
Chapter 8

Search and Sort
Goals
This chapter begins by showing two algorithms used with arrays: selection sort and binary search.

After studying this chapter, you will be able to

 understand how binary search finds elements more quickly than sequential search

 arrange array elements into ascending or descending order (sort them)

 Analyze the runtime of algorithms

8.1 Binary Search
The binary search algorithm accomplishes the same function as sequential search (see Chapter 8,

“Arrays”). The binary search presented in this section finds things more quickly. One of the

preconditions is that the collection must be sorted (a sorting algorithm is shown later).

The binary search algorithm works like this. If the array is sorted, half of the elements can be

eliminated from the search each time a comparison is made. This is summarized in the following

algorithm:

Algorithm: Binary Search, used with sorted arrays

while the element is not found and it still may be in the array {

 if the element in the middle of the array is the element being searched for

 store the reference and signal that the element was found so the loop can terminate

 else

 arrange it so that the correct half of the array is eliminated from further search

}

Each time the search element is not the element in the middle, the search can be narrowed. If the

search item is less than the middle element, you search only the half that precedes the middle element.

If the item being sought is greater than the middle element, search only the elements that are greater.

The binary search effectively eliminates half of the array elements from the search. By contrast, the

sequential search only eliminates one element from the search field with each comparison. Assuming

that an array of strings is sorted in alphabetic order, sequentially searching for "Ableson" does not

take long. "Ableson" is likely to be located near the front of the array elements. However,

sequentially searching for "Zevon" takes much more time especially if the array is very big (with

millions of elements).

 The sequential search algorithm used in the indexOf method of the previous chapter would have

to compare all of the names beginning with A through Y before arriving at any names beginning with

Z. Binary search gets to "Zevon" much more quickly. When an array is very large, binary search is

much faster than sequential search. The binary search algorithm has the following preconditions:

1. The array must be sorted (in ascending order, for now).

2. The indexes that reference the first and last elements must represent the entire range of

meaningful elements.

The index of the element in the middle is computed as the average of the first and last indexes. These

three indexes—named first, mid, and last—are shown below the array to be searched.

 int n = 7;

 String[] name = new String[n];

 name[0] = "ABE";

 name[1] = "CLAY";

 name[2] = "KIM";

 name[3] = "LAU";

 name[4] = "LISA";

 name[5] = "PELE";

 name[6] = "ROY";

 // Binary search needs several assignments to get things going

 int first = 0;

 int last = n - 1;

 int mid = (first + last) / 2;

 String searchString = "LISA";

 // –1 will mean that the element has not yet been found

 int indexInArray = -1;

Here is a more refined algorithm that will search as long as there are more elements to look at and the

element has not yet been found.

Algorithm: Binary Search (more refined, while still assuming that the items have been sorted)

while indexInArray is -1 and there are more array elements to look through {

 if searchString is equal to name[mid] then

 let indexInArray = mid // This indicates that the array element equaled searchString

 else if searchString alphabetically precedes name[mid]

 eliminate mid . . . last elements from the search

 else

 eliminate first . . . mid elements from the search

 mid = (first + last) / 2; // Compute a new mid for the next loop iteration (if there is one)

}
// At this point, indexInArray is either -1, indicating that searchString was not found,

// or in the range of 0 through n - 1, indicating that searchString was found.

As the search begins, one of three things can happen (the code is searching for a String that equals

searchString):

1. The element in the middle of the array equals searchString. The search is complete. Store mid

into indexInArray to indicate where the String was found.

2. searchString is less than (alphabetically precedes) the middle element. The second half of the

array can be eliminated from the search field (last = mid - 1).

3. searchString is greater than (alphabetically follows) the middle element. The first half of the

array can be eliminated from the search field (first = mid + 1).

In the following code, if the String being searched for is not found, indexInArray remains –1. As

soon as an array element is found to equal searchString, the loop terminates. The second part of

the loop test stops the loop when there are no more elements to look at, when first becomes greater

than last, or when the entire array has been examined.

 // Binary search if searchString
 // is not found and there are more elements to compare.
 while (indexInArray == -1 && (first <= last)) {
 // Check the three possibilities
 if (searchString.equals(name[mid]))
 indexInArray = mid; // 1. searchString is found
 else if (searchString.compareTo(name[mid]) < 0)
 last = mid - 1; // 2. searchString may be in first half
 else
 first = mid + 1; // 3. searchString may be in second half

 // Compute a new array index in the middle of the search area
 mid = (first + last) / 2;
 } // End while

 // indexInArray now either is -1 to indicate the String is not in the array
 // or when indexInArray >= 0 it is the index of the first equal string found.

At the beginning of the first loop iteration, the variables first, mid, and last are set as shown

below. Notice that the array is in ascending order (binary search won't work otherwise).

Array and binary search indexes before comparing searchString ("LISA") to name[mid] ("LAU"):

name[0] "ABE" first == 0

name[1] "CLAY"

name[2] "KIM"

name[3] "LAU" mid == 3

name[4] "LISA"

name[5] "PELE"

name[6] "ROY" last == 6

After comparing searchString to name[mid], first is increased from 0 to mid + 1, or 4; last

remains 6; and a new mid is computed as (4 + 6) / 2 = 5.

name[0] "ABE" Because "LISA" is greater than name[mid],

name[1] "CLAY" the objects name[0] through name[3] no longer

name[2] "KIM" need to be searched through and can be eliminated from

name[3] "LAU" subsequent searches. That leaves only three possibilities.

name[4] "LISA" first == 4

name[5] "PELE" mid == 5

name[6] "ROY" last == 6

With mid == 5, "LISA".compareTo("PELE") < 0 is true. So last is decreased (5 - 1 = 4),

first remains 4, and a new mid is computed as mid = (4 + 4) / 2 = 4.

name[0] "ABE"

name[1] "CLAY"

name[2] "KIM"

name[3] "LAU"

name[4] "LISA" mid == 4 first == 4 last == 4

name[5] "PELE"

name[6] "ROY" Because "LISA" is less than name[mid], eliminate name[6].

Now name[mid] does equal searchString ("LISA".equals("LISA")), so indexInArray = mid. The

loop terminates because indexInArray is no longer -1. The following code after the loop and the

output confirm that "LISA" was found in the array.

 if (indexInArray == -1)
 System.out.println(searchString + " not found");
 else
 System.out.println(searchString + " found at index " + indexInArray);

Output

LISA found at index 4

Terminating when searchName Is Not Found
Now consider the possibility that the data being searched for is not in the array; if

searchString is "DEVON", for example.

 // Get the index of DEVON if found in the array

 String searchName = "DEVON";

This time the values of first, mid, and last progress as follows:

 first mid last Comment

#1 0 3 6 Compare "DEVON" to "LAU"

#2 0 1 2 Compare "DEVON" to "CLAY"

#3 2 2 2 Compare "DEVON" to "KIM"

#4 2 2 1 first <= last is false—the loop terminates

When the searchString ("DEVON") is not in the array, last becomes less than first (first >

last). The two indexes have crossed each other. Here is another trace of binary search when the

searched for element is not in the array.

 #1 #2 #3 #4

name[0] "ABE" first first

name[1] "CLAY" mid last

name[2] "KIM" last first, mid, last first

name[3] "LAU" mid

name[4] "LISA"

name[5] "PELE"

name[6] "ROY" last

After searchString ("DEVON") is compared to name[2] ("KIM"), no further comparisons are

necessary. Since DEVON is less than KIM, last becomes mid - 1, or 1. The new mid is computed to

be 2, but it is never used as an index. This time, the second part of the loop test terminates the loop.

 while(indexInArray == -1 && (first <= last))

Since first is no longer less than or equal to last, searchString cannot be in the array. The

indexInArray remains -1 to indicate that the element was not found.

Comparing Running Times
The binary search algorithm can be more efficient than the sequential search algorithm. Whereas

sequential search only eliminates one element from the search per comparison, binary search

eliminates half of the elements for each comparison. For example, when the number of elements (n)

== 1,024, a binary search eliminates 512 elements from further search in the first comparison, 256

during the second comparison, then 128, 64, 32, 16, 4, 2, and 1.

 When n is small, the binary search is not much faster than sequential search. However, when n

gets large, the difference in the time required to search for something can make the difference

between selling the software and having it flop. Consider how many comparisons are necessary when

n grows by powers of two. Each doubling of n would require potentially twice as many loop iterations

for sequential search. However, the same doubling of n would require potentially only one more

comparison for binary search.

 The Maximum Number of Comparisons during Two Different Search Algorithms

Power

of 2

n Sequential

Search

Binary

Search

2
2
 4 4 2

2
4
 16 16 4

2
8
 256 256 8

2
12

 4,096 4,096 12

2
24

 16,777,216 16,777,216 24

As n gets very large, sequential search has to do a lot more work. The numbers above represent the

maximum number of iterations to find an element or to realize it is not there. The difference between

24 comparisons and almost 17 million comparisons is quite dramatic even on a fast computer.

 In general, as the number of elements to search (n) doubles, binary search requires only one

iteration to eliminate half of the elements from the search. The growth of this function is said to be

logarithmic. The following graph illustrates the difference between linear search and binary search as

the size of the array grows.

log n

n

f(n)

n

Self-Check

8-1 Give at least one precondition for a successful binary search.

8-2 What is the maximum number of comparisons (approximately) performed on a list of 1,024 elements during

a binary search? (Hint: After one comparison, only 512 array elements need be searched; after two

searches, only 256 elements need be searched, and so on.)

8-3 During a binary search, what condition signals that the search element does not exist in an array?

8-4 What changes would be made to the binary search when the elements are sorted in descending order?

8.2 One Sorting Algorithm
The elements of a collection are often arranged into either ascending or descending order through a

process known as sorting. To sort an array, the elements must be compared. For int and double, <

or > suffices. For String, Integer, and BankAccount objects, the compareTo method is used.

 There are many sorting algorithms. Even though others are more efficient (run faster), the

relatively simple selection sort is presented here. The goal here is to arrange an array of integers into

ascending order, the natural ordering of integers.

Object

Name

Unsorted

Array

Sorted

Array
data[0]

data[1]

data[2]

data[3]

data[4]

76.0

91.0

100.0

62.0

89.0

62.0

76.0

89.0

91.0

100.0

With the selection sort algorithm, the largest integer must end up in data[n - 1] (where n is the

number of meaningful array elements). The smallest number should end up in data[0]. In general,

an array x of size n is sorted in ascending order if x[j] <= x[j + 1] for j = 0 to n-2.

 The selection sort begins by locating the smallest element in the array by searching from the first

element (data[0]) through the last (data[4]). The smallest element, data[2] in this array, is then

swapped with the top element, data[0]. Once this is done, the array is sorted at least through the

first element.

top == 0 Before After Sorted
data[0]

data[1]

data[2]

data[3]

data[4]

76.0

91.0

100.0

62.0

89.0

62.0

91.0

100.0

76.0

89.0

Placing the Largest Value in the

"Top" Position (index 0)

The task of finding the smallest element is accomplished by examining all array elements and keeping

track of the index with the smallest integer. After this, the smallest array element is swapped with

data[0]. Here is an algorithm that accomplishes these two tasks:

Algorithm: Finding the smallest in the array and switching it with the topmost element

(a) top = 0

// At first, assume that the first element is the smallest

(b) indexOfSmallest = top

// Check the rest of the array (data[top + 1] through data[n - 1])

(c) for index ranging from top + 1 through n - 1

 (c1) if data[index] < data[indexOfSmallest]

 indexOfSmallest = index

// Place the smallest element into the first position and place the first array

// element into the location where the smallest array element was located.

(d) swap data[indexOfSmallest] with data[top]

The following algorithm walkthrough shows how the array is sorted through the first element. The

smallest integer in the array will be stored at the "top" of the array data[0]. Notice that

indexOfSmallest changes only when an array element is found to be less than the one stored in

data[indexOfSmallest]. This happens the first and third times step c1 executes.

 indexOf

 Step top Smallest index [0] [1] [2] [3] [4] n

 ? ? ? 76.0 91.0 100.0 62.0 89.0 5
(a) 0 " " " " " " " "
(b) " 0 " " " " " " "
(c) " " 1 " " " " " "
(c1) " 1 " " " " " " "
(c) " " 2 " " " " " "
(c1) " " " " " " " " "
(c) " " 3 " " " " " "
(c1) " 2 " " " " " " "
(c) " " 4 " " " " " "
(c1) " " " " " " " " "
(c) " " 5 " " " " " "
(d) " " " 62.0 " " 76.0 " "

This algorithm walkthrough shows indexOfSmallest changing twice to represent the index of the

smallest integer in the array. After traversing the entire array, the smallest element is swapped with

the top array element. Specifically, the preceding algorithm swaps the values of the first and fourth

array elements, so 62.0 is stored in data[0] and 76.0 is stored in data[3]. The array is now

sorted through the first element!

 The same algorithm can be used to place the second smallest element into data[1]. The second

traversal must begin at the new "top" of the array—index 1 rather than 0. This is accomplished by

incrementing top from 0 to 1. Now a second traversal of the array begins at the second element

rather than the first. The smallest element in the unsorted portion of the array is swapped with the

second element. A second traversal of the array ensures that the first two elements are in order. In this

example array, data[3] is swapped with data[1] and the array is sorted through the first two

elements.

top == 1 Before After Sorted
data[0]

data[1]

data[2]

data[3]

data[4]

62.0

91.0

100.0

76.0

89.0

62.0

76.0

100.0

91.0

89.0

This process repeats a total of n - 1 times.

top == 2 Before After Sorted
data[0]

data[1]

data[2]

data[3]

data[4]

62.0

76.0

100.0

91.0

89.0

62.0

76.0

89.0

91.0

100.0

And an element may even be swapped with itself.

top == 3 Before After Sorted
data[0]

data[1]

data[2]

data[3]

data[4]

62.0

76.0

89.0

91.0

100.0

62.0

76.0

89.0

91.0

100.0

When top goes to data[4], the outer loop stops. The last element need not compared to anything.

It is unnecessary to find the smallest element in an array of size 1. This element in data[n - 1]

must be the largest (or equal to the largest), since all of the elements preceding the last element are

already sorted in ascending order.

top == 3 and 4 Before After Sorted

data[0]

data[1]

data[2]

data[3]

data[4]

62.0

76.0

89.0

91.0

100.0

62.0

76.0

89.0

91.0

100.0

Therefore, the outer loop changes the index top from 0 through n - 2. The loop to find the smallest

index in a portion of the array is nested inside a loop that changes top from 0 through n - 2 inclusive.

Algorithm: Selection Sort

for top ranging from 0 through n - 2 {

 indexOfSmallest = top

 for index ranging from top + 1 through n - 1 {

 if data[indexOfSmallest] < data[index] then

 indexOfSmallest = index

 }

 swap data[indexOfSmallest] with data[top]

}

Here is the Java code that uses selection sort to sort the array of numbers shown. The array is printed

before and after the numbers are sorted into ascending order.

 double[] data = { 76.0, 91.0, 100.0, 62.0, 89.0 };
 int n = data.length;

 System.out.print("Before sorting: ");
 for(int j = 0; j < data.length; j++)
 System.out.print(data[j] + " ");
 System.out.println();

 int indexOfSmallest = 0;

 for(int top = 0; top < n - 1; top++) {
 // First assume that the smallest is the first element in the subarray
 indexOfSmallest = top;

 // Then compare all of the other elements, looking for the smallest
 for(int index = top + 1; index < data.length; index++)
 { // Compare elements in the subarray
 if(data[index] < data[indexOfSmallest])
 indexOfSmallest = index;
 }

 // Then make sure the smallest from data[top] through data.size

 // is in data[top]. This message swaps two array elements.
 double temp = data[top]; // Hold on to this value temporarily
 data[top] = data[indexOfSmallest];
 data[indexOfSmallest] = temp;
 }
 System.out.print(" After sorting: ");
 for (int j = 0; j < data.length; j++)
 System.out.print(data[j] + " ");
 System.out.println();

Output

Before sorting: 76.0 91.0 100.0 62.0 89.0

 After sorting: 62.0 76.0 89.0 91.0 100.0

Sorting an array usually involves elements that are more complex. The sorting code is most often

located in a method. This more typical context for sorting will be presented later.

 This selection sort code arranged the array into ascending numeric order. Most sort routines

arrange the elements from smallest to largest. However, with just a few simple changes, any primitive

type of data (such as int, char, and double) may be arranged into descending order using the >

operator.

 if(data[index] < data[indexOfSmallest])
 indexOfSmallest = index;

becomes

 if(data[index] > data[indexOfLargest])
 indexOfLargest = index;

Only primitive types can be sorted with the relational operators < and >. Arrays of other objects,

String and BankAccount for example, have a compareTo method to check the relationship of one

object to another.

Self-Check

8-5 Alphabetizing an array of strings requires a sort in which order, ascending or descending?

8-6 If the smallest element in an array already exists as first, what happens when the swap function is

called for the first time (when top = 0)?

8-7 Write code that searches for and stores the largest element of array x into largest. Assume that all

elements from x[0] through x[n - 1] have been given meaningful values.

Answers to Self-Check Questions
8-1 The array is sorted.

8-2 1,024; 512; 256; 128; 64; 32; 16; 8; 4; 2; 1 == 11

8-3 When first becomes greater than last.

8-4 Change the comparison from less than to greater than.
 if(searchString.compareTo(str[mid]) > 0)
 last = mid - 1;
 else
 first= mid + 1; // ...

8-5 Ascending

8-6 The first element is swapped with itself.

8-7 int largest = x[0];
 for(int j = 0; j < n; j++) {
 if(x[j] > largest)
 largest = x[j];
 }

