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ABSTRACT

We present a system for the visualization of computing literature with an emphasis on collaboration patterns, interactions between related
research specialties and the evolution of these characteristics through time. Our computing literature visualization system, has four major
components: A mapping of bibliographical data to relational schema coupled with an RDBMS to store the relational data, an interactive
GUI that allows queries and the dynamic construction of graphs, a temporal graph layout algorithm, and an interactive visualization
tool. We use a novel technique for visualization of large graphs that evolve through time. Given a dynamic graph, the layout algorithm
produces two-dimensional representations of each timeslice, while preserving the mental map of the graph from one slice to the next. A
combined view, with all the timeslices can also be viewed and explored. For our analysis we use data from the Association of Computing
Machinery’s Digital Library of Scientific Literature which contains more than one hundred thousand research papers and authors. Our
system can be found onlineathtt p: //tgri p. cs. ari zona. edu.
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1. INTRODUCTION

Information visualization techniques help in the discovery and understanding of the underlying interrelationships present
in scientific literature. Techniques that capture the dynamic nature of the subject domain are especially important. In this
paper, we present a system for the exploration of computing literature databases using a novel algorithm for visualization
of large graphs that evolve through time. We also apply our system to the ACM Digital Library of Scientific Literature
(ACM Digital Library) dataset which contains more than 100,000 authors and 100,000 papers. A local copy of the ACM
Digital Library, current as of 2000, was kindly provided to us by the ACM.

An overview of our computing literature visualization system is shown in Fig. 1. The system has four major compo-
nents:

1. A mapping of bibliographical data to relational schema coupled with an RDBMS to store the relational data.
2. Aninteractive GUI that allows queries and the dynamic construction of graphs.
3. Atemporal graph layout algorithm.

4. An interactive visualization tool.

In the following sections we survey related work, present each of the main components of our system, examine relevant
statistics collected from the ACM Digital Library, and consider future work.

*Thiswork is supported in part by the NSF under grant ACR-0222920.
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Figure 1. Overview of our system for computing literature visualization.

2. RELATED WORK

Social networks analysis, in particular scientific collaboration analysis, often relies on visualization to convey information
about network structure .2:3:17:20  Author co-citation analysis has been used in infometrics and McCain'® details the
procedures required: co-citation counts are collected for pairs of authors and then stored in a co-citation matrix for fur-
ther analysis. Such analysis has been applied to the library and information science domains by concentrating on the top
120 authors in the field.2> Minimum spanning trees, based on distances between documents computed from co-citations
together with multi-dimensional scaling and force-directed graph drawing methods are used to visualize parts of the infor-
mation science domain.?! Similar techniques were used to visualize the ACM Hypertext literature.”® Shneiderman et
al?? visualize a subset of the categorical data of the ACM Digital Library on a two axes system. GraphAEL is a system for
visualization of the graph drawing literature, that allows for the exploration of co-citation and co-authorship graphs.**

Dynamic graph visualization is typically based on techniques for static layouts.% 1%:26 North?2 studies the incremental
graph drawing problem in the DynaDAG system. Brandes and Wagner adapt the force-directed model to dynamic graphs
using a Bayesian framework.> Diehl and Gorg'® consider graphs in a sequence to create smoother transitions. Most of
these approaches, however, are limited to special classes of graphs and usually do not scale to large graphs. Brandes and
Corman* present a system for visualizing network evolution in which each modification is shown in a separate layer of 3D
representation with vertices common to two layers represented as columns connecting the layers. Thus, the impression that
corresponding vertices appear in similar locations from layer to layer (i.e. the mental map) is preserved by precomputing
locations for vertices and fixing their position throughout the layers. Collberg et al® describe a graph-based system for
visualization of software evolution, which uses a modification of the GRIP algorithm for visualization of large graphs, '3
while preserving the mental map by fixing the locations of all common vertices in the evolving graph.

3. FROM DIGITAL LIBRARIES TO EXTRACTING GRAPHS

The first step in visualizing a document set is to map the dataset to a relational schema. In the case of the ACM Digital
Library this schema (Fig. 2) contains 33 tables that represent entities and relationships, e.g., article, conference, article
authored by, etc. The data is then parsed according to this schema and loaded into a MySQL database.

One of the common problems in working with a bibliographical dataset is the problem of name representation. For
example, all the following are possible database entries: Edsger Wybe Dijkstra, Edsger W. Dijkstra, Edsger Dijkstra,
E. W. Dijkstra, and E. Dijkstra. It is also possible that multiple distinct authors may have the same exact name. Typically
these problems are addressed by choosing one way to represent the data and hoping that the resulting errors are not
egregious. Excluding errors associated with distinct individuals who have the same exact name, we can establish an upper
bound on the number of distinct individuals by considering every combination of first, middle and last names in the dataset
as a distinct individual. In this same way we can compute a lower bound by considering every distinct combination of first
initial and last name (assuming that no last names are abbreviated). In the case of the ACM Digital Library the upper bound
is 100,988 and the lower bound is 67,189. The ACM Digital Library has an internal classification system for individuals
where each person is assigned a distinct integer. Since it is already in place and appears to solve the problem of distinct
persons with the same name, we decided to keep this internal numbering system in our database. While the data is far
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Figure 2. Abbreviated ER-Schema for the ACM Digital Library database.

from perfect, we can take comfort that errors introduced due to name representation have minor effects on overall graph
statistics2? and thus should not affect visualization.

For this particular study we use conference proceedings papers from the 20-year period from 1981 to 2000. The
ACM Digital Library contains 51,503 conference papers and 81,279 authors in this period. Table 1 summarizes some of
the important statistics gathered from the data. For years outside this range our copy of the ACM Digital Library lacks
complete coverage. We decided to work with the conference data as there is better coverage and better representation of
conference data in the database. We did not consider journal and conference papers together because there is non-trivial
overlap of articles (journal publications that have corresponding conference versions).

From this data we generate three types of graphs. A collaboration graph is an undirected, vertex-weighted and edge-
weighted graph representing scientific cooperation over a given period of time. Authors are represented by vertices with
weight equal to that author’s prominence within the document set. An edge connecting two vertices represents collaboration
on a scientific paper between those two authors. The weight of the edge is equal to the frequency of collaboration. A
category graphis an undirected vertex-weighted and edge-weighted graph representing the interconnection of subject areas
based upon the built-in classification system of the ACM Digital Library. Vertices represent categories in the hierarchical
classification system of the ACM, with weight equal to the frequency of occurrence. An edge between two vertices is
drawn if a paper is classified by both categories. The weight of this edge is equal to the extent of co-occurrence in the
document set. Difference graphs are used to visualize growth or decline between adjacent timeslices of category graphs.
Vertices represent categories and have weight equal to the percentage change in occurrence from one timeslice to the
next. Undirected edges with weight equal to the change in occurrence are drawn between nodes that co-occurred in both
timeslices. Edges and vertices whose growth/decline is infinite have their weight adjusted to be slightly higher than the
maximum weight of all other vertices that do not have infinite weight.

4. THE INTERACTIVE GUI

The interactive GUI, shown in Fig. 3 allows for the input of parameters with which to query the database and extract
graphs. Large datasets, though providing potentially more voluminous and finer grained results, have the drawback of
having a lower signal to noise ratio when visualizing or mining data. For this reason, users can limit results by choosing to
concentrate on a specific time period, conference or conferences, group of prominent authors, or subset of categories.

Users can enter the desired parameters in a Java Applet, which then passes the information to a set of PHP scripts,
which in turn dynamically query the database. The results are returned to the user in a separate window in the form of a
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Figure 3. Snapshot of the interactive GUI for our system.

graph markup language (GML) file. Users can then invoke the layout algorithm and interactive visualization tool using the
GML file.

5. THE TGRIP GRAPH LAYOUT ALGORITHM

Once graph data has been generated and returned to the user via the graphical interface, the TGRI P graph layout algorithm
is used to calculate a suitable layout. We use a modification of GRI P,'3 an efficient force directed placement algorithm,
to layout graphs. The essence of this algorithm is the interplay of repulsive and attractive forces. Repulsive forces exist
between all vertices. Attractive forces exist wherever edges connect two vertices. The Kamada-Kawai'® method is used
to determine the layout of a sequence of filtrations, each of which is a subset of the succeeding level. Graphs in preceding
filtrations are used as a guide to layout the next level. In this way large scale structures of the graph are quickly captured
by initial filtration levels and small scale details are resolved in the layout of additional levels. The Fruchterman-Reingold
method'? is applied to the final filtration to achieve an even more refined layout.

Our modifications reflect the requirements of the visualization model and allow information to be represented in various
ways. Vertices and edges have attributes such as weight that affect layout. For instance, in visualizing a category graph, it
is useful to have a notion of both the weight of a vertex, representing overall concentration of work in that category, as well
as the weight of an edge modeling the amount of interaction between categories. In addition, visualizing dynamic graphs
necessitates a temporal component.

5.1. Weighted Evolving Graphs

Weights are taken into account as follows:

1. Two nodes connected by an edge of weight 0 should behave as if not connected by an edge at all.
2. An edge connecting two nodes, each of weight 0, should have a natural length of zero.

3. Heavy nodes should be placed further apart.



4. Heavy edges should be shorter.

5. If an edge of weight w connects two nodes of weight w, the edge’s ideal length should be the same as an edge of
weight 1 connecting two nodes of weight 1, but the larger the w, the stronger the connection should be.

Given these considerations, an edge e of weight w,. connecting nodes u, v of weight w,,, w,,, respectively, is given an
ideal length of /w,, - w,/w.. This formula will lead to a division by zero if w. = 0. The resulting infinite distance is
indeed the correct ideal distance for the force based calculations, since two disconnected nodes have only repulsive forces
between them. In practice, however, this is undesirable and thus we ensure that all edges of weight zero are removed.

To account for the layout constraints of weighted graphs, the graph distance between two nodes is replaced with the
ideal distance between the nodes. Because of the computational and space requirements of calculating the effects of
all paths between two nodes, or of computing the shortest weighted path between them, an approximation is used. Let

p1, D2, - - -, Pn DE the sequence of nodes in the shortest unweighted path in G connecting two nodes, « and v. Then we
define:
Wy, W,
tD — Pi Pi—1
optDe (u,v) Z T D
=1 PiPi—1

In practice this approximation works both quickly and well. The final force calculation in the modified algorithm is:

ﬁ(v) = Z (( 2||p[u] _p[U]HQ ) (p[u] _p[UD ) _ Z (p[u] —p[’U]) (2)

. 2 _ 2
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5.2. Temporal Components

To allow for the visualization of a series of graphs which represent the evolution of a set of relationships over time we
associate another attribute, called a timedlice, with each vertex. When visualizing the ACM Digital Library, each timeslice
corresponds to a calendar year. All papers published at conferences in the same calendar year have the same timeslice
value.

When visualizing an evolving graph two constraints need to be met. Each timeslice should have a pleasing layout
within itself and the layout of consecutive timeslices should be similar, that is, vertices in one timeslice should be close to
the positions of associated vertices in adjacent timeslices.

The degree to which information can be accurately construed from a graph is a measure of its readability. A graph that
is highly readable will be easy to interpret without ambiguity. On a timeslice level, this means that nodes and edges will
correlate to actual relations in the data that is being represented. Unfortunately, high individual timeslice readability can
create problems in temporal graph visualization. If nodes that correspond to the same data occur in different spatial regions
in a sequence of timeslices, then the viewer’s conception of which nodes represent the same entities from timeslice to
timeslice, (the viewer’s mental map'®), is destroyed. Thus readability and mental map preservation often impose conflicting
requirements on the layout. We make several modifications to the layout algorithm to address this problem. First, we
eliminate repulsive forces between vertices in different timeslices. Next, we arrange inter-timeslice edges between vertices
that correspond to the same entities in different timeslices. For instance, in a collaboration graph the vertices representing
a particular author in different timeslices would be connected by inter-timeslice edges.

In the TGRI P algorithm we balance mental map preservation and timeslice readability by varying the strength of
inter-timeslice edges. Since vertices in different timeslices have no repulsive forces between them, the inter-timeslice
edges attract each vertex towards its associated vertices in adjacent timeslices. The heavier these inter-timeslice edges are
relative to vertex weights the greater the preservation of the mental map and the more readability of individual timeslices
suffers. Our system allows the user to control the strength of the inter-timeslice edges, thus controlling the extent of
readability and mental map preservation.
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Figure 4. Top Row Level-1 category graph of three timeslices (without visible edges), from left to right, 71 (1998), T (1999),
T5 (2000) favoring readability over mental map preservation; Bottom Row Level-1 category graph of three timeslices (without
visible edges), from left to right, 77 (1998), T> (1999), 75 (2000) favoring mental map preservation over readability;

Consider the two rows of graphs in Fig. 4. As we will examine the the placement of the vertices we have removed
the edges for clarity. The layout of the individual graphs in the top row is obtained by favoring readability over mental
map preservation. The layout of the individual graphs in the bottom row is obtained by favoring mental map preservation
over readability. In the top row the vertices are evenly spaced and the graphs are more readable than those on the bottom.
In addition, the relationships between vertices in the same timeslice are better represented. For instance, few papers are
classified as being in both the Hardware and Software categories, implying that those categories are not strongly related.
This can be easily verified by looking at the top row graphs which place the two vertices far apart whereas the bottom row
graphs obscure this relation by placing them close to each other. On the other hand the drawings on the bottom exhibit
better mental map preservation than the ones on top. In the top row the position of the vertex corresponding to the Hardware
category changes drastically from one timeslice to the next, whereas the positions of the vertices are steady in the bottom
rOW.

Mental map preservation can be accomplished by two different methods. Either all the instances of a vertex are
connected via inter-timeslice edges to form a clique or each instance is only connected to the instances in its two adjacent
timeslices. The first option allows global mental map preservation and is especially useful if the number of timeslices is
limited. The second option is useful if the number of timeslices is large and the viewer is concerned with preserving the
mental map only in a small neighborhood of timeslices.

For the combined-graph layout we constrain the drawing of time-slices to parallel planes by limiting the vertex dis-
placement of nodes in time-slice k the plane z = k. We further modify the force calculations as follows: in equation (2)
we re-define opt D¢ (u, v) so that for two nodes w, v with time-slice indexes of ¢,, and ¢,, respectively:

Wy + Wy

We

optDe(u,v) = g1, -
where ¢ is the Kronecker delta (§;; = 1 if < = j, and 0 otherwise).

6. INTERACTIVE VISUALIZATION

Once query and graph options have been input and the layout of an evolving graph has been computed, our system allows
several visualization options to be employed. Edge and vertex sizes are used to represent relative weights. Timeslices
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Figure 5. Level-1 category graph made of four timeslices, from bottom to top, 71 (1981-1985), 7> (1986-1990), 75 (1991-
1995), T, (1996-2000); (a) a view with invisible edges; (b) a view of the graph displaying all edges; (c) a view of the timeslices
with only heavy edges; (d) a view of the difference graphs.

can be displayed in 2D or 3D, individually or together. Users have the capability to zoom in/out and to navigate in 3-
dimensional space by rotating, revolving or skewing the graph. Edges can be turned invisible for better examination of
vertices. In addition, evolution can be shown via an animation between timeslices in 2D or 3D. The animation uses an
interpolation between timeslices and fading infout of appearing/disappearing vertices/edges. The system, as well as static
images and animation movies can be accessed at htt p: //tgri p. ¢s. ari zona. edu.

7. EXPLORING THE ACM COMPUTING LITERATURE
We apply our system to conference data from a copy of the ACM Digital Library, current as of 2000.

7.1. The Evolution of the Research Fields

ACM uses a hierarchical classification system to organize computing literature into 11 level-1 categories (denoted A-K)
and 92 level-2 subcategories, see 24 for descriptions of these categories.

Visualizing the evolution of category graphs can reveal information about related specialties, specific concentrations of
research and trends as this information evolves through time. Fig. 5 contains several visualizations of the level-1 category
graph from 1981-2000 with each timeslice representing 5 years. Fig. 5(a) and Fig. 5(b) show the entire graph with invisible
and with visible edges, respectively. Due to the relative weights of inter-timeslice edges, most vertices do not move a great
deal between adjacent timeslices. In this example the mental map is preserved without significantly harming readability.
Fig. 5(c) displays each timeslice separately in 2D. Together with category graphs, difference graphs can be effective in
visualizing the evolution of the computing literature through time. Fig. 5(d) shows the difference graph corresponding
to the level-1 category graph in Fig. 5(a-c). We use two different colors for vertices to distinguish between growing and
declining categories. Note that although Information Systems is the largest category in the last time period in Fig. 5(c), its
growth in the last two periods is relatively small (see Fig. 5(d)).

Once an interesting top level category is found, our system allows the user to query a subset of the lower level categories
(which are more detailed and provide a better representation of research specialties) under that top level category, see Fig. 6.
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Figure 7. The H.5 (Information Interfaces and Presentation) collaboration graph: (a) timeslice 71 (1986-1990); (b) timeslice
T> (1991-1995); (c) timeslice T35 (1996-2000)

Note the large growth of H.5 (Information Interfaces and Presentation under the upper level Information Systems category)
from timeslice T5 to T35 in Fig. 6(b).

7.2. The Evolution of Collaborative Networks

Visualizing a collaboration graph allows a user to investigate the nature of scientific cooperation and identify interactions
between research groups. As the complete collaboration graph is large and unwieldy, it is often more interesting to narrow
the visualization to a certain topic.

As an example we concentrate on the level-2 category H.5 (Information Interfaces and Presentation). In order to
further narrow our query we restrict the collaboration graph to the top 200 authors ranked by prominence. We define
the prominence of an author in terms of openness (the number of distinct co-authors) and productivity (the total number
of papers published). For the graph shown in Fig. 7, productivity and openness contribute equally to this ranking. This
visualization can be used to investigate past and current research groups in a specific field.

In Fig. 8 we show three steps of the exploration of the graph from Fig. 7(c). While viewing this graph the user might
want to focus on a particular research group. Zooming into the area highlighted by the red circle, the user can click on
large vertices that seem to be central to the cluster to reveal the names of the individual authors. The clustering produced
by our layout algorithm tends to group together collaborators in tight groups. For example, the cluster in Fig. 8 consists of
researchers who work within H.5.2 (User Interfaces) a level-3 subcategory of H.5.
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sizes; Bottom Left: Zoomed into region marked with red circle; Right: Labeled vertices in a cluster of collaborating scientists.

8. COMPARATIVE DATA ANALYSIS AND STATISTICS

An earlier study of the computing, physics, and medical literature points to both similarities and differences between
the research communities2® in metrics such as mean number of papers and number of collaborators per author, distances
between authors in the collaboration graph, and the size of the largest connected component. The data about the computing
community came from NCSTRL, which contains preprints of papers submitted by participating institutions. At the time of
the above study, there were slightly over than 13,000 papers and under 12,000 authors in the NCSTRL database.

We worked with the 1981-2000 conference data from the ACM Digital Library, which arguably presents a more com-
plete picture of the computing literature with over 50,000 papers and over 80,000 authors. Table 1 shows a comparative
summary of the overall statistics. Fig. 9 shows the cumulative number of conference papers in the period 1981-2000. The
results are notable because similar data from mathematics and neuro-science? show linear growth while the ACM data
seems to indicate super-linear growth.

| General | ACM-value [ NCSTRL-value |

Total papers 51503 13169
Total authors 81279 11994
Authors per paper 2.32 2.22
Papers per author 1.80 2.55
Collaborators per author 3.36 3.59
Percentage of giant component 49 57.2
Percentage of 2"¢ component 0.11 0.004
Clustering Coefficient 0.62 0.50
Average Distance 9.26 9.7
Maximum Distance 30 31

Table 1. Statistics for ACM dataset (conference papers published in 1981-2000) and NCSTRL statistics.
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8.1. Authors per Paper

In mathematics, the average number of authors per paper has increased from about 1 per paper in 1935 to about 1.5 in
1995.14  Averages in medicine and physics are often higher, about 9 collaborators per paper.2° A steady increase in the
average number of authors per paper in the computing literature (from 1.82 in 1981 to 2.79 in 2000) can be seen in Fig. 9.
We include the average number of authors per paper for the overall dataset, as well as for the ACM categories with highest
average, B (Hardware) and the lowest average, A (General Literature).

8.2. Size of Giant Component

In the random graph theory it is known that increasing the density of edges leads to the formation of a giant connected
component. While the size of the giant component in a typical scientific collaboration graph is 80%-90% the number
seems to be much smaller for the computing literature.2° Possible reasons for the discrepancy include incomplete data and
identifying one person as two or more (due to name representation). Our data indicates that the size of the giant connected
component is about 49% of the overall graph. It other words, about half of the authors in the ACM dataset are connected
via a path of co-authors.

8.3. Average and Maximum Distances

We can also find the shortest path from one author to another in the collaboration graph and then we can compute the aver-
age and maximum distances between pairs of vertices in the graph. The true maximum distance is infinite for two authors
not in the same connected component but we perform the calculations using only the finite distances. This information
is useful in the sense that it creates a chain of references of intermediate scientists through whom contact between two
authors may be established.!” The average and maximum distances in the ACM Digital Library and the NCSTRL datasets
are very similar, although the former is more than three times bigger than the latter.

8.4. Clustering Coefficient

A useful measure for the strength of the ties between authors is the clustering coefficient as defined by Barabasi et al.? Let
N,, denote the set of neighbors of vertex « in the collaboration graph and let £, be the set of edges e such that both of
the vertices incident to e are in IV,,. The clustering coefficient for v is C, = 2|En, |/(|Nu| % (|Ny| — 1)). In other words,
the clustering coefficient of « tells us how collaborative the co-authors of « are among themselves. The average clustering
coefficient our dataset is 0.62, which is comparable with the clustering coefficient of the other fields such as mathematics
and physics.2?



| Name | Num. of papers || || Name | Num. of co-authors ||

Wong, D. F. 78 Sangiovanni-Vincentelli, Alberto 109
Cong, Jason 74 Shneiderman, Ben 88
Potkonjak, Miodrag 73 Pausch, Randy 81
Pedram, Massoud 72 Fuchs, Henry 79
Sharir, Micha 59 Soloway, Elliot 77
Shneiderman, Ben 56 Kahng, Andrew B. 75
Kahng, Andrew B. 56 Cong, Jason 72
Brayton, Robert K. 53 Druin, Allison 70
Sangiovanni-Vincentelli, Alberto 51 Wilson, James R. 69
Myers, Brad A. 50 Muthukrishnan, S. 69

Table 2. Authors with highest number of papers and collaborators.

8.5. Number of Papers and Collaborators

The average number of papers per author is 1.80, while the average number of collaborators is nearly double at 3.36.
Table 2 shows the most productive and most collaborative authors. Changing the name representations does not affect
either list significantly, with one notable exception: if all representations of Alberto Sangiovanni-Vincentelli in the ACM
database are taken into account, he tops both lists. Seven of the ten researchers with highest number of papers have
worked in Computer Aided Design and VLSI, two have worked in Human Computer Interaction, and one has worked in
Computational Geometry.

8.6. Trends

We explored the level-2 category graphs for the 1996-2000 period. As expected, some areas (as grouped by the ACM)
show decline while others seem to be growing. In particular, as shown on Fig. 10 steadily growing level-2 categories
include C.5 (Computer System Implementation), E.3 (Data Encryption), H.2 (Database Management), and 1.5 (Pattern
Recognition). Research areas experiencing decline include E.1 (Data Structures), F.1 (Computation by Abstract Devices),
and 1.1 (Symbolic and Algebraic Manipulation), the last one after already experiencing a decline of 41.9% from the 1991-
1995 period to the 1996-2000 period.
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Figure 10. Growth and decline trends for C.5 (Computer System Implementation), E.1 (Data Structures), E.3 (Data Encryp-
tion), F.1 (Computation by Abstract Devices), G.4 (Mathematical Software), H.2 (Database Management), 1.1 (Symbolic and
Algebraic Manipulation), and 1.5 (Pattern Recognition).



9. CONCLUSION AND FUTURE WORK

We have presented a system for visualization of the evolution of the computing literature using a novel graph drawing
technique for visualization of large graphs with a temporal component. Category and collaboration graphs extracted from
the ACM Digital Library were used to illustrate the effectiveness of the visualization model and to discover patterns and
trends within the data. We provide a visual interactive tool for exploring the ACM data that we hope will be of use to the
scientific community at htt p: //t gri p. cs. ari zona. edu.

In addition to fully integrating the current components of the system, we would like to extract citation graphs! and
study their evolution through time. We would like to study the journal portion of the ACM database and compare and
contrast it with the conference portion. We hope to be obtain a local copy of the IEEE Digital Library (for a more complete
representation of the computing community) and study even larger sets using databases such as NEC’s Researchindex.
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