

Chapter 4

Methods

Goal

 Implement well-tested Java methods

4.1 Methods
A java class typically has two or more methods. There are two major components to a method:

1. the method heading

2. the block (a pair of curly braces with code to complete the method’s functionality

Several modifiers may begin a method heading, such as public or private. The examples shown here will

use only the modifier public. Whereas private methods are only accessible from the class in which they

exist, public methods are visible from other classes. Here is a general form for method headings.

General Form: A public method heading

public return-type method-name(parameter-1, parameter-2, …, parameter-n)

The return-type represents the type of value returned from the method. The return type can be any primitive type, such

as int or double (as in String’s length method or BankAccount’s withdraw method, for example).

Additionally, the return type can be any reference type, such as String or Scanner. The return type may also be

void to indicate that the method returns nothing, as see in void main methods.

 The method-name is any valid Java identifier. Since most methods need one or more values to get the job done,

method headings may also specify parameters between the required parentheses. Here are a few syntactically correct

method headings:

Example Method Headings

public int charAt(int index) // String
public void withdraw(double withdrawalAmount) // BankAccount
public int length() // String
public String substring(int startIndex, int endIndex) // String

The other part of a method is the body. A method body begins with a curly brace and ends with a curly brace. This is

where the programmer places variable declarations, object constructions, assignments, and other messages that

accomplish the purpose of the method. For example, here is the very simple deposit method from the

BankAccount class. This method has access to the parameter depositAmount and to the BankAccount instance

variable named myBalance (instance variables are discussed in a later chapter).

 // The method heading . . .
 public void deposit(double depositAmount) {
 // followed by the method body

 myBalance = myBalance + depositAmount;
 }

Parameters

A parameter is an identifier declared between the parentheses of a method heading. Parameters specify the number

and type of arguments that must be used in a message. For example, depositAmount in the deposit method

heading above is a parameter of type double. The programmer who wrote the method specified the number and type

of values the method would need to do its job.

 A method may need one, two, or even more arguments to accomplish its objectives. “How much money do you

want to withdraw from the BankAccount object?” “What is the beginning and ending index of the substring you

want?” “How many days do you want to add". Parameters provide the mechanism to get the appropriate information

to the method when it is called. For example, a deposit message to a BankAccount object requires that the amount

to be deposited, (a double), be supplied.

public void deposit(double depositAmount)

 anAccount.deposit(123.45);

When this message is sent to anAccount, the value of the argument 123.45 is passed on to the associated parameter

depositAmount. It may help to read the arrow as an assignment statement. The argument 123.45 is assigned to

depositAmount and used inside the deposit method. This example has a literal argument (123.45). The

argument may be any expression that evaluates to the parameter’s declared type, such as (checks + cash).

 double checks = 123.45;

 double cash = 100.00;

 anAccount.deposit(checks + cash);

When there is more than one parameter, the arguments are assigned in order. The replace method of the String type

requires two character values so the method knows which character to replace and with which character.

 public String replace(char oldChar, char newChar)

 String newString = str.replace('t', 'X');

Reading Method Headings

When properly documented, the first part of a method, the heading, explains what the method does and

describe the number of arguments and the type All of these things allow the programmer to send messages

to objects without knowing the details of the implementation of those methods. For example, to send a

message to an object, the programmer must:

 know the method name

 supply the proper number and type of arguments

 use the return value of the method correctly

All of this information is specified in the method heading. For example, the substring method of Java’s

String class takes two int arguments and evaluates to a String.

 // Return portion of this string indexed from beginIndex through endIndex-1
 public String substring(int beginIndex, int endIndex)

The method heading for substring provides the following information:

 type of value returned by the method: String

 method name: substring

 number of arguments required: 2

 type of the arguments required: both are int

Since substring is a method of the String class, the message begins with a reference to a string before the

dot.

 String str = new String("small");
 assertEquals("mall", str.substring(1, str.length()));

 // Can send messages to String literals ...
 assertEquals("for", "forever".substring(0, 3));

A substring message requires two arguments, which specify the beginning and ending index of the String

to return. This can be observed in the method heading below, which has two parameters named beginIndex

and endIndex. Both arguments in the message fullName.substring(0,6) are of type int because the

parameters in the substring method heading are declared as type int.

public String substring(int beginIndex, int endIndex)

 fullName.substring(0, 6);

When this message is sent, the argument 0 is assigned to the parameter beginIndex, and the argument 6 is

assigned to the parameter endIndex. Control is then transferred to the method body where this information

is used to return what the method promises. In general, when a method requires more than one argument, the

first argument in the message will be assigned to the first parameter, the second argument will be assigned

to the second parameter, and so on. In order to get correct results, the programmer must also order the

arguments correctly. Whereas not supplying the correct number and type of arguments in a message results

in a compile time (syntax) error, supplying the correct number and type of arguments in the wrong order

results in a logic error (i.e., the program does what you typed, not what you intended).

And finally, there are several times when the substring method will throw an exception because the

integer arguments are not in the correct range.

 String str = "abc";
 str.substring(-1, 1) // Runtime error because beginIndex < 0
 str.substring(0, 4) // Runtime error because endIndex of 4 is off by 1
 str.substring(2, 1) // Runtime error because beginIndex > endIndex

Self-Check

Use the following method heading to answer the first three questions that follow. This concat method is from Java’s

String class.

 // Return the concatenation of str at the end of this String object
 public String concat(String str)

4-1 Using the method heading above, determine the following for String's concat method:
 -a return type -d first argument type (or class)

 -b method name -e second argument type (or class)

 -c number of arguments

4-2 Assuming String s = new String("abc");, write the return value for each valid message or explain why

the message is invalid.

 -a s.concat("xyz"); -d s.concat("x", "y");

-b s.concat(); -e s.concat("wx" + " yz");

-c s.concat(5); -f s.concat("d");

4-3 What values make these assertions pass?

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringTest {

 @Test
 public void testConcat() {
 String s = "abc";
 assertEquals(, s.concat("!"));

 assertEquals(, s.concat("cba"));
 assertEquals(, s.concat("123"));
 }
}

Use the following method heading to answer the first three questions that follow. This concat method is from Java’s String

class.

 // Returns a new string resulting from replacing all
 // occurrences of oldChar in this string with newChar.

 public String replace(char oldChar, char newChar)

4-4 Using the method heading above, determine the following for String's replace method:

 -a return type -d first argument type

 -b method name -e second argument type

 -c number of arguments

4-5 Assuming String s = new String("abcabc");, write the return value for each valid message or explain why the

message is invalid.

-a s.replace("a"); -d s.replace("x", "y");

-b s.replace('c', 'Z'); -e s.replace('a', 'X');

-c s.replace('b', 'Z'); -f s.concat('X', 'a');

4-6 What values make the assertions pass?

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringTest {
 @Test
 public void testReplace () {
 String s = "aabbcc";

 assertEquals("__a.___", s.replace('a', 'T'));
 assertEquals("__b.___", s.replace ('b', ' '));
 assertEquals("__c.___", s.replace ('c', 'Y'));
 }
}

Methods that return Values

When a method is called, the values of the arguments are copied to the parameters so the values can be used

by the method. The flow of control then transfers to the called method where those statements are executed.

One of those statements in all non-void methods must return a value. This is done with the Java return

statement that allows a method to return information. Here is the general form:

General Form return statement

 return expression;

The following examples show the return statement in the context of complete methods. The three methods are

captured in a class named ExampleMethods, which implies there is no relationship between the methods. It simply

provides methods with different return types.

// This class contains several unrelated methods to provide examples.
public class ExampleMethods {

 // Return a number that is twice the value of the argument.
 public double f(double argument) {
 return 2.0 * argument;
 }

 // Return true if argument is an odd integer, false when argument is even.
 public boolean isOdd(int argument) {
 return (argument % 2 != 0);
 }

 // Return the first two and last two characters of the string.
 // Precondition: str.length() >= 4
 public String firstAndLast(String str) {
 int len = str.length();
 String firstTwo = str.substring(0, 2);
 String lastTwo = str.substring(len - 2, len);
 return firstTwo + lastTwo;
 }

} // End of class with three example methods.

When a return statement is encountered, the expression that follows return replaces the message part of

the statement. This allows a method to communicate information back to the caller. Whereas a void method

returns nothing (see any of the void main methods or test methods), any method that has a return type other

than void must return a value that matches the return type. So, a method declared to return a String must

return a reference to a String object. A method declared to return a double must return a primitive double

value. Fortunately, the compiler will complain if you forget to return a value or you attempt to return the

wrong type of value.

 As suggested in Chapter 1, testing can occur at many times during software development. When you write a

method, test it. For example, a test method for firstAndLast could look like this.

 @Test
 public void testFirstAndLast() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals("abef", myMethods.firstAndLast("abcdef"));
 assertEquals("raar", myMethods.firstAndLast("racecar"));
 assertEquals("four", myMethods.firstAndLast("four"));
 assertEquals("A ng", myMethods.firstAndLast("A longer string"));

 }

Methods may exist in any class. We could use test methods in the same class as the methods being tested because it is

convenient to write methods and tests in the same file. That approach would also have the benefit not requiring an new

ExampleMethods() object thereby requiring us to write less code. However, it is common practice to write tests in a

separate test class. Conveniently, we can place test methods for each of the three ExampleMethods in another file

keeping tests separate from the methods.

// This class is used to test the three methods in ExampleMethods.
import static org.junit.Assert.*;
import org.junit.Test;

public class ExampleMethodsTest {

 @Test
 public void testF() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals(9.0, myMethods.f(4.5), 1e-14);

 assertEquals(0.0, myMethods.f(0.0), 1e-14);
 assertEquals(-4.4, myMethods.f(-2.2), 1e-14);
 }

 @Test

 public void testIsOdd() {
 ExampleMethods myMethods = new ExampleMethods();
 assertTrue(myMethods.isOdd(5));
 assertFalse(myMethods.isOdd(4));
 assertFalse(myMethods.isOdd(0));
 assertTrue(myMethods.isOdd(-3));
 assertFalse(myMethods.isOdd(-2));
 }

 @Test

 public void testFirstAndLast() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals("abef", myMethods.firstAndLast("abcdef"));
 assertEquals("raar", myMethods.firstAndLast("racecar"));
 assertEquals("four", myMethods.firstAndLast("four"));
 assertEquals("A ng", myMethods.firstAndLast("A longer string"));
 }
}

This is a relatively new way to implement and test methods made possible with the JUnit testing framework. Most

college textbooks use printlns and user input to show the results of running code that requires several program runs

with careful input of values and careful inspection of the output each time. This textbook integrates testing with JUnit,

an industry-level testing framework that makes software development more efficient and less error prone. It is easer to

test and debug your code. You are more likely to find errors more quickly. When run as a JUnit test, all assertions pass

in all three test-methods and the green bar appears.

With JUnit, you can set up your tests and methods and run them with no user input. The process can be easily repeated

while you debug. Writing assertions also makes us think about what the method should do before writing the method.

Writing assertions will help you determine how to best test code now and into the future, a worthwhile skill to develop

that costs little time.

Self-Check

4-7 a) Write a complete test method named testInRange as if it were in class ExampleMethodsTest to

test method inRange that will be placed in class ExampleMethods. Here is the method heading for the

method that will go into class ExampleMethods.

 // Return true if number is in the range of 1 through 10 inclusive.

 public boolean inRange(int number)

b) Write the complete method named inRange as if it were in ExampleMethods.

4-8 a) Write a complete test method named testAverageOfThree as if it were in class

ExampleMethodsTest to test method averageOfThree that will be placed in class ExampleMethods.

Here is the method heading for the method that will go into class ExampleMethods.

 // Return the average of the three arguments.

 public double averageOfThree(double a, double b, double c)

b) Write the complete method named averageOfThree as if it were in ExampleMethods.

4-9 a) Write a complete test method named testRemoveMiddleTwo as if it were in class

ExampleMethodsTest to test method removeMiddleTwo that will be placed in class ExampleMethods.

removeMiddleTwo should return a string that has all characters except the two in the middle. Assume the

String argument has two or more characters. Here is the method heading for the method that will go into

class ExampleMethods.

 // Return the String argument with the middle two character missing.

 // removeMiddleTwo("abcd") should return "ad"

 // removeMiddleTwo("abcde") should return "abd"

 // Precondition: sr.length() >= 2

 public String removeMiddleTwo(String str)

b) Write the complete method named removeMiddleTwo as if it were in the ExampleMethods class.

How do we know what to test?
Methods are deigned to have parameters to allow different arguments. This makes them generally useful in future

applications. But how do we know these methods work? Is it important that they are correct? Software quality is

important. It is impossible to write perfect code.

 One effective technique to ensure a method does what it is supposed to do is to write assertions to fully test the

method. Asserting a method returns the correct value for one value is usually not enough. How many assertions

should we make? What arguments should we use? The answers are not preordained. However, by pushing the limits

of all the possible assertions and values we can think of, and doing this repeatedly, we get better at testing. Examples

help. Consider this maxOfThree method.

// Return the maximum value of the integer arguments.

public int maxOfThree(int a, int b, int c)

As recommended in Chapter 1, it helps to have sample input with the expected result. Some test cases to consider

include all three numbers the same, all 0, and certainly all different. Testing experts will tell you that test cases include

all permutations of the different integers. So the test cases should include the max of (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3,

1), (3, 1, 2), and (3, 2, 1). Whenever negative numbers are allowed, write assertions with negative numbers.

 This large number of test cases probably seems excessive, but it doesn't take much time. There are a large number

of algorithms that will make maxOfThree work. I have personally seen many of these that work in most cases, but not

all cases. Especially interesting are the test cases when two are equal (students often write > rather than >=). So other

test cases should include the max of (1, 2, 2), (2, 1, 2), and (2, 2, 1).

 Since we can setup these test cases with the expected value and actual value next to each other and then run the

tests once (or more than once if you detect a bug or use incorrect expected values). This test method contains more

assertions than you would typically need due to the nature of the problem where the largest could be any of the three

arguments and any one could equal another two.

 @Test
 public void testMaxOfThree() {
 ExampleMethods myMethods = new ExampleMethods();

 // All equal
 assertEquals(5, myMethods.maxOfThree(5, 5, 5));

 assertEquals(-5, myMethods.maxOfThree(-5, -5, -5));
 assertEquals(0, myMethods.maxOfThree(0, 0, 0));

 // All permutations of 3 different arguments
 assertEquals(3, myMethods.maxOfThree(1, 2, 3));
 assertEquals(3, myMethods.maxOfThree(1, 3, 2));
 assertEquals(3, myMethods.maxOfThree(2, 1, 3));
 assertEquals(3, myMethods.maxOfThree(2, 3, 1));
 assertEquals(3, myMethods.maxOfThree(3, 1, 2));
 assertEquals(3, myMethods.maxOfThree(3, 2, 1));

 // All permutations of two integers that are the largest
 assertEquals(2, myMethods.maxOfThree(1, 2, 2));
 assertEquals(2, myMethods.maxOfThree(2, 1, 2));
 assertEquals(2, myMethods.maxOfThree(2, 2, 1));

 // All permutations of two integers that are the smallest
 assertEquals(2, myMethods.maxOfThree(1, 1, 2));
 assertEquals(2, myMethods.maxOfThree(2, 1, 1));
 assertEquals(2, myMethods.maxOfThree(1, 2, 1));
 }

Self-Check
4-10 Consider a method that takes three integer arguments representing the three sides of a triangle. The method must

reports whether the triangle is scalene (three sides different), isosceles (two sides equal), equilateral, or not a triangle

(cannot be). What tests should be written and for each, what should the result be?

4-11 Boggle tests your ability to find words in a random array of dice with letters. Words must be in the range of 3..16

characters inclusive. Method inRange(String str) must return true if the length of str is in the range of 3

through 16 characters inclusive. What tests should be written and for each, what should the result be?

Answers to Self-Check Questions
4-1 -a String -d String

 -b concat -e There is no second parameter

 -c 1

4-2 -a "abcxyz -d One too many arguments

 -b needs argument -e "abcwx yz"

 -c 5 wrong type; -f "abcd"

4-3 assertEquals("abc!", s.concat("!"));
 assertEquals("abccba" , s.concat("cba"));
 assertEquals("abc123", s.concat("123"));

4-4 -a String -d char

 -b replace -e char

 -c 2

4-5 -a need 2 char arguments -d wrong type arguments. Need char, not String

 -b "abZabZ" -e "XbcXbc"

 -c "aZcaZb -f Wrong type and number of arguments for concat

4-6 assertEquals("TTbbcc", s.replace('a', 'T'));
 assertEquals("aa cc", s.replace('b', ' '));
 assertEquals("aabbYY", s.replace('c', 'Y'));

4-7 a) @Test
 public void testInRange() {
 ExampleMethods myMethods = new ExampleMethods();
 assertFalse(myMethods.inRange(0));
 assertTrue(myMethods.inRange(1));
 assertTrue(myMethods.inRange(5));
 assertTrue(myMethods.inRange(10));
 assertFalse(myMethods.inRange(11));
 }

 b) public boolean inRange(int number) {
 return (number >= 1) && (number <= 10);
 }

4-8 a) @Test
 public void testAverageThree() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals(0.0, myMethods.averageOfThree(0.0, 0.0, 0.0), 0.1);
 assertEquals(90.0, myMethods.averageOfThree(90.0, 90.0, 90.0), 0.1);
 assertEquals(82.5, myMethods.averageOfThree(90.0, 80.5, 77.0), 0.1);
 assertEquals(-2.0, myMethods.averageOfThree(-1, -2, -3), 0.1);
 }

 b) public double averageOfThree(double a, double b, double c) {
 return (a + b + c) / 3.0;
 }

4-9 a) @Test
 public void testRemoveMiddleTwo() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals("", myMethods.removeMiddleTwo("12"));

 assertEquals("ad", myMethods.removeMiddleTwo("abcd"));
 assertEquals("ade", myMethods.removeMiddleTwo("abcde"));
 assertEquals("abef", myMethods.removeMiddleTwo("abcdef"));
 }

b) public String removeMiddleTwo(String str) {
 int mid = str.length() / 2;
 return str.substring(0, mid-1) + str.substring(mid + 1, str.length());
 }

4-10 Equilateral: (5, 5, 5)

 Isosceles with permutations: (3, 3, 2) (2, 3, 3) (3, 2, 3)

 Scalene with permutations: (2, 3, 4) (2 ,4, 3) (3, 2, 4) (3, 4, 2) (4 , 2, 3) (4, 3, 2)

 Not a triangle and permutations: (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 2, 1) (3, 1, 2)

 Not a triangle and permutations: (1, 2, 4) (1, 4, 2) (2, 1, 4) (2, 4, 1) (4, 2, 1) (4, 1, 2)

 Not a triangle and permutations: (0, 2, 3) (1, 0, 2) (2, 1, 0)

 Not a triangle with negative lengths and permutations: (-1, 2, 3) (1, -2, 3) (1, 2, -3)

 Not a triangle, all negative, but would be if equilateral if positive: (-5, -5, -5)

4-11 @Test
 public void testInRangeString() {
 ExampleMethods myMethods = new ExampleMethods();
 assertFalse(myMethods.inRange("")); // Empty string
 assertFalse(myMethods.inRange("ab")); // On the border -1
 assertTrue(myMethods.inRange("abc")); // On the border
 assertTrue(myMethods.inRange("abcd")); // On the border + 1
 assertTrue(myMethods.inRange("abcdef")); // In the middle
 assertTrue(myMethods.inRange("1234567890")); // In the middle

 assertTrue(myMethods.inRange("123456789012345")); // On the border - 1
 assertTrue(myMethods.inRange("1234567890123456")); // On the border
 assertFalse(myMethods.inRange("12345678901234567")); // On the border + 1
 }

