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Abstract. Consider a graph G drawn in the plane so that each vertex
lies on a distinct horizontal line `j = {(x, j) |x ∈ R}. The bijection φ
that maps the set of n vertices V to a set of distinct horizontal lines
`j forms a labeling of the vertices. Such a graph G with the labeling
φ is called an n-level graph and is said to be n-level planar if it can
be drawn with straight-line edges and no crossings while keeping each
vertex on its own level. In this paper, we consider the class of trees that
are n-level planar regardless of their labeling. We call such trees unlabeled
level planar (ULP). Our contributions are three-fold. First, we provide a
complete characterization of ULP trees in terms of a pair of forbidden
subtrees. Second, we show how to draw ULP trees in linear time. Third,
we provide a linear time recognition algorithm for ULP trees.

1 Introduction

When drawing an n-vertex planar graph G(V,E) in the xy-plane, a more re-
strictive form of planarity can be obtained by insisting on a predetermined y-
coordinate for each vertex. In particular, suppose we have a set of k equidistant
horizontal lines or levels, namely `j = {(x, j) |x ∈ R} for j ∈ {1, 2, . . . , k} and
each vertex is assigned to one of these k levels. Call this level assignment φ. The
tuple G(V,E, φ) forms a k-level graph, and if φ is bijective so that each vertex
is constrained to its own level, i.e., k = n, then G(V, E, φ) is a n-level graph.
Further, suppose that when drawing G, each edge is a straight-line segment (or
a continuous y-monotone polyline). If a planar drawing of G can be obtained in
spite of these restrictions, then G is said to be level planar for level assignment
φ. If G is a n-level graph that is level planar, then we say G is n-level planar.

Some level assignments of G do not allow for a level planar drawing. In fact,
if k < n, then it is NP-hard [9] to determine whether there even exists a k-level
assignment of G in which G is level planar. If k = n, in which G is a n-level graph,
such a level assignment gives a labeling of V since each vertex in V uniquely
numbered. A labeling of V whose level assignment preserves the planarity of
G can be easily obtained from a plane drawing of G and a perturbation of the
vertices to ensure unique x-coordinates[2]. We call a n-level tree that is n-level
planar for all possible labelings of its vertices an Unlabeled Level Planar (ULP)
tree1. We characterize ULP trees in terms of a pair of forbidden subtrees and
provide linear time recognition and drawing algorithms.
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1.1 Background and Related Work
Visualizing hierarchical relationships has historically been a strong motivating
factor in the study of the planarity of level graphs, i.e., graphs with a predeter-
mined level assignment. Geometric simultaneous embedding have recently led to
a new application of n-level graphs [2]. Determining which sets of graphs have
geometric simultaneous embeddings has proven difficult. For instance, it is un-
known whether a path and a tree can aways be simultaneously embedded. When
simultaneously embedding an n-vertex path P with another n-vertex graph G,
one can relabel the vertices of P sequentially 1 to n from one endpoint to the
other. The corresponding relabeling of the vertices of G gives a natural level
assignment φ for G. Eades et al. [4] have provided an O(|V |) time algorithm for
drawing any level planar graph with straight-line segments. Thus, if G is n-level
planar for φ, it can easily be simultaneously embedded with P since the path
merely zig-zags in a y-monotone fashion from one level to the next. The ability
to characterize n-level graphs gives us additional insight into open problems in
simultaneous embedding.

Jünger et al. [11] provide a linear time recognition algorithm for level planar
graphs. This is based on the level planarity test given by Heath and Pemmaraju
[7, 8], which in turn extends the more restricted PQ-tree level planarity testing
algorithm of hierarchies—level graphs of DAGs in which all edges are between
adjacent levels and all the source vertices are on the uppermost level—given by
Di Battista and Nardelli [3]. Hierarchies are fully characterized in terms of level
non-planar (LNP) patterns in [3], as well. Jünger and Leipert [10] further provide
a linear time level planar embedding algorithm that outputs a set of linear
orderings in the x-direction for the vertices on each level. However, to obtain a
straight-line planar drawing one needs to subsequently run a O(|V |) algorithm
given by Eades et al. [4] who demonstrate that every level planar embedding
has a straight-line drawing. Healy et al. [6] use LNP patterns to provide a set of
minimum level non-planarsubgraph patterns that fully characterize level planar
graphs. These subgraph patterns are somewhat analogous to Kuratowski’s result
that any minimal non-planar graph is either a subdivided K5 or K3,3 [12]. It
should be noted that these patterns are specific to a given level assignment and
are not based solely on the underlying graph.

1.2 Our Contribution
Our contributions are three-fold. First, we provide a forbidden subdivision char-
acterization for unlabeled level planar (ULP) trees in terms of two minimal ULP
trees, T1 and T2; see Fig. 1.

Second, we characterize any tree without a subdivision of either T1 or T2 as
either (i) a caterpillar, a tree in which the removal of all degree-1 vertices yields
a path, or (ii) a radius-2 star, a K1,k in which every edge is subdivided at most
once, or (iii) a degree-3 spider, an arbitrary subdivision of K1,3. We show that
these three classes are n-level planar by virtue of an O(|V |) time algorithm for
constructing straight-line n-level planar drawings of ULP trees.

Third, if a tree is not a caterpillar, then it must contain a lobster (a graph
in which the removal of all degree-1 vertices yields a caterpillar). Using minimal
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Fig. 1. A Venn diagram for the universe of trees characterized by the two forbidden subtrees
T1 and T2. Graphs that do not contain either a subdivision of T1 or T2 are caterpillars,
radius-2 stars, and degree-3 spiders.

lobsters we show that trees that are not radius-2 stars or degree-3 spiders must
contain subdivisions of T1 or T2, which completes the characterization. We also
provide a O(|V |) time algorithm for testing whether a tree falls into one of these
three categories, thus yielding a linear time recognition algorithm for ULP trees.

2 Preliminaries

In this paper we try to use the established notation for level graphs whenever
possible. The following definitions for levels graphs are primarily taken from [1,
3, 6]. A k-level graph G(V,E, φ) on n vertices is a DAG with a level assignment
φ : V → [1..k] such that the induced partial order is strict: φ(u) < φ(v) for every
(u, v) ∈ E. A k-level graph is a k-partite graph in which φ partitions V into k
independent sets V1, V2, . . . , Vk, which form the k levels of G. A level-j vertex
v is on the jth level Vj of G if φ(v) = j or v ∈ Vj where Vj = φ−1(j).

If φ is an injection, each level contains at most one vertex, i.e., |Vi| ≤ 1 for
i ∈ [1..k], hence, k ≥ n. W.l.o.g., we can assume in such instances that k = n
in which case φ is a bijection that forms a topological sort of the DAG G(V, E).
Unless noted otherwise, an n-level graph G(V, E, φ) is assumed to have a bijective
level assignment φ, i.e., φ : V

1:1−→
onto

[1..n]. Such a bijective level assignment is
equivalent to a labeling of the vertices from 1 to n.

A level graph G has a level drawing if there exists a drawing such that every
vertex in Vj is placed along the horizontal line `j = {(x, j) |x ∈ R} and the
edges are drawn as strictly y-monotone polylines. The order that the vertices
of Vj are placed along each `j in a level drawing induces a family of linear
orders (≤j)1≤j≤k along the x-direction, which form a linear embedding of G. A
level drawing, and consequently its level embedding, is level planar if it can be
drawn without edge crossings. A level graph G is level planar if it admits a level
planar embedding. The more restrictive definition of level drawings allowing only
straight-line segments for edges is equivalent, as shown by Eades et al. [4]



A planar graph H is realized if it can be drawn with straight-line edges
without crossings. Such a plane graph is a realization of H. A n-level graph
G(V, E, φ) is n-level realized if it is realized such that each vertex v lies on its
level φ(v).

A chain of a k-level graph G(V,E, φ) is a nonrepeating sequence of vertices
v1, v2, . . . , vt of V such that t > 1 and either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for
every i ∈ {1, 2, . . . , t−1}, i.e., a path in the underlying undirected graph of G. If
C is a chain, let lower(C) and upper(C) denote the lowermost and uppermost
vertices, respectively, with respect to φ. Also let min(C) = φ

(
lower(C)

)
and

max(C) = φ
(
upper(C)

)
be the minimum and maximum levels of C, thus,

min(C) ≤ φ(v) ≤ max(C) for every v of C.
For an n-level graph G(V, E, φ), let <Y denote the strict linear ordering

given by the level assignment φ, i.e., for every u, v ∈ V , we have u<Y v iff
φ(u) < φ(v). Let <X (and ≤X ) denote the strict (and weak) linear ordering
induced by the x-coordinate of the placement of a level-i vertex u and a level-j
vertex v along their respective horizontal lines `i and `j in the particular level
drawing under consideration. Finally, for vertex subsets U,W ⊆ V , let U <X W
(and U <Y W ) iff u <X w (and u<Y w) for every u ∈ U and w ∈ W . Often we
will represent an edge (u, v) ∈ E as u−v and a chain of vertices, v1, v2, . . . , vt

for some t > 1 as v1−v2− · · · −vt.
Finally, we recall a few standard graph theory definitions. In a graph G(V, E),

subdividing an edge (u, v) ∈ E is the operation of replacing (u, v) with the pair
of edges (u,w) and (w, v) in E by adding w to V . A subdivision of G is a graph
obtained by performing a series of successive edge subdivisions of G.

3 Characterization of Unlabeled Level Planar Trees

First, we introduce the forbidden subdivisions T1 and T2 together with explicit
level assignments in which the resulting graphs are level non-planar. Then we
show how to compute a n-level realization for each of the three remaining types
of trees—caterpillars, radius-2 stars and degree-3 spiders—in linear time given
a labeling of the vertices. Next, we show that if a tree does not contain a sub-
division of T1 or T2, then it must fall into at least one of the three categories of
unlabeled level planar trees. Finally, we show a simple O(|V |) time recognition
algorithm for ULP trees. Full details are included in the technical report [5].

3.1 Forbidden Trees

Lemma 1 There exist labelings that prevent T1 and T2 from being level planar.

Proof. The left subfigure of Fig. 2 gives one of 8 distinct labelings that satisfies
the y-partial order {c, g}>Y d>Y f >Y a>Y b>Y {e, h} (or its dual in which
the ordering is reversed). Each labeling gives a bijective n-level assignment in
which T1 does not have a n-level realization. This can be seen as follows: To
prevent paths a−b−c and a−d−e from crossing, one path must go to the left
and the other to the right. Assume w.l.o.g. c−b<X d−e. This forces c<X f <X d
so that a−f does not cross b−c, or a−f−g does not cross a−d−e. However, then
f−h will cross either a−d or a−b−c. This concludes the argument for T1.
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Fig. 2. Labelings that prevent T1 and T2 from being ULP.

Next, consider T2. The right subfigure of Fig. 2 gives one of 8 distinct labelings
that satisfies the y-partial order {c, h}>Y d>Y f >Y a>Y b >Y g >Y {e, i} (or
its dual in which the ordering is reversed). Each labeling gives a bijective n-level
assignment in which T2 does not have a n-level realization. This can be seen as
follows: To prevent paths a−b−c and a−d−e from crossing, one path must go to
the left and the other to the right. Assume again w.l.o.g. c−b<X d−e. Then a−i
must be drawn below and to the right of a−b and to the left of d−e, otherwise it
will cross b−c or d−e. To prevent the edge a−f from crossing a−b−c or a−d−e,
f must with be drawn (i) so that a <X f <X e in which case f−g−h will then
cross a−i or d−e, or (ii) so that c<X f <X d in which case f−g will cross a−b−c,
a−d, or a−i. This completes the argument about T2 and the overall claim. ut
Corollary 2 If a tree T (V,E) contains a subdivision of T1 or T2, then it cannot
be unlabeled level planar.
Proof. Assume that the tree T contains a subdivision of T1 (or T2). Let T ′(V ′, E′)
be a subtree of T that is a subdivision of T1 (or T2). Label the 8 (or 9) vertices
of V ′ in the same order as shown in Fig. 2. Note that the values of the labels
need to be adjusted in order to accommodate any intermediate vertices along a
subdivided edge of T1 (or T2). Any extra vertex w along a subdivided edge (u, v)
can be assigned to a unique level that preserves the y-ordering u<Y w <Y v.
This works since level planarity is defined in terms of y-monotone polylines. An
edge drawn from level φ(u) to level φ(v) is allowed any number of bends so long
as the edge proceeds in a y-monotone fashion. In particular, it can bend at w on
level φ(w), which is equivalent to subdividing the edge u−v into u−w−v.

This gives a labeling of the vertices of T ′ using the labels {1, 2, . . . , |V ′|}
such that the 8 (or 9) vertices corresponding to T1 (or T2) satisfy one of the
y-partial orders from Lemma 1. Hence, the arguments used in Lemma 1 can
be directly applied to this y-ordering. Thus, T ′ is not n-level planar, and as a
consequence, neither is T , regardless of the labels for the remaining vertices. ut

3.2 ULP Trees—Caterpillars, Radius-2 Stars, and Degree-3 Spiders

The following three lemmas explicitly show all the trees that are unlabeled level
planar and how to n-level realize them in linear time.
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Fig. 3. A n-level realization of a 30-level caterpillar on a 8× 30 grid.

Lemma 3 (Brass et al. [2]) An n-vertex caterpillar T (V, E) with an m-vertex
spine can be n-level realized in O(n) time on a 2m×n grid for any vertex labeling
φ : V

1:1−→
onto

{1, 2, . . . , n}.
Proof. The following proof of the claim is a shorter version and is an improve-
ment over the original proof in [3] that spans 3 pages. Note that the original
claim had the slightly weaker result of using a 2n× n grid.

Let T (V, E, φ) be an n-level caterpillar with spine S(V ′, E′) such that S is
isomorphic to P|V ′|. In particular, let the vertices of V ′ be labeled according
to their relative distance from the end point v1, and the edges E′ =

{
(v1, v2),

(v2, v3), . . . , (v|V ′|−1, v|V ′|)
}
. Let the degree-1 leaves of v be denoted by N(v) ={

u | (u, v) ∈ E and (u, v) /∈ E′} for each v ∈ V ′. Then for each i ∈ {1, 2, . . . , n}
place vi ∈ V ′ at the coordinate

(
2i − 1, φ(vi)

)
and place each u ∈ N(vi) at

the coordinate
(
2i, φ(u)

)
unless u would lie on the straight-line edge segment

vi−vi+1 in which case place u directly under vi at the coordinate
(
2i− 1, φ(u)

)
instead. All this can be done in O(n) time. This drawing is a n-level planar since
S is drawn in a strictly left to right fashion and each incident edge to the spine
is either drawn either directly above or below the spine or immediately to its
right. Clearly, this drawing uses only straight-line edge segments in which there
are no crossings forming a n-level realization. ut
Lemma 4 An n-vertex radius-2 star T (V, E) can be n-level realized in O(n)
time on a (2n + 3)× n grid for any vertex labeling φ : V

1:1−→
onto

{1, 2, . . . , n}.
Proof. Let r be the root of an n-level radius-2 star T (V,E, φ) located at the
coordinate

(
n+2, φ(r)

)
. For every leaf ` that is at a distance of 1 from r, place it

at the coordinate
(
n+1, φ(`)

)
, which is one x-coordinate to the left of r. For each

remaining leaf `, let adj(`) denote its adjacent vertex, and let L ⊆ V denote this
set of leaves at a distance 2 from r. Then Ld =

{
` | ` ∈ L and φ(adj(`)) > φ(`)

}
and Lu =

{
` | ` ∈ L and φ(adj(`)) < φ(`)

}
partition L according to whether the

adjacent vertex of the leaf is to be drawn above or below it, i.e., whether the
incident edge goes down or up. Let Ad =

{
adj(`) | ` ∈ Ld

}
and Au =

{
adj(`) | ` ∈

Lu

}
be the adjacent vertices of degree 2 to the leaf vertices of T .
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Fig. 4. A n-level realization of an 29-level radius-2 star on a 61× 29 grid. The small gray
circles are the intersection points of slope-1 rays emanating from each vertex in Ad and
Au to the imagined 0-level and imagined (n + 1)-level, respectively.

Place each u ∈ Ad at the coordinate
(
n + 1, φ(u)

)
immediately to the left of

r, and each u ∈ Au at the coordinate
(
n+3, φ(u)

)
, immediately to the right of r.

For each ` ∈ Ld, place it at the grid point that corresponds to the intersection of
the φ(`)-level and the line segment connecting the points

(
n + 1, φ(adj(`)

)
, the

coordinate of its adjacent vertex, and
(
n − φ(adj(`)) + 1, 0

)
, the point that an

emanating ray from adj(`) with a slope of 1 in the negative x-direction intersects
an imagined 0-level; see Fig. 4. Since the ray has slope 1, this intersection will
always be an integer grid point. In a similar fashion, place each ` ∈ Lu at the grid
point that corresponds to the intersection of the φ(`)-level and the line segment
connecting the points

(
n + 3, φ(adj(`)

)
, the coordinate of its adjacent vertex,

and
(
n−φ(adj(`))+1, n+1

)
, the point that an emanating ray from adj(`) with

a slope of 1 in the positive x-direction intersects an imagined (n + 1)-level. All
this can be done in linear time since O(1) time is spent locating each vertex.

This produces a n-level realization since every vertex that is adjacent to r is
either placed immediately to its right or left, and every other leaf is placed so
that its incident edge has a slope of 1, which prevents any edge from crossing. ut
Lemma 5 An n-vertex degree-3 spider T (V,E) can be n-level realized in O(n)
time for any vertex labeling φ : V

1:1−→
onto

{1, 2, . . . , n}.
Proof. The proof is in three parts. First, we show how to reduce an arbitrary
degree-3 spider to one in which all the legs zig-zag between successively lower
and higher levels. Second, we skip ahead and show how to place the vertices of
the original spider when processing an edge of the reduced spider. Finally, we
show an O(n) time algorithm for greedily drawing the reduced degree-3 spider.

Part 1: Let r be the root vertex of an n-level degree-3 spider T (V, E, φ).
Let X, Y , and Z be the three subtrees of r, each of which forms a chain. Call
T ′(V ′, E′, φ′) a strictly expanding degree-3 spider if the level assignment φ′ on the
vertices r, v2, . . . , v|C| of each chain C of T ′ obeys the following two properties:

φ(vi−1) < φ(vi) > φ(vi+1) or φ(vi−1) > φ(vi) < φ(vi+1), (1)



and [
φ(vi−1) < φ(vi) ⇒ φ(vi−1) > φ(vi+1)

]
and[

φ(vi−1) > φ(vi) ⇒ φ(vi−1) < φ(vi+1)
]

(2)

for 1 < i < |C|. We call a chain that satisfies property (1) a zig-zagging chain
since it cannot have any monotonically increasing or decreasing sequences of
vertices. A zig-zagging chain that also satisfies property (2) is strictly expanding
as the next level reached by the chain is either greater than any previous level
or less than any previous level.

A zig-zagging chain C can be made strictly expanding by keeping track of
the minimum and maximum levels encountered by the chain so far. Assume
w.l.o.g. that φ(r) < φ(v2), i.e., the chain C begins by going upwards. We extract
from C, the strictly expanding subchain C ′, which we will label its vertices as
r−u2−u3− · · · −uC′ , by first prepending r to C ′. Then we set minC = φ(r)
and find the first vertex vj along C such that φ(vj) < minC . Next we append
u2 = upper(r−v2−v3− · · · −vj−1) to C ′, and set maxC = φ(u2). Then we
look for the next vertex vk along C such that φ(vk) > maxC . Afterwards, we
append u3 = lower(vj−vj+1− · · · −vk−1) to C ′, and set minC = φ(u3), and
repeat this process until all the vertices of C are exhausted. If the last vertex
encountered is not greater than minC or less than maxC , then we add an extra
vertex to the end of C ′ satisfying this condition; see Fig. 5 for an illustration.

Part 2: For each vertex ui in C ′, we keep a linked list of the subpath
P = ui−wi1−wi2− · · · −wi|P |−2−ui+1 of C that was replaced by the edge
ui−ui+1 where min(P ) = φ(ui) and max(P ) = φ(ui+1) (or max(P ) = φ(ui)
and min(P ) = φ(ui+1)). This linked list will be used to place edges of T as
we process edges from T ′. The rightmost subfigure of Fig. 5 visually illustrates
how this might be done. Here, any particular subpath P of C for a given edge
of C ′ can be drawn arbitrary close to C. We omit the details of this particular
point, noting only that the intuitive idea of compressing the zig-zagging chain
allows us to greedily draw the edges of T without crossings for each edge of T ′

r
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Fig. 5. An example of a chain C in which the strictly expanding zig-zagging subchain C′

of white vertices is extracted. The rightmost subfigure shows an example n-level realization
of the intermediate edges and vertices for the second edge of C′.
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Fig. 6. Six iterations of the greedy strategy to n-level realize a degree-3 spider.

that is processed. We finish this section of the proof by observing that both the
extraction of C ′ from C and the ability to draw the edges of T once we have
processed the edges of T ′ can be done in linear time.

Part 3: Now that we have our degree-3 spider in the proper form, we can
apply a simple greedy algorithm that can be used to give a n-level realization
of T ′. We complete the proof of the lemma by giving the details regarding this
linear time algorithm.

Let the vertices of chain X be denoted by x0−x1− · · · −x|X|−1 in which
x0 = r and (xi, xi+1) ∈ E for 0 ≤ i < |X|−2. Similarly, let the vertices of Y and
Z be y0−y1− · · · −y|Y |−1 and z0−z1− · · · −z|Z|−1. Finally, let A1 = {x1, y1, z1}
be the first vertices along each chain immediately following r.

There are two possibilities for the strictly expanding degree-3 spider T ′: Ei-
ther (i) A1 >Y r (or A1 <Y r) or (ii) min(A1) <Y r <Y max(A1). We show how
to draw T for case (i) assuming that A1 >Y r. The other case is similar. We start
the first iteration by drawing A1 such that the vertex of maximum index with
respect to φ′ lies between the other two vertices of A1 along the x-coordinate.

At any one point in this greedy strategy, we maintain the invariant that the
last vertex along a chain that we placed either lies above or below any of the
other vertices that have been drawn so far. Property (2) allows us to do this.
If we encounter the end of a chain in which this invariant does not hold for its
last vertex, then we can easily draw the remaining two chains without crossings.
We do this by drawing one of the two chains monotonically to the right until we
reach its end, and do the same for the other chain monotonically to the left.

For iteration i > 1, we arbitrarily pick one of the chains whose most recently
placed vertex is neither the maximum nor the minimum vertex drawn so far.
We greedily extend the chain either to the right or left until we reach a vertex
whose level assignment is either above or below all the ones drawn so far. This
enlarges the set of processed vertices from Ai−1 to Ai. Note that we can always
extend a chain C to the right or left. This follows from the fact that during the
previous iteration, before the vertices of some other chain C ′ were processed, the
last vertex v of C was either minimum or maximum; see Fig. 6 for an example.

Since we can always greedily place a vertex without introducing a crossing,
this strategy succeeds in producing a n-level realization of T in O(n) time (con-
stant time per vertex), which shows that T is indeed ULP. Simple geometry
allows us to construct such an drawing using only straight-line edge segments
for T ′, though, as we initially noted, this can lead to exponential area. ut



Now that we have shown which trees are ULP, we need to show that our char-
acterization is complete. First, we show that T1 and T2 are minimal unlabeled
level non-planar trees with the following lemma.

Lemma 6 Removing any edge from T1 or T2 yields a forest of ULP trees.

Proof. If removing an edge from T1 decreases the degree of one of the two
degree-3 vertices, call them x and y, then the resulting graph is a forest consist-
ing of a degree-3 spider and a possible lone edge; see Fig. 7(a). Removing the
edge x−y yields two paths. The only possibility (up to isomorphism) in removing
an edge without affecting the degree of x and y, yields a caterpillar with a spine
of length 5. Moving onto T2, if its vertex z of degree 4 maintains its degree after
the edge removal, then the resulting graph must be a forest consisting of either a
caterpillar, if the removed edge was incident to a leaf vertex at a distance 2 from
z, or a radius-2 star and a possible lone edge, otherwise. On the other hand, if
the degree of z decreases to 3, then the resulting graph is a degree-3 spider and,
possibly, a path; see Fig. 7(c). ut

The next theorem completes the characterization of ULP trees.

Theorem 7 Every tree either contains a subdivision of T1 or T2 in which case
it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider in which
case it is ULP. Hence, T1 and T2 give a minimal forbidden subtree characteriza-
tion of ULP trees.

Proof. First, we argue that neither T1 nor T2 is a caterpillar, a radius-2 star, or
a degree-3 spider to show that if a tree T contains a subdivision of T1 or T2,
it cannot be one of those three. Clearly, both T1 and T2 are lobsters and not
caterpillars. The two vertices of degree 3 prevent T1 being a radius-2 star or a
degree-3 spider. Since T2 has radius 3 and a vertex of degree 4, it cannot be a
radius-2 star or a degree-3 spider either.

Now we show that caterpillars, radius-2 stars, and degree-3 spiders are the
only types of ULP trees. We do this by showing that any tree that does not fit
into at least one of these categories must contain either a subdivision of T1 or T2.
Then by Corollary 2 any tree T that contains a subdivision of T1 or T2 cannot
be ULP. By Lemma 6, T1 and T2 are minimal.

Assume that T (V, E) is a tree that is not a caterpillar, radius-2 star, or
degree-3 spider. Since T is not a caterpillar, it must contain a minimal lobster L,
i.e., the unique tree that cannot have any more edges removed without becoming
a caterpillar (and possibly a lone edge); see Fig. 7(b). It has one vertex r of
degree 3 and three leaf vertices a, b, c at a distance 2 from r, which is the
minimal requirement for a tree to be a lobster. Any other lobster can have its
edges trimmed away until L is all that remains, which is what makes L minimal.

Since T is not a degree-3 spider, there are two cases to consider: either (i) T
has two vertices s and t of degree at least 3 or (ii) T has one vertex of degree k
greater than 3.

Assuming case (i) holds, we show how to find a subdivision of T1 in T . Let
x and y be the two vertices of degree 3 in T1 where x is the one without an
adjacent leaf vertex; see Fig. 7(a). At least one of the two vertices s and t of
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Fig. 7. Finding copies of T1 and T2.

degree at least 3 in T must correspond to the root vertex r in the subtree L that
forms the minimal lobster in T . Assume w.l.o.g. this vertex is s. Then we map s
in T to vertex x in T1, and the other vertex of degree at least 3, t in T to vertex
y in T1. Since t has degree at least 3, there exists two neighbors of t not along
the path from s to t, which we can map to the two corresponding leaf vertices
in T1 that are adjacent to y. Only one of the three leaf vertices a, b, c of L in T
can be contained in the subtree of s containing t. Suppose w.l.o.g. it is a. Then
the other two vertices b and c in T can be mapped to the two remaining leaf
vertices in T1. This completes the mapping of vertices of T1.

Next we consider case (ii) in which we show how to find the subtree T2 in T .
The one vertex of degree k greater than 3 must be the corresponding vertex r of
L in T ; see Fig. 7(c). Otherwise, if there were separate vertices of degree greater
than 3, case (i) would apply. Let r be mapped to the degree-4 vertex z of T2.
Since T is not a radius-2 star, there exists a vertex w at a distance 3 from r,
which can be mapped to the leaf vertex in T2 at a distance 3 from z. Only one
of the three vertices a, b, c of L in T can be along the path from r to w. Suppose
w.l.o.g. it is a. The other two vertices b and c in T can be mapped to the other
two leaf vertices in T2. The remaining leaf vertex of T2 that is directly adjacent
to z can be mapped to the endpoint of the fourth edge incident to r in T since
it has degree greater than 3. This completes the mapping of vertices of T2. ut

3.3 Linear Time Recognition of ULP Trees

First, we need a few simple observations regarding the degree sequences of cater-
pillars, radius-2 stars, and degree-3 spiders, which we state as lemmas whose
proofs we omit in this abstract.

Lemma 8 If a tree T has a degree sequence of the form 2, . . . , 2, 1, 1 or 1, 1, i.e.,
a path, after the removal of all degree-1 vertices, then T must be a caterpillar.

Lemma 9 If a tree T has a degree sequence of the form k, 2, . . . , 2, 1, 1, . . . 1 for
some k > 2, i.e., T is an arbitrarily subdivided K1,k, and after the removal of
all degree-1 vertices, the degree sequence then becomes `, 1, . . . , 1 for some ` ≤ k,
i.e., T becomes a K1,`, then T must be a radius-2 star.

Lemma 10 If a tree T has a degree sequence of the form 3, 2, . . . , 2, 1, 1, . . . 1,
i.e., T has maximum degree of 3 with only one vertex of degree 3, then T must
be a degree-3 spider.



Theorem 7 together with the above Lemmas, lead to a simple linear time
recognition algorithm for ULP trees summarized in the following corollary:

Corollary 11 The class of ULP trees can be recognized in linear time. That is,
given an arbitrary n-vertex tree T , one can decide in O(n) time whether or not
it is always possible to n-level realize T for any possible labeling.

4 Conclusion and Future Work

We described a complete characterization of unlabeled level planar trees. We
provided a linear time algorithm to n-level realize the three classes of ULP trees
which can also be used for simultaneously embedding a ULP tree T with any
path P . Finally, we provided a linear time recognition algorithm for ULP trees.
What is missing from the recognition algorithm is a certificate of unlabeled
level non-planarity, i.e., the 8 (or 9) vertices corresponding T1 (or T2) if they
exist. Another future task is to provide a forbidden subgraph characterization
for general unlabeled level planar graphs as we have done for ULP trees.
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