
Chapter 10

An Array Instance Variable

Goal

 Implement a type that uses an array instance variable.

10.1 StringBag — A Simple Collection Class
As you continue your study of computing fundamentals, you will spend a fair amount of time using arrays and

managing collections of data. The Java array is one of several data storage structures used inside classes with

the main task of storing a collection. These are known as collection classes with some of the following

characteristics:

 The main responsibility of a collection class is to store a collection of objects

 Objects are added and removed from a collection

 A collection class allows clients to access the individual elements

 A collection class may have search-and-sort operations for locating a particular item.

 Some collections allow duplicate elements; other collections do not

The Java array uses subscript notation to access individual elements. The collection class shown next

exemplifies a higher-level approach to storing a collection of objects. It presents users with messages and hides

the array processing details inside the methods. The relatively simple collection class also provides a review of

Java classes and methods. This time, however, the class will have an array instance variable. The methods will

employ array-processing algorithms. More specifically, this collection will represent a bag. Bag is a

mathematical term for

StringBag A StringBag object will have the

following characteristics:

 A StringBag object can store a collection of String objects

 StringBag elements need not be unique, duplicates are allowed

 The order of elements is not important

 Programmers can ask how many occurrences of a String are in the bag (may be 0)

 Elements can be removed from a StringBag object

 This StringBag class is useful for learning about collections, array processing, Java classes and Test-

Driven Development.

A StringBag object can store any number of String objects. A StringBag object will understand the

messages such as add, remove and occurencesOf. The design of StringBag is provided here as three

commented method headings.

// Put stringToAdd into this StringBag (order not important)
public void add(String stringToAdd);

// Return how often element equals an element in this StringBag

public int occurencesOf(String element);

// Remove one occurrence of stringToRemove if found and return true.
// Return false if stringToRemove is not found in this StringBag.
public boolean remove(String stringToRemove);

Using Test Driven Development, the tests come first. Which method should be tested first? It's difficult to

implement only one and know it works. If we work on add alone, how do we know an element has actually

been added. One solution is to develop occurencesOf at the same time and verify both are working together.

A test method could add several elements and verify they are there with occurencesOf. We should also verify

contains returns false for elements in the bag. So add(String) and occurencesOf(String) will be

developed first. We'll begin with a unit test with one test method that adds one element. occurencesOf should

return 0 before add and 1 after.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringBagTest {

 @Test
 public void testAddAndOccurencesOfForOnlyOneElement () {
 StringBag friends = new StringBag();
 friends.add("Sage");

 assertEquals(1, friends.occurencesOf("Sage"));
 }

}

Of course, this unit test will not compile. The class doesn't even exist; nor do the add and occurencesOf

methods; nor does the constructor. The following start at a StringBag type at least allows the unit test to

compile. The assertions will not pass, at least not yet. All methods are written as stubs a temporary substitute

for yet-to-be-developed code.

// A class for storing a multi-set (bag) of String elements.
public class StringBag {

 // Construct an empty StringBag object (no elements stored yet)
 public StringBag() {
 // TODO Complete this method
 }

 // Add an element to this StringBag
 public void add(String stringToAdd) {
 // TODO Complete this method
 }

 // Return how often element equals an element in this StringBag

 public int occurencesOf(String element) {
 // TODO Complete this method
 return 0;
 }
}

The StringBag Constructor

The private instance variables of the StringBag class include an array named data for storing a collection of

String objects. Each StringBag object also has an integer named n to maintain the number of meaningful

elements that are in the StringBag. The add and occurencesOf methods will need both instance

variables to accomplish their responsibilities. The constructor establishes an empty StringBag object by

setting n to zero. The array capacity is set to the arbitrary initial capacity of 10. We don’t know how big the

collection will grow to when used later (and we will have to deal with that later).

public class StringBag {

 private String[] data; // Stores the collection
 private int n; // Current number of elements

 // Construct an empty StringBag object
 public StringBag() {

 n = 0;

 data = new String[10]; // Initial capacity is 10

 }

public void add(String stringToAdd)

Both n and data must be available to the add method. This is not a problem, since any StringBag method has

access to the private instance variables of StringBag. To add an element to the StringBag, the argument

reference passed to the stringToAdd parameter can be placed at the "end" of the array, or more specifically, at

the first available array location. This two-step algorithm summarizes how a new String is added to the first

available array position:

Algorithm: Adding an element

data[n] = the-argument-passed-to-StringBag.add

increment n by +1

The argument passed to StringBag’s add method is stored into the proper array location using n as the index.

Then n gets incremented by 1 to reflect the new addition. Incrementing n by 1 maintains the number of

elements in the StringBag.

 Incrementing n also conveniently sets up a situation where the next added element is inserted into the

proper array location. The array location at data[n] is the next place to store the next element can be placed.

This is demonstrated in the following view of the state of the StringBag before and after the string "and a

fourth" after this code executes

 StringBag bag = new StringBag();
 bag.add("A string");
 bag.add("Another string");
 bag.add("and still another");

 Before

Instance Variables State of bagOfStrings
data[0] "A string"
data[1] "Another string"
data[2] "and still another"

data[3] null // next available
data[4] null

data[9] null
 n 3

After

Instance Variable State of bagOfStrings
data[0] "A string"
data[1] "Another string"
data[2] "and still another"

data[3] "and a fourth"
data[4] null // next available
... ...
data[9] null
 n 4

Here is the add method that places new elements at the first available location. It is important to keep the

elements together. Don't allow null between elements. This method ensures nulls are not in the mix.

 // Add an element to this StringBag
 public void add(String stringToAdd) {
 // Store the reference into the array
 data[n] = stringToAdd;
 // Make sure n is always increased by one
 n++;
 }

The unit test is run, but the single test method does not pass; occurencesOf still does nothing.

public int occurencesOf(String element)

Since there is no specified ordering for Bags in general or StringBag in particular, the element passed as an

argument may be located at any index. Also, a value that equals the argument may occur more than once. Thus

each element in indexes 0..n-1 must be compared. It makes the most sense to use the equals method, assuming

equals has been overridden to compare the state of two objects rather than the reference values. And with

String, equals does compare state.

 By setting result to 0 below, the occurencesOf method first states there are no elements equal to

element.

 // Return how often element equals an element in this StringBag

 public int occurencesOf(String element) {
 int result = 0;
 for (int subscript = 0; subscript < n; subscript++) {
 if (element.equals(data[subscript]))
 result++;
 }
 return result;
 }

The for loop then iterates over every meaningful element in the array. Each time element equals any array

element, result increments by 1. Our first assertion passes.

 @Test
 public void testAddAndOccurencesOfForOnlyOneElement() {
 StringBag friends = new StringBag();
 friends.add("Sage");
 assertEquals(1, friends.occurencesOf("Sage"));
 }

Other Test Methods

Another test method verifies that duplicate elements are can exist and are found.

 @Test
 public void testOccurencesOf() {
 StringBag names = new StringBag();
 names.add("Tyler");
 names.add("Devon");
 names.add("Tyler");
 names.add("Tyler");
 assertEquals(1, names.occurencesOf("Devon"));
 assertEquals(3, names.occurencesOf("Tyler"));
 }

Another test method verifies 0 is returned when the String argument is not in the bag.

 @Test
 public void testOccurencesOfWhenItShyouldReturnZeros() {
 StringBag names = new StringBag();
 assertEquals(0, names.occurencesOf("Devon"));
 assertEquals(0, names.occurencesOf("Tyler"));
 names.add("Sage");
 names.add("Hayden");
 assertEquals(0, names.occurencesOf("Devon"));

 assertEquals(0, names.occurencesOf("Tyler"));
 }

Another test method documents that this collection is case sensitive.

 @Test
 public void testOccurencesOfForCaseSensitivity() {
 StringBag names = new StringBag();
 names.add("UPPER");
 names.add("Lower");

 // Not in the bag (case sensitive)
 assertEquals(0, names.occurencesOf("upper"));
 assertEquals(0, names.occurencesOf("lower"));

 // In the bag

 assertEquals(1, names.occurencesOf("UPPER"));
 assertEquals(1, names.occurencesOf("Lower"));

 }

Yet another test method tries to add 500 strings only to find something goes wrong.

 @Test
 public void testAdding500Elements() {
 StringBag bag = new StringBag();
 for (int count = 1; count <= 500; count++) {
 bag.add("Str#" + count);
 }
 assertEquals(1, bag.occurencesOf("Str#1"));
 assertEquals(1, bag.occurencesOf("Str#2"));
 assertEquals(1, bag.occurencesOf("Str#499"));
 assertEquals(1, bag.occurencesOf("Str#500"));
 }

 java.lang.ArrayIndexOutOfBoundsException: 10

 at StringBag.add(StringBag.java:34)

 at StringBagTest.testAdding500Elements(StringBagTest.java:39)

After 10 adds, n == 10. The attempt to store the 11th element in the StringbBag results in an

ArrayIndexOutOfBounds exception with the attempt to assign an element to data[10].

 Before any new String is added, a check should be made to ensure that there is the capacity to add

another element. If the array is filled to capacity (n == data.length) there is not enough room to add the new

element. In this case, we need to increase the array capacity.

 The code to increase the capacity of the array could be included in the add method. However this task is

complex enough that it will be placed into a "helper" method named growArray. The add method changes

with a guarded action: grow the array only when necessary.

 public void add(String stringToAdd) {

 // Make sure the array can store a new element

 if (n == data.length) {
 growArray();
 }

 // Store the reference into the array
 data[n] = stringToAdd;
 // Make sure my_size is always increased by one
 n++;

 }

The growArray method will help this add method perform its task with less code. The add method delegates a

well-defined responsibility of growing the array to another method. This makes for more readable and

maintainable code.

private void growArray()

Because growArray is inside class StringBag, any StringBag object can send a growArray message to

itself. The message was sent from this object in add. And because data is an instance variable, any

StringBag object can change data to reference a new array with more capacity. This is done with the

following algorithm:

 Make a temporary array that is bigger (by 10) than the instance variable.

 Copy the original contents (data[0] through data[n - 1]) into this temporary array.

 Assign the reference to the temporary array to the array instance variable

 // Change data to have the same elements in indexes 0..n - 1
 // and have the same number of new array locations to store new elements.
 private void growArray() {
 String[] temp = new String[n + 10];

 // Copy all existing elements into the new and larger array

 for (int index = 0; index < n; index++) {
 temp[index] = data[index];
 }
 // Store a reference to the new bigger array
 // as part of this object's state
 data = temp;
 }

When the array is filled to capacity (with the Strings "A" .. "J" added in this example), the instance variables

data and n look like this:

data

data.length == 10

n == 10

"A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

During the message add("Z");, the add method would send the growArray message in order to increase the

capacity by 10. The instance variables would change to this picture of memory:

data

data.length == 20

n == 11

"A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "Z" null null null null null null null null null

Note: The growArray method is declare private because it is better design to not clutter the public part of a

class with things that users of the class are not able to use or are not interested in using. It is good practice to

hide details from users of your software.

public boolean remove(String stringToRemove)

If stringToRemove is found to equal one of the strings referenced by the array, remove effectively takes one

of the occurrences of the String element. Consider the following test method that attempts to remove "Not in
the bag".

 @Test
 public void testRemoveOneThatIsThereAnotherThatIsNot() {
 StringBag bag = new StringBag();
 bag.add("A string");

 bag.add("Another string");
 bag.add("and still another");
 bag.add("and a fourth");
 assertFalse(bag.remove("Not in the bag"));
 assertTrue(bag.remove("Another string"));
 }

Here are the values of the instance variables data and n and of the local objects index and stringToRemove

while trying to remove "Another string":

Instance Variable State of bag
data[0] "A string"
data[1] "Another string"
data[2] "and still another"
data[3] "and a fourth"
data[4] null

data[9] null
n 4

The algorithm used to remove an element is in these steps (other algorithms also work).

 Find the index of an element to remove, or set to -1 if stringToRemove does not exist

 If the index != -1, move the element at the end of the array to this index

 Decrement n (n--)

The remove algorithm calls the private helper method indexOf that has the purpose of returning an index of

the string to be removed. If the string does not equal an array element, the indexOf method (discussed later)

returns -1. In this case of trying to remove the string "Not in the bag" the method simply returns false. The

method terminated and the first assertion (above) passes.

 // Remove an element that equals stringToRemove if found and return true.
 // Return false if stringToRemove was not found in this StringBag.
 public boolean remove(String stringToRemove) {

 // indexOf returns the index of an element that equals stringToRemove
 // or -1 if stringToRemove is not in this bag.
 int subscript = indexOf(stringToRemove);
 if (subscript == -1)
 return false;
 else { // . . .

In the 2
nd

 assertion assertTrue(bag.remove("Another string")); that attempts to remove an element that

does exist, the array will be changed, n will be changed, and indexOf will return true. These variables that

are local to remove indicate the string was found at index 1.

Local Variable State of remove’s Local Variable after a Sequential Search

stringToRemove "Another string"

index 1

Once found, the reference stored in data[index] must somehow be removed from the array, which is currently

data[1] or "Another string". The simple way to do this is to move the last element into the spot where

stringToRemove was found. It is okay to destroy the reference in data[1]. This is the object to be removed from

the StringBag. Also, since there is no ordering requirement, it is also okay to move data[n - 1], which is the last

meaningful element in the array. When n-- occurs, the 2
nd

 reference to the string at data[n-1] is no longer considered

to be in the collection. Although not necessary, this code assigns null to that 2
nd

 unneeded reference.

 // Move the last string in the array to where stringToRemove was found.
 data[subscript] = data[n - 1];
 // Mark old array element as no longer holding a reference (not required)

 data[n - 1] = null;
 // Decrease this StringBag's number of elements
 n--;
 // Let this method return true to where the message was sent
 return true;
 }
 } // End method remove

The state of StringBag now looks like this (three changes are highlighted):

Instance Variable State of bagOfStrings
data[0] "A string"

data[1] "And a fourth" Overwrite "another string"
data[2] "and still another"

data[3] null data[3] is no longer meaningful
data[4] null
 ...
data[9] null

n 3 n is 3 now

Although the elements are not in the same order (this was not a requirement), the same elements exist after the

requested removal. Because the last element has been relocated, n must decrement by 1. There are now only

three, not four, elements in this StringBag object.

 The same code works even when removing the last element. The assignment is done. Decreasing n by one

effectively eliminates the last element.

private int indexOf(String element)

The remove method used another method to find the index of an element to remove (or -1 if no element found).

Although this code could have gone in remove, the well-defined responsibility of finding the index of an

element in an array was placed in this private helper method to keep the remove algorithm a bit simpler. The

indexOf method will sequentially search each array element beginning at index 0 until one of two things

happen.

1. element equals an array element and that index of that element is returned to method
remove(String element)

2. the loop terminates because there are no more element to examine. In this case, indexOf returns -1 to

method remove(String element)

 // Return the index of the first occurrence of stringToRemove.
 private int indexOf(String element) {
 // Look at all elements until the string
 for (int index = 0; index < n; index++) {
 if (element.equals(data[index]))
 return index;
 }
 // Otherwise result is not changed from -1.
 return -1;
 }

Again we see a helper method declared private because indexOf is currently considered a method that

programmers are not meant to use. It was not in the specification. Here is the complete StringBag class.

// A class for storing an unordered collection of Strings.

// This class was designed to provide practice and review in
// implementing methods and classes along with using arrays.
public class StringBag {

 private String[] data; // Stores the collection
 private int n; // Current number of elements

 // Construct an empty StringBag object
 public StringBag() {
 n = 0;

 data = new String[10]; // Initial capacity is 10
 }

 // Return the element at the specified index.
 // Precondition: index >= 0 && index < size()
 public String get(int index) {
 return data[index];
 }

 // Add a string to the StringBag in no particular place.
 // Always add StringToAdd (unless the computer runs out of memory)

 public void add(String stringToAdd) {
 // Make sure the array can store a new element
 if (n == data.length) {
 growArray();
 }

 // Store the reference into the array
 data[n] = stringToAdd;
 // Make sure my_size is always increased by one
 n++;

 }

 // Change data to have the same elements in indexes 0..n - 1 and have
 // the same number of new array locations to store new elements.

 private void growArray() {
 String[] temp = new String[n + 10];

 // Copy all existing elements into the new and larger array
 for (int index = 0; index < n; index++) {
 temp[index] = data[index];
 }

 // Store a reference to the new bigger array as part of this
 // object's state
 data = temp;

 }

 // Return how often element equals an element in this StringBag
 public int occurencesOf(String element) {
 int result = 0;
 for (int subscript = 0; subscript < n; subscript++) {
 if (element.equals(data[subscript]))
 result++;
 }
 return result;
 }

 // Remove an element that equals stringToRemove if found and return true.
 // Return false if stringToRemove was not found in this StringBag.
 public boolean remove(String stringToRemove) {
 int subscript = indexOf(stringToRemove);
 if (subscript == -1)
 return false;
 else {
 // Move the last string in the array to where stringToRemove was found.

 data[subscript] = data[n - 1];
 // Mark old array element as no longer holding a reference (not required)
 data[n - 1] = null;
 // Decrease this StringBag's number of elements

 n--;

 // Let this method return true to where the message was sent
 return true;
 }
 }

 // Return the index of the first occurrence of stringToRemove.
 // Otherwise return -1 if stringToRemove is not found.
 private int indexOf(String element) {
 // Look at all elements until the string
 for (int index = 0; index < n; index++) {
 if (element.equals(data[index]))
 return index;
 }

 // Otherwise result is not changed from -1.
 return -1;
 }

} // End class StringBag

Other Test Methods

The remove method and its indexOf method are complex. Further testing is appropriate. This test verifies

that all duplicates can be removed.

 @Test
 public void testRemoveWhenDuplicatedO() {
 StringBag bag = new StringBag();
 bag.add("A");
 bag.add("B");
 bag.add("B");
 bag.add("B");
 bag.add("A");

 assertEquals(3, bag.occurencesOf("B"));
 assertTrue(bag.remove("B"));
 assertEquals(2, bag.occurencesOf("B"));

 assertTrue(bag.remove("B"));
 assertEquals(1, bag.occurencesOf("B"));

 assertTrue(bag.remove("B"));
 assertEquals(0, bag.occurencesOf("B"));

 // There should be no more Bs
 assertFalse(bag.remove("B"));
 assertEquals(0, bag.occurencesOf("lower"));
 }

Other tests should be made for these situations:

 when the bag is empty

 when there is one element, try removing an element that is not there

 when there is one element, try removing an element that is there

 remove all elements when size > 2

 @Test
 public void testRemoveWhenEmpty() {
 StringBag bag = new StringBag();
 assertEquals(0, bag.occurencesOf("B"));
 assertFalse(bag.remove("Not here"));
 assertEquals(0, bag.occurencesOf("B"));
 }

 @Test
 public void testRemoveNonExistentElementWhenSizeIsOne() {

 StringBag bag = new StringBag();
 bag.add("Only one element");
 assertEquals(1, bag.occurencesOf("Only one element"));
 assertFalse(bag.remove("Not here"));
 assertEquals(1, bag.occurencesOf("Only one element"));
 }

 @Test
 public void testRemoveElementWhenSizeIsOne() {
 StringBag bag = new StringBag();
 bag.add("Only one element");

 assertEquals(1, bag.occurencesOf("Only one element"));
 assertTrue(bag.remove("Only one element"));
 assertEquals(0, bag.occurencesOf("Only one element"));
 }
 @Test
 public void testRemoveAllElementsWhenSizeGreaterThanTwo() {
 StringBag bag = new StringBag();
 bag.add("A");
 bag.add("B");
 bag.add("C");
 assertTrue(bag.remove("A"));

 assertTrue(bag.remove("B"));
 assertTrue(bag.remove("C"));
 assertEquals(0, bag.occurencesOf("A"));
 assertEquals(0, bag.occurencesOf("B"));
 assertEquals(0, bag.occurencesOf("C"));
 }

Self-Check
10-1 What happens when an attempt is made to remove an element that is not in the bag.

10-2 Using the implementation of remove just given, what happens when an attempt is made to remove an

element from an empty StringBag (n == 0)?

10-3 Must remove always maintain the StringBag elements in the same order as that in which they were

originally added?

10-4 What happens when an attempt is made to remove an element that has two of the same values in the

StringBag?

10-5 Write the output of the following code:

StringBag aBag = new StringBag();
aBag.add("First");
aBag.add("Second");
aBag.add("Third");
System.out.println(aBag.occurencesOf("first"));
System.out.println(aBag.occurencesOf("Second"));
System.out.println(aBag.remove("First"));
System.out.println(aBag.remove("Third"));
System.out.println(aBag.remove("Third"));
System.out.println(aBag.occurencesOf("first"));
System.out.println(aBag.occurencesOf("Second"));

Answers to Self-Checks
remove false StringBag

index < my_size

if(index == my_size)

StringBag remove

0

 1
 true

 true
 false
 0
 1

