∈Ni(v)

�
2‖p[u] − p[v]‖2 · (p[u] − p[v])

(edgeLen · optDG(u, v))2 + ‖p[u] − p[v]‖2
� −

−
�

u∈Ni(v)

(p[u] − p[v])

To achieve an aesthetically pleasing layout of the graph,
it is also necessay to employ modified Fruchterman-Reingold
forces, as the Kamada-Kawai method does not acieve satas-
factory methods by itself, but rather creates a good approx-
imate layout so that the Fruchterman-Reingold calculations
can quickly ”tidy up” the layout. The modifications needed
to support weighted graphs are simple:

~Fa,FR =
�

u∈Adj(v)

we · ‖p[u] − p[v]‖2

edgeLen2
(p[u] − p[v]) (7)

~Fr,FR =
�

u∈Ni(v)

s
edgeLen2 · √wu · wv

‖p[u] − p[v]‖2 (p[v] − p[u]) (8)

3.3 Graph Time-Slices

The modifications needed to support time-slices in the
Kamada-Kawai method are quite simple. In equation (6) the
only alteration required is that the the function optDG(u, v)
be redfined so that for two nodes u, v with time-slice indexes
of tu and tv respectively:

optDG(u, v) = δtutv ·
√

wu · wv

we

(9)

1 2

A

B

Figure 5: The SandMark control-flow graph. As with the call-graph in Figure 4, changed nodes start out red and gradually
fade to blue. Note that in the current system, changes a large number of nodes of the graph (such as shown in B2 above)
result in undesirable changes in layout of the graph.

Where δ is the Kronecker delta:

δij = � 1, i = j
0, i 6= j

The modifications needed for the Fruchterman-Reingold
calculations are similar: repulsive forces are eliminated out-
side of a given time-slice:

~Fa,w,t,FR = ~Fa,w,FR (10)

~Fr,w,t,FR = δtutv · ~Fr,w,FR (11)

4 Extracting CVS Information

As shown in Figure 1, the Gevol system will check out
consecutive versions of the code for the Java program un-
der study. The program is compiled to a collection of Java
classfiles. The classfiles are loaded into Gevol and control-
flow graphs, call graphs, and inheritance graphs are built.
Each graph is stored in an individual file which can later be
loaded by the Tgrip viewer.

Thus, the result of the extraction step is a sequence of
files, one per generated graph. Let n be the number of days
in the CVS repository. There is one call graph per day:

〈Call1, Call2, · · · , Calln〉,

one inheritance graph per day:

〈Inher1, Inher2, · · · , Inhern〉,

and a number of control-flow graphs per day:� CFG1,m1
, CFG1,m2

,
CFG2,m1

, CFG2,m2
, CFG2,m3

,
· · ·

CFGn,m1
, CFGn,m2

, CFGn,m3 � .

Constructing inheritance graphs is straight-forward since
each Java class-file indicates the parent of the class and the
interfaces it implements. Since a Java class can extend one
class (Java is a single-inheritance language) but implement
several interfaces the inheritance graph is a DAG.

Constructing call-graphs is slightly more complicated.
The target of a method invocation p.m() will depend on the
runtime type of p. We do a conservative type-based analysis
of the potential targets of method invocations by considering

the inheritance graph. A more precise data-flow based anal-
ysis would be possible but is not necessary for our purposes.
The call-graph will typically be a forest of directed graphs.
The reason is that most Java programs are multi-threaded
(if not explicitly then implicitly through the use of graphi-
cal user interfaces) and many calls appear “spontaneously”
through actions of the Java runtime system.

Control-flow analysis is complicated by the fact that
most Java bytecode instructions can throw an exception. As
a result control-flow graphs are very dense with exception
edges and hence become highly unreadable. We therefore
omit many edges such as those generated by possible null-
pointer exceptions.

Once daily graphs have been constructed they must be
merged into a “time-slice-graph.” To merge two graphs G1

and G2 (where G2 is a modified version of G1) we identify
which node n from G1 corresponds to which node m from
G2 and add an edge n → m:

G1

G2

(Here, colors indicate node identities.) Tgrip knows that
these (dashed) time-slice edges should be treated specially.
In particular, Tgrip will attempt to place the same node
from two slices in approximately the same location. This will
allow for smooth transitions as the user navigates through
time.

For inheritance graphs and call-graphs it is straight-
forward to add time-slice edges. The reason is that every
node can easily be given a unique identity. In the case of
the inheritance graph each node is identified by the fully
qualified class name. In the case of the call graph each node
is identified by class-name:method-name:method-signature.
It is necessary to include signatures in the identifier since
Java allows method overloading.

Adding time-slice edges for control-flow graphs is signif-
icantly more difficult. To see why, consider the following
example:

G1 G2

⇒

Here, two nodes (corresponding to the then and else
branches of the if-statement) of the control-flow graph have
changed. However, it will in general not be possible to deter-
mine which node in G1 changed into which node in G2. We
might heuristically identify the two nodes with the small-
est edit distance, but at best this can only be an educated
guess. Our current version of the system employs a very
conservative estimate of which nodes correspond to which
nodes across slices. In particular, it identifies nodes by cal-
culating a hash on the instruction body of the node and

linking nodes with identical hashes across time-slices. It
assumes that nodes that have changed and thus have new
hash values are in fact new nodes. This means that changed
nodes may not appear close to the same node over different
time-slices.

In practice, this is not a significant problem if only a few
nodes change since these other nodes fix the position of the
new node relatively close to the original, and such that it is
perceptively obvious that the new node is an altered version
of the old one.

In addition to the information extracted from the pro-
gram code we also incorporate information from the CVS
respository itself into the graphs. This includes time-stamps
and author information.

After all pieces of information have been gathered and
the graphs have been merged we are left with three graphs:
an inheritance graph, a call-graph, and a set of control-flow
graphs. Each graph has n (number of days) layers, where
each node in one layer is connected by a time-slice edge to
the corresponding node in the next layer.

5 Related Work

Many program visualization tools have been proposed in the
past. The aim of these tools is to improve the understanding
of computer programs by humans by portraying them in a
form that is more readable than mere source code. In this
section we will briefly review some software visualization
tools. For more in-depth information we refer the reader
to one of the many available visualization taxonomy stud-
ies [22,23,26,27].

5.1 Static Visualization

One of the best known interactive software visualization sys-
tems is BALSA [4] developed at Brown University. BALSA
annotates the program being visualized with hooks so that
“interesting events” such as changes to data structures and
subroutine calls and returnss can be relayed to the visualiza-
tion system. This in turn builds up a view that corresponds
to these events.

BALSA later evolved into Zeus [5], a system that shows
multiple synchronized views of a running program. Zeus al-
lows a developer to interrupt the running program and edit
it using any one of many available data structure represen-
tations. The changes are propagated to update all other
views. Furthermore, Zeus allows a user to use sound and
color to enhance the visualization.

SHriMP [28] is a more recent system that offers a variety
of different graphical views of a software system. For exam-
ple, class and inheritance hierarchies as well as aggregation
can be visualized. A programmer trying to understand how
various components of a software system fit together can

zoom in or out of particular components as well as focus on
specifics such as relevant documentation or source code.

One major problem with visualizing call-graphs is their
density. Young [29] attempts to overcome this problem by
abandoning the standard graph view for a CallStax view.
This lays out each call chain as a stack of cubes. The view
is examined in a virtual reality environment.

5.2 Visualizing Evolving Software

Real-world software changes over time and software becomes
better or worse because of the changes made to it. There
are many tools available for analyzing such changes. These
usually extract historical information stored by change man-
agement systems such as CVS and SCCS. SoftChange [20] is
such tool that extracts complexity, size, purpose and author
of changes made to a program and summarizes this infor-
mation in textual web-based reports. The authors note that
“to study software changes it was essential to handle large
and complex data sets. The volume, complexity, and lack
of structure of software change data overwhelm standard
statistical analysis tools.”

Ball [2] describes a tool that attempts to deduce a better
understanding of a program from its development history.
The system attempts to synthesize views of the requirements
of the software, the implementation technology, the devel-
opment process and the organization of developers based on
the version control system logs and the source code.

Ball [1] describes a system that visualizes many different
aspects of software using three different types of represen-
tation: Line representation shows program source at three
scaling levels, giving both detail and overview. Pixel rep-
resentation shows each line of code as an individual pixel.
Hierarchical representation, finally, is used to model statis-
tics for structured data such as file systems. In all cases the
text or pixels are color coded to show a particular statistic
of interest. Particularly relevant to our work is the fact that
the system collects information about code age.

Eick [11] visualizes software changes using mostly tradi-
tional views, such as bar-graphs, pie-charts, matrix views,
and cityscape views. A large number of different types of
statistics can be displayed, allowing changes to the system
to be viewed from many different perspectives. The most
significant strength of this system, however, is that is able
to examine extremely large programs, up to several million
lines of code.

5.3 Dynamic Graph Drawing

Graph drawing techniques for static graphs have been used
for dynamic graph visualization. North [24] studies the in-
cremental graph drawing problem in the DynaDAG system.
Brandes and Wagner adapt the force-directed model to dy-
namic graphs using a Bayesian framework [3]. Diehl and
Görg [9] consider graphs in a sequence to create smoother
transitions. Special classes of graphs such as trees, series-
parallel graphs and st-graphs have been also been studied
in dynamic models [7,8,21]. Most of these approaches, how-
ever, are limited to special classes of graphs and usually do
not scale to graphs over a few hundred vertices.

6 Discussion

Figure 3 shows a sequence of snapshots of the SandMark
inheritance graph. There a several notable events. In Fig-
ure 3A,5 and Figure 3C,4 one author “broke the build,” i.e.

checked in code that would not compile properly. This prob-
lem was fixed in the next time-slice. Going from the time-
slice in Figure 3D,1 to Figure 3D,2 a large code-segment
(almost 10,000 lines of code shown as two green tendrils
stretching towards the top of the page) was removed.

It is also interesting to note that different authors can be
seen to play distinct roles. Author 2 (yellow) is obviously
more involved in the core architecture of the software. The
nodes (classes) he introduces lie close to the center of the
inheritance tree and other classes extend them. Author 1
(red), although as prolific in generating new classes as au-
thor 1, introduces classes along the fringe of the graph. They
are specializations of core classes and presumably implement
actual functionality. Thus it is reasonable to conclude that
author 2 is a system architect and author 1 a programmer.

Figure 4 shows snapshots of the SandMark call-graph.
Figure 4A,1 shows that an early part of the system con-
sisted of two main parts, the gui (top) and the obfusca-
tion algorithms (bottom). In June of 2002 a new struc-
ture was created (sandmark.util.controlflow) which be-
came a mediation-point between the two structures. This
is shown in purple in Figure 4A,2. Initially, the gui
calls the obfuscation algorithms directly but over time,
sandmark.util.controlflow comes into existence between
the two parts and acts as an intermediary. Figure 4B,3 shows
another instance of the build being broken.

Figure 5 shows the control-flow graph for a method
sandmark.util.stacksimulator.StackSimulator.execute()
from SandMark. The large size of the graph itself makes it
stand out among the control-flow graphs of other methods
and identifies it as a good candidate of refactoring. Fur-
thermore, the relative absence of blue indicating unchanged
basic blocks in A,1, A,2 and B,4 allows one to deduce that
the most of the method is being rewritten during this
period.

It is important to note that for reasonable size programs
the generated graphs can be huge. Our current test case
is the SandMark system which consists of approximately
90,000 lines of code developed over 200 days.1 The generated
call graphs have a total of 760,201 nodes and 2,216,034 edges
over all the time-slices. The inheritance graphs have a total
of 100,722 nodes and 123,145 edges.

The control-flow graphs consist of a total of 3,091,105
nodes and 3,294,038 edges. Visualizing graphs of this mag-
nitude is a daunting task.

One of the techniques Gevol uses for making this graph
more manageable is to preprocess them before displaying
them to contain only those nodes that the user is currently
interested in. The system allows the user to specify (us-
ing a regular expression) the range of values for a particular
field of a node that the user wishes to view. For example,
although the control-flow graph contains well over three mil-

1The actual development time is longer than that but 200 days is
the extent of the CVS record.

lion nodes, the user may only be interested in those nodes
that occur in a particular package or by a particular author.

7 Summary

We have presented a system for visualization of the evolu-
tion of software using a novel graph drawing technique for
visualization of large graphs with a temporal component.
Three different types of graphs were considered: inheritance,
control-flow, and program call-graphs.

Throughout the paper on the bottom right hand side
we have included a series of inheritance graphs that can
be “animated” in a flip-book fashion to give an idea of the
Gevol system in action.

Acknowledgments: The extraction of some of the CVS
graphs was done by Christopher Brue and Abin Shahab.
Kelly Heffner helped in analyzing the temporal views of
SandMark.

References

[1] T. Ball and S. G. Eick. Software visualization in the large.
IEEE Computer, 29(4):33–43, 1996.

[2] T. Ball, J. Kim, A. Porter, and H. Siy. If your version con-
trol system could talk. In ICSE ’97 Workshop on Process
Modelling and Empirical Studies of Software Engineering,
May 1997.

[3] U. Brandes and D. Wagner. A bayesian paradigm for dy-
namic graph layout. In G. Di Battista, editor, Proceedings of
the 5th Symposium on Graph Drawing (GD), volume 1353 of
Lecture Notes Computer Science, pages 236–247. Springer-
Verlag, 1998.

[4] M. Brown. Exploring algorithms using Balsa-II. IEEE Com-
puter, 21(5):14–36, 1988.

[5] M. H. Brown. Zeus: A system for algorithm animation and
multi-view editing. Technical Report 75, 28 1992.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software En-
gineering, 20(6):476–493, June 1994.

[7] R. F. Cohen, G. D. Battista, R. Tamassia, I. G. Tollis, and
P. Bertolazzi. A framework for dynamic graph drawing. In
A.-S. ACM-SIGGRAPH, editor, Proceedings of the 8th An-
nual Symposium on Computational Geometry (SCG ’92),
pages 261–270, Berlin, FRG, June 1992. ACM Press.

[8] R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tol-
lis. Dynamic graph drawings: Trees, series-parallel digraphs,
and planar ST -digraphs. SIAM J. Comput., 24(5):970–1001,
1995.

[9] S. Diehl and C. Görg. Graphs, they are changing. In Pro-
ceedings of the 10th Symposium on Graph Drawing (GD),
pages 23–30, 2002.

[10] P. Eades. A heuristic for graph drawing. Congressus Nu-
merantium, 42:149–160, 1984.

[11] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and
P. Schuster. Visualizing software changes. Software Engi-
neering, 28(4):396–412, 2002.

[12] T. Fruchterman and E. Reingold. Graph drawing by force-
directed placement. Softw. – Pract. Exp., 21(11):1129–1164,
1991.

[13] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-
dimensional approach to force-directed layouts. In Proceed-
ings of the 8th Symposium on Graph Drawing (GD), pages
211–221, 2000.

[14] P. Gajer and S. G. Kobourov. GRIP: Graph dRawing with
Intelligent Placement. In Proceedings of the 8th Symposium
on Graph Drawing (GD), pages 222–228, 2000.

[15] M. H. Halstead. Elements of Software Science. Elsevier
North-Holland, 1977.

[16] S. Henry and D. Kafura. Software structure metrics based
on information flow. IEEE Transactions on Software Engi-
neering, 7(5):510–518, Sept. 1981.

[17] T. Kamada and S. Kawai. Automatic display of net-
work structures for human understanding. Technical Report
88-007, Department of Information Science, University of
Tokyo, 1988.

[18] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. Inform. Process. Lett., 31:7–15, 1989.

[19] T. J. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2(4):308–320, Dec. 1976.

[20] A. Mockus, S. Eick, T. Graves, and A. Karr. On measure-
ment and analysis of software changes, 1999.

[21] S. Moen. Drawing dynamic trees. IEEE Software, 7(4):21–
28, July 1990.

[22] B. A. Myers. Visual programming, programming by ex-
ample, and program visualization: A taxonomy. In ACM
SIGCHI ’86 Conference on Human Factors in Computing
Systems, pages 59–66, Apr. 1986.

[23] B. A. Myers. Taxonomies of visual programming and pro-
gram visualization. Journal of Visual Languages and Com-
puting, 1(1):97–123, Mar. 1990.

[24] S. C. North. Incremental layout in DynaDAG. In Proceedings
of the 4th Symposium on Graph Drawing (GD), pages 409–
418, 1996.

[25] E. I. Oviedo. Control flow, data flow, and program com-
plexity. In Proceedings of IEEE COMPSAC, pages 146–152,
Nov. 1980.

[26] B. A. Price, I. S. Small, and R. M. Baecker. A taxonomy
of software visualization. In Proc. 25th Hawaii Int. Conf.
System Sciences, 1992.

[27] G.-C. Roman and K. C. Cox. A taxonomy of program visu-
alization systems. IEEE Computer, 26(12):11–24, 1993.

[28] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Muller.
On integrating visualization techniques for effective software
exploration. pages 38–45, 1997.

[29] P. Young and M. Munro. A new view of call graphs for
visualising code structures, 1997.

