

Chapter 9

Classes with Instance Variables

Goals

 Implement Java Classes as a set of methods and variables

 Experience designing and testing a class that is part of a large system

|

9.1 Constructing Objects from Classes
Object-oriented programs use objects constructed from many different classes. They may be established Java

classes that are part of the download, classes bought from other software developers, classes downloaded for free,

or classes designed by programmers to fulfill the needs of a particular application. A class provides a blueprint for

constructing objects, and defines the messages that will be available to instances of each class. The class also

defines the values that are encapsulated in every object as the object's state.

One class constructing three objects, each with its own set of values (state)

Every Java class has methods that represent the messages each object will understand. Each object of the class has

its own set of instance variables to store the values contained in each object. The collection of instance variables is

also known as the state of the object.

Methods and Data Together

All classes have these things in common:

 private instance variables that store the state of the objects

 constructors that initialize the state

 methods to modify the state of objects

 methods to provide access to the current state of objects

Java classes begin with public class followed by the class name. The instance variables and methods follow

within a set of matching curly braces. The methods and state should have some sort of meaningful connection.

Simplified General Form: A Java class

public class class-name {

 // Instance variables (every instance of this class will get its own)

 private variable declaration;

 private variable initialization;

 // Constructor(s) (methods with the same name as the class and no return type)

 public class-name(parameters) {

 // …
 }

 // Any number of methods

 public return-type method-name-1(parameters) {

 // …
 }
}

Here is a simplified version of the BankAccount class. The two instance variables ID and balance are available

to all methods of the class.

// This class models a minimal bank account.
public class BankAccount {

 // Instance variables--every BankAccount object will have its own values.
 private String ID;
 private double balance;

 // Initialize instance variables during construction.

 public BankAccount(String initialID, double initialBalance) {

 ID = initialID;
 balance = initialBalance;
 }

 public void deposit(double depositAmount) {

 balance = balance + depositAmount;
 }

 public void withdraw(double withdrawalAmount) {

 balance = balance - withdrawalAmount;
 }

 public String getID() {

 return ID;
 }

 public double getBalance() {

 return balance;
 }
}

With the class stored in a file, it can be used as a blueprint to construct many objects. Each object will have its own

ID and balance. Each object will understand the withdraw, deposit, getID, and getBalance methods. In the

following program, the numbers (for example) indicate which method will execute when the message is sent.

For example, represents transfer of control from the main method to the deposit method in the BankAccount

class.

 @Test
 public void testToDemonstrateControlFlow() {

 BankAccount acctOne = new BankAccount("01543C", 100.00);

 acctOne.deposit(50.0);

 acctOne.withdraw(25.0);

 assertEquals("01543C", acctOne.getID());

 assertEquals(125.0, acctOne.getBalance(), 1e-14);

 }

Instance Variables

In this first example of a type implemented as a Java class, each BankAccount object stores data to represent a

simple account at a bank. Each BankAccount object stores some unique identification ID and an account balance.

BankAccount methods include making deposits, making withdrawals, and accessing the ID and the current

balance.

 The private instance variables represent the state. BankAccount has two private instance variables: ID (a

String) and balance (a double). Every BankAccount object remembers its own ID and its own current balance.

 Notice that the instance variables are not declared within a method. They are declared within the set of curly

braces that bounds the class. This means that the instance variables will be accessible throughout the class, and

every method will have access to them.

 If you look at the BankAccount class again, you will notice that every method references at least one of the

instance variables. Also, each instance variable is accessed by at least two methods (both the constructor

BankAccount and getID need ID).

 Because the instance variables are declared private, programs using instances of the class cannot access the

instance variables directly. This is good. The class safely encapsulated the state, which was initialized by the

constructor (described below). The only way to then change or access the state of an object is through public

methods.

Constructors

The BankAccount class shows that all BankAccount method headings are public. They also have return types

(including void to mean return nothing). Some have parameters. However, do you notice something different

about the method named BankAccount?

 The BankAccount method has no return type. It also has the same name as the class! This special method is

known as a constructor, because it is the method called when objects are constructed. When a constructor is

called, memory is allocated for the object. Then, the instance variables are initialized, often with the arguments to

the constructor. Here are some object constructions that result in executing the class’s constructor while passing

values:

 new String("An initial part of this object's state");
 new BankAccount("Charlie", 10.00);

Constructor parameters often initialize the private instance variables. The constructor returns a reference to the new

object. This reference value can then be assigned to an object reference of the same type. That is why you often see

the class name on both sides of the assignment operator =. For example, the following code constructs a

BankAccount object with an initial ID of "Phoenix" and an initial balance of 507.34. After the constructor has

been called, the reference to this new BankAccount object is assigned to the reference variable named one.

 BankAccount one = new BankAccount("Phoenix", 507.34);

The following code implements BankAccount’s two-parameter constructor:

 // This constructor initializes the values of the instance variables

 // using the arguments use when objects are constructed.
 public BankAccount(String accountID, double initialBalance) {
 ID = accountID;
 balance = initialBalance;
 }

This method executes whenever a BankAccount gets constructed with two arguments (a String followed by a

double). For example, in the following code, the ID "Jessie" is passed to the parameter ID, which in turn is

assigned to the private instance variable ID. The starting balance of 500.00 is also passed to the parameter named

initialBalance, which in turn is assigned to the private instance variable balance.

 BankAccount anAccount = new BankAccount("Jessie", 500.00);

Some methods provide access to private instance variables. They are sometimes called “getters”, because the

method "gets" the value of an instance variable (and they usually begin with get). These methods often simply

return the value of an instance variable with the return statement. Getter methods are necessary because the

instance variables are not directly accessible when they are declared private.

 public String getID() {
 return ID;
 }

 public double getBalance() {
 return balance;
 }

To get the ID and balance, send the object separate getID and getBalance messages.

 @Test

 public void showMessagesWayAhead() {
 BankAccount anAccount = new BankAccount("Jessie", 500.00);
 assertEquals("Jessie", anAccount.getID());
 assertEquals(500.00, anAccount.getBalance(), 1e-14);
 }

The state of an object can change. Some methods are designed to modify the values of the instance variables. Both

deposit and withdraw change the state.

 public void deposit(double depositAmount) {
 balance = balance + depositAmount;
 }

 public void withdraw(double withdrawalAmount) {
 balance = balance - withdrawalAmount;
 }

These two simple test methods assert the changing state of an object.

 @Test
 public void testDepositWithPositiveAmount() {
 BankAccount anAccount = new BankAccount("Jessie", 500.00);
 anAccount.deposit(123.45);
 assertEquals(623.45, anAccount.getBalance(), 1e-14);
 }

 @Test
 public void testWithdrawWithPositiveAmount() {
 BankAccount anAccount = new BankAccount("Jessie", 500.00);
 anAccount.withdraw(123.45);
 assertEquals(376.55, anAccount.getBalance(), 1e-14);
 }

Self-Check

Use the following SampleClass to answer the Self-Check question that follows.

// A class that has no meaning other than to show the syntax of a class.
public class SampleClass {

 // Instance variables
 private int first;
 private int second;

 public SampleClass(int initalFirst, int initialSecond) {
 first = initalFirst;
 second = initialSecond;
 }

 public int getFirst() {
 return first;
 }

 public int getSecond() {
 return second;
 }

 public void change(int amount) {
 first = first + amount;
 second = second - amount;
 }
} // End SampleClass

9-1 Fill in the blanks that would make the assertions pass.

// A unit test to test class SampleClass
import static org.junit.Assert.*;
import org.junit.Test;

public class SampleClassTest {

 @Test
 public void testGetters() {
 SampleClass sc1 = new SampleClass(1, 4);
 SampleClass sc2 = new SampleClass(3, 5);
 assertEquals(, sc1.getFirst());
 assertEquals(, sc1.getSecond());
 assertEquals(, sc2.getFirst());
 assertEquals(, sc2.getSecond());
 }

 @Test
 public void testChange() {
 SampleClass sc1 = new SampleClass(1, 4);
 SampleClass sc2 = new SampleClass(3, 5);
 sc1.change(7);
 sc2.change(-3);
 assertEquals(, sc1.getFirst());
 assertEquals(, sc1.getSecond());
 assertEquals(, sc2.getFirst());
 assertEquals(,sc2.getSecond());
 }
}

Use this Java class to answer the questions that follow.

// A class to model a simple library book.
public class LibraryBook {

 // Instance variables
 private String author;
 private String title;
 private String borrower;

 // Construct a LibraryBook object and initialize instance variables

 public LibraryBook(String initTitle, String initAuthor) {
 title = initTitle;
 author = initAuthor;
 borrower = null; // When borrower == null, no one has the book
 }

 // Return the author.
 public String getAuthor() {
 return author;
 }

 // Return the borrower's name if the book has been checked out or null if not
 public String getBorrower() {
 return borrower;
 }

 // Records the borrower's name
 public void borrowBook(String borrowersName) {
 borrower = borrowersName;
 }

 // The book becomes available. When null, no one is borrowing it.
 public void returnBook() {
 borrower = null;
 }
}

9-2 What is the name of the type above?

9-3 What is the name of the constructor?

9-4 Except for the constructor, name all of the methods.

9-5 getBorrower returns a reference to what type?

9-6 borrowBook returns a reference to what type?

9-7 What type argument must be part of all borrowBook messages?

9-8 How many arguments are required to construct one LibraryBook object?

9-9 Write the code to construct one LibraryBook object using your favorite book and author.

9-10 Send the message that borrows your favorite book. Use your own name as the borrower.

9-11 Write the message that reveals the name of the person who borrowed your favorite book (or null if no

one has borrowed it).

9-12 Which of the following two assertions will pass, a, b, or both?

 @Test
 public void testGetters() {
 LibraryBook book1 = new LibraryBook("C++", "Michael Berman");
 assertEquals(null, book1.getBorrower()); // a.
 book1.borrowBook("Sam Mac");
 assertEquals("Sam Mac", book1.getBorrower()); // b.
 }

9-13 Write method getTitle that returns the title of any LibraryBook object.

9-14 Fill in the blanks so the assertions pass.

 @Test
 public void testGetters() {
 LibraryBook book1 = new LibraryBook("C++", "Michael Berman");
 assertEquals(, book1.getAuthor());
 assertEquals(, book1.getBorrower());
 }

9-15 Write method isAvailable as if it were inside the LibraryBook class to return false if a LibraryBook

is not borrowed or true if the borrower is null. Use == to compare null to an object reference.

9-16 Fill in the blanks in this test method to verify getTitle works so all assertions pass.

 @Test
 public void isAvailable() {
 LibraryBook book1 = new LibraryBook("C++", "Berman");
 LibraryBook book2 = new LibraryBook("C#", "Stepp");
 assert (book1.isAvailable());
 assert (book2.isAvailable());

 book1.borrowBook("Sam ");
 book2.borrowBook("Li");
 assert (book1.isAvailable());
 assert (book2.isAvailable());
 }

Overriding toString

Each class should have its own toString method so the state of the object can be visually inspected. Java is

designed such that all classes extend a class named Object (or each class extends a class that extends the Object

class). This means all Java classes inherit the eleven methods of Object, one of which is toString. Doing

nothing to a new class allows toString messages to invoke the toString method of class Object. The return

string is the name of the class followed by @ followed by a code written in hexadecimal (base 16 where 10 is A and

15 is F).

 LibraryBook book1 = new LibraryBook("C++", "Berman");
 System.out.println(book1.toString());

Output
LibraryBook@e4457d

To get a more meaningful toString that shows the current state of any object, you can override the toString

method of class Object with the same method signature.

 public String toString() {
 return title + ", borrower: " + borrower;
 }

With the toString method of Object overridden to reflect the new type, the output better represents the state of

the object.

 @Test
 public void testToString() {
 LibraryBook book1 = new LibraryBook("C++", "Michael A. Berman");
 LibraryBook book2 = new LibraryBook("Java", "Rick Mercer");
 book2.borrowBook("Sam Mac");
 assertEquals("C++, borrower: null", book1.toString());
 assertEquals("Java, borrower: Sam Mac", book2.toString());
 }

 Self Check
9-17 Add a toString method for the BankAccount class to show the ID followed by a blank space and the

current balance. You will need the instance variables in BankAccount.

 public class BankAccount {
 private String ID;
 private double balance;

 public BankAccount(String initID, double initBalance) {
 ID = initID;
 balance = initBalance;
 }
 // Add toString as if it were here
 }

Naming Conventions

A method that modifies the state of an object is typically given a name that indicates its behavior. This is easily

accomplished if the designer of the class provides a descriptive name for the method. The method name should

describe—as best as possible—what the method actually does. It should also help to distinguish modifying

methods from accessing methods. Use verbs to name modifying methods: withdraw, deposit, borrowBook,

and returnBook, for example. Give accessing methods names to indicate that the messages will return some

useful information about the objects: getBorrower and getBalance, for example. Above all, always use

intention-revealing identifiers to accurately describe what the method does. For example, don’t use foo as the

name of a method that withdraws money.

public or private?

One of the considerations in the design of any class is declaring methods and instance variables with the most

appropriate access mode, either public or private. Whereas programs outside the class can access the public

methods of a class, the private instance variables are only known in the class methods. For example, the

BankAccount instance variable named balance is known only to the methods of the class. On the other hand, any

method declared public is known wherever the object was declared.

Access Mode Where the Identifier Can Be Accessed (where the identifier is visible)

public In all parts of the class and anywhere an instance of the class is declared

private Only in the same class

Although instance variables representing state could be declared as public, it is highly recommended that all

instance variables be declared as private. There are several reasons for this. The consistency helps simplify

some design decisions. More importantly, when instance variables are made private, the state can be modified

only through a method. This prevents other code from indiscriminately changing the state of objects. For

example, it is impossible to accidentally make a credit to acctOne like this:

 BankAccount acctOne = new BankAccount("Mine", 100.00);

 // A compiletime error occurs: attempting to modify private data

 acctOne.balance = acctOne.balance + 100000.00; // <- ERROR

or a debit like this:

 // A compiletime error occurs at this attempt to modify private data

 acctOne.balance = acctOne.balance - 100.00; // <- ERROR

This represents a widely held principle of software development—data should be hidden. Making instance

variables private is one characteristic of a well-designed class.

Answers to Self-Check

9-1 SampleClass sc2 = new SampleClass(3, 5);
 assertEquals(_1 , sc1.getFirst());
 assertEquals(4 , sc1.getSecond());
 assertEquals(3 , sc2.getFirst());
 assertEquals(5 , sc2.getSecond());

 sc2.change(-3);
 assertEquals(__8 , sc1.getFirst());

 assertEquals(-3 , sc1.getSecond());
 assertEquals(0 , sc2.getFirst());
 assertEquals(8 , sc2.getSecond());

9-2 type: LibraryBook

9-3 constructor: LibraryBook

9-4 LibraryBook (constructor) getAuthor getBorrower borrowBook returnBook

9-5 String

9-6 nothing, it is a void return type.

9-7 String

9-8 two (both String)

9-9 LibraryBook aBook = new LibraryBook("Computing Fundamentals", "Rick Mercer");

9-10 aBook.borrowBook("Kim");

9-11 aBook.getBorrower();

9-12 both a and b pass

9-13 public String getTitle() {
 return title;
 }

9-14 @Test
 public void testGetters() {
 LibraryBook book1 = new LibraryBook("C++", "Michael Berman");
 assertEquals("Michael Berman", book1.getAuthor());
 assertEquals(null, book1.getBorrower());
 }

9-15 public boolean isAvailable() {
 return borrower == null;
 }

9-16 Fill in the blanks in this test method to verify getTitle works so all assertions pass.
 assertTrue(book1.isAvailable());
 assertTrue (book2.isAvailable());
 book1.borrowBook("Sam Mac");
 book2.borrowBook("Sam Mac");
 assertFalse(book1.isAvailable());
 assertFalse(book2.isAvailable());
 assertEquals("_Sam _", book1.getBorrower());
 assertEquals("_Li__", book2.getBorrower());

9-17 public String toString() {
 return "" + ID + " " + balance;
 }

