
Chapter 1

Program Development

First, there is a need for a computer-based solution to a problem. The need may be expressed in a few
sentences like the first examples in this book. The progression from understanding a problem
specification to achieving a working computer-based solution is known as “program development.”
 There are many approaches to program development. This chapter begins by examining a strategy
with these three steps: analysis, design, and implementation.

Phase of Program Development Activity
Analysis Understand the problem.
Design Develop a solution
Implementation Make the solution run on a computer

Our study of computing fundamentals begins with an example of this particular approach to program
development. Each of these three phases will be exemplified with a simple case study—one particular
problem. Emphasis is placed on the deliverables—the tangible results—of each phase. Here is a preview
of the deliverables for each of the three stages:

Phase Deliverable
Analysis A document that lists the data that store relevant information
Design An algorithm that outlines a solution
Implementation An executable program ready to be used by the customer

Analysis (inquiry, examination, study)
Program development may begin with a study, or analysis, of a problem. Obviously, to determine what
a program is to do, you must first understand the problem. If the problem is written down, you can begin
the analysis phase by simply reading the problem.
 While analyzing the problem, it proves helpful to name the data that represent information. For
example, you might be asked to compute the maximum weight allowed for a successful liftoff of a
particular airplane from a given runway under certain thrust-affecting weather conditions such as
temperature and wind direction. While analyzing the problem specification, you might name the desired
information maximumWeight. The data required to compute that information could have names such as
temperature and windDirection.
 Although such data do not represent the entire solution, they do represent an important piece of the
puzzle. The data names are symbols for what the program will need and what the program will compute.
One value needed to compute maximumWeight might be 19.0 for temperature. Such data values must
often be manipulated—or processed—in a variety of ways to produce the desired result. Some values
must be obtained from the user, other values must be multiplied or added, and still other values must be
displayed on the computer screen.
 At some point, these data values will be stored in computer memory. The values in the same

 2

memory location can change while the program is running. The values also have a type, such as integers
or numbers with decimal points (these two different types of values are stored differently in computer
memory). These named pieces of memory that store a specific type of value that can change while a
program is running are known as variables.
 You will see that there also are operations for manipulating those values in meaningful ways. It
helps to distinguish the data that must be displayed—output—from the data required to compute that
result—input. These named pieces of memory that store values are the variables that summarize what
the program must do.

Input and Output
Output: Information the computer must display.
Input: Information a user must supply to solve a problem.

A problem can be better understood by answering this question: What is the output given certain input?
Therefore, it is a good idea to provide an example of the problem with pencil and paper. Here are two
problems with variable names selected to accurately describe the stored values.

Analysis Deliverable
Problem Data Name Input or Output Sample Problem
Compute a monthly amount Input 12500.00
loan payment rate Input 0.08
 months Input 48

 payment Output 303.14

Analysis Deliverable
Problem Data Name Input or Output Sample Problem
Count how often aBardsWork Input Much Ado About Nothing
Shakespeare wrote theWord Input the
a particular word howOften Output 220
in a particular play

In summary, problems are analyzed by doing these things:

 1. Reading and understanding the problem specification.
 2. Deciding what data represent the answer—the output.
 3. Deciding what data the user must enter to get the answer—the input.
 4. Creating a document (like those above) that summarizes the analysis. This document is input

for the next phase of program development—design.

In textbook problems, the variable names and type of values (such as integers or numbers with a
decimal point) that must be input and output are sometimes provided. If not, they are relatively easy to
recognize. In real-world problems of significant scale, a great deal of effort is expended during the
analysis phase. The next subsection provides an analysis of a small problem.

Self-Check
1-1 Given the problem of converting British pounds to U.S. dollars, provide a meaningful

name for the value that must be input by the user. Give a meaningful name for a value
that must be output.

Chapter 1: Program Development

3

1-2 Given the problem of selecting one CD from a 200-compact-disc player, what name
would represent all of the CDs? What name would be appropriate to represent one
particular CD selected by the user?

An Example of Analysis
Problem: Using the grade assessment scale to the
right, compute a course grade as a weighted
average of two tests and one final exam.

Item Percentage
 of Final Grade
Test 1 25%
Test 2 25%
Final Exam 50%

Analysis begins by reading the problem specification and establishing the desired output and the
required input to solve the problem. Determining and naming the output is a good place to start. The
output stores the answer to the problem. It provides insight into what the program must do. Once the
need for a data value is discovered and given a meaningful name, the focus can shift to what must be
accomplished. For this particular problem, the desired output is the actual course grade. The name
courseGrade represents the requested information to be output to the user.
 This problem becomes more generalized when the user enters values to produce the result. If the
program asks the user for data, the program can be used later to compute course grades for many
students with any set of grades. So let’s decide on and create names for the values that must be input. To
determine courseGrade, three values are required: test1, test2, and finalExam. The first three
analysis activities are now complete:

• Problem understood.
• Information to be output: courseGrade.
• Data to be input: test1, test2, and finalExam.

However, a sample problem is still missing. Consider these three values

• test1 74.0
• test2 79.0
• finalExam 84.0
• courseGrade ?

Sample inputs along with the expected output provide an important benefit−we have an expected result
for one set of inputs. In this problem, to create this courseGrade problem, we must understand the
difference between a simple average and a weighted average. Because the three input items comprise
different portions of the final grade (either 25% or 50%), the problem involves computing a weighted
average. The simple average of the set 74.0, 79.0, and 84.0 is 79.0; each test is measured equally.
However, the weighted average computes differently. Recall that test1 and test2 are each worth 25%,
and finalExam weighs in at 50% of the final grade. When test1 is 74.0, test2 is 79.0, and finalExam
is 84.0, the weighted average computes to 80.25.

(0.25 x test1) + (0.25 x test2) + (0.50 x finalExam)
 (0.25 x 74.0) + (0.25 x 79.0) + (0.50 x 84.0)
 18.50 + 19.75 + 42.00
 80.25

With the same exact grades, the weighted average of 80.25 is different from the simple average (79.0).
Failure to follow the problem specification could result in students who receive grades lower, or higher,
than they actually deserve.

 4

 The problem has now been analyzed, the input and output have been named, it is understood what
the computer-based solution is to do, and one sample problem has been given. The following
deliverable from the analysis phase summarizes these activities:

Analysis Deliverable
Problem Data Name Input or Output Sample Problem
Compute a course grade test1 Input 74.0
 test2 Input 79.0
 finalExam Input 84.0
 courseGrade Output 80.25

This is the first deliverable. The next section presents a method for designing a solution. The emphasis
during design is on placing the appropriate activities in the proper order to solve the problem.

Self-Check
1-3 Complete an analysis deliverable for the following problem. You will need a

calculator to determine the output.

Problem: Show the future value of an investment given its present value, the number of periods (years,
perhaps), and the interest rate. Be consistent with the interest rate and the number of periods; if the
periods are in years, then the annual interest rate must be supplied (0.085 for 8.5%, for example). If
the period is in months, the monthly interest rate must be supplied (0.0075 per month for 9% per
year, for example). The formula to compute the future value of money is future value = present
value * (1 + rate)periods.

1.3 Design (model, think, plan, devise, pattern, outline)
Design refers to the set of activities that includes (1) defining an architecture for the program that
satisfies the requirements and (2) specifying an algorithm for each program component in the
architecture.1 In later chapters, you will see functions used as the basic building blocks of programs.
Then you will see classes used as the basic building blocks of programs. A class is a collection of
functions, typically called “methods.” In this chapter, the architecture is intentionally constrained to a
component known as a program. Therefore, the design activity that follows is limited to specifying an
algorithm for this program.
 An algorithm is a step-by-step procedure for solving a problem or accomplishing some end,
especially by a computer.2 A good algorithm must

• list the activities that need to be carried out
• list those activities in the proper order

Consider an algorithm to bake a cake:
 1. Preheat the oven
 2. Grease the pan
 3. Mix the ingredients
 4. Pour the ingredients into the pan
 5. Place the cake pan in the oven
 6. Remove the cake pan from the oven after 35 minutes

If the order of the steps is changed, the cook might get a very hot cake pan with raw cake batter in it. If
one of these steps is omitted, the cook probably won’t get a baked cake—or there might be a fire. An

Chapter 1: Program Development

5

experienced cook may not need such an algorithm. However, cake-mix marketers cannot and do not
presume that their customers have this experience. Good algorithms list the proper steps in the proper
order and are detailed enough to accomplish the task.

Self-Check
1-4 Cake recipes typically omit a very important activity. Describe an activity that is

missing from the algorithm above.

An algorithm often contains a step without much detail. For example, step 3, “Mix the ingredients,”
isn’t very specific. What are the ingredients? If the problem is to write a recipe algorithm that humans
can understand, step 3 should be refined a bit to instruct the cook on how to mix the ingredients. The
refinement to step 3 could be something like this:

3. Empty the cake mix into the bowl and mix in the milk until smooth.
or for scratch bakers:

 3a. Sift the dry ingredients.
 3b. Place the liquid ingredients in the bowl.
 3c. Add the dry ingredients a quarter-cup at a time, whipping until smooth.

Algorithms may be expressed in pseudocode—instructions expressed in a language that even
nonprogrammers could understand. Pseudocode is written for humans, not for computers. Pseudocode
algorithms are an aid to program design.
 Pseudocode is very expressive. One pseudocode instruction may represent many computer
instructions. Pseudocode algorithms are not concerned about issues such as misplaced punctuation
marks or the details of a particular computer system. Pseudocode solutions make design easier by
allowing details to be deferred. Writing an algorithm can be viewed as planning. A program developer
can design with pencil and paper and sometimes in her or his head.

Algorithmic Patterns
Computer programs often require input from the user in order to compute and display the desired
information. This particular flow of three activities—input/process/output—occurs so often, in fact, that
it can be viewed as a pattern. It is one of several algorithmic patterns acknowledged in this textbook.
These patterns will help you design programs.
 A pattern is anything shaped or designed to serve as a model or a guide in making something else
[Funk/Wagnalls 1968]. An algorithmic pattern serves as a guide to help develop programs. For instance,
the following Input/Process/Output (IPO) pattern can be used to help design your first programs. In fact,
this pattern will provide a guideline for many programs.

Algorithmic Pattern: Input Process Output (IPO)
Pattern: Input/Process/Output (IPO)
Problem: The program requires input from the user in order to compute and display the desired
information.
Outline: 1. Obtain the input data.
 2. Process the data in some meaningful way.
 3. Output the results.

This algorithmic pattern is the first of several. In subsequent chapters, you’ll see other algorithmic
patterns, such as Guarded Action and Indeterminate Loop. To use an algorithmic pattern effectively,

 6

you should first become familiar with it. Look for the Input/Process/Output algorithmic pattern while
developing programs. This could allow you to design your first programs more easily. For example, if
you discover you have no meaningful values for the input data, it may be because you have placed the
process step before the input step. Alternately, you may have skipped the input step altogether.
 Consider this quote from Christopher Alexander’s book A Pattern Language:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice.

Alexander is describing patterns in the design of furniture, gardens, buildings, and towns, but his
description of a pattern can also be applied to program development. The IPO pattern frequently pops
up during program design.

An Example of Algorithm Design
The deliverable from the design phase is an algorithm that solves the problem. The
Input/Process/Output pattern guides the design of the algorithm that relates to our courseGrade
problem.

Three-Step Pattern Pattern Applied to a Specific Algorithm
1. Input 1. Obtain test1, test2, and finalExam
2. Process 2. Compute courseGrade
3. Output 3. Display courseGrade

Although algorithm development is usually an iterative process, a pattern helps to quickly provide an
outline of the activities necessary to solve the courseGrade problem.

Self-Check
1-5 Read the three activities of the algorithm above. Do you detect a missing activity?
1-6 Read the three activities of the algorithm above. Do you detect any activity out of

order?
1-7 Would this previous algorithm work if the first two activities were switched?

1-8 Is there enough detail in this algorithm to correctly compute courseGrade?

There currently is not enough detail in the process step of the courseGrade problem. The algorithm
needs further refinement. Specifically, exactly how should the input data be processed to compute the
course grade? The algorithm omits the weighted scale specified in the problem specification. The
process step should be refined a bit more. Currently, this pseudocode algorithm does not describe how
courseGrade must be computed.
 The refinement of this algorithm (below) shows a more detailed process step. The step “Compute
courseGrade” is now replaced with a refinement—a more detailed and specific activity. The input and
output steps have also been refined. This is the design phase deliverable—an algorithm with enough
detail to pass on as the input into the next phase, implementation.

Refinement of a Specific Input/Process/Output (IPO) Algorithm
1. Obtain test1, test2, and finalExam from the user
2. Compute courseGrade = (25% of test1) + (25% of test2) + (50% of finalExam)
3. Display the value of courseGrade

Chapter 1: Program Development

7

Try to think of program development in terms of the deliverables. This provides a checklist. What
deliverables exist so far?

1. From analysis, there is a document with a list of data (variables) and a sample problem.
2. From the design phase there is an algorithm.

Programs can be developed more quickly and with fewer errors by reviewing algorithms before moving
on to the implementation phase. Are the activities in the proper order? Are all the necessary activities
present?
 A computer is a programmable electronic device that can store, retrieve, and process data.
Programmers can simulate an electronic version of the algorithm by following the algorithm and
manually performing the activities of storing, retrieving, and processing data using pencil and paper.
The following algorithm walkthrough is a human (non-electronic) execution of the algorithm:

 1. Retrieve some example values from the user and store them as shown:
 test1: 80
 test2: 90
 finalExam: 100

 2. Retrieve the values and compute courseGrade as follows:
 courseGrade = (0.25 x test1) + (0.25 x test2) + (0.50 x finalExam)
 (0.25 x 80.0) + (0.25 x 90.0) + (0.50 x 100.0)
 20.0 + 22.5 + 50.0
 courseGrade = 92.5

 3. Show the course grade to the user by retrieving the data stored in courseGrade to show 92.5%.

It has been said that good artists know when to put down the brushes. Deciding when a painting is done
is critical for its success. By analogy, a designer must decide when to stop designing. This is a good
time to move on to the third phase of program development. In summary, here is what has been
accomplished so far:

• The problem is understood.
• Data have been identified and named.
• Output for two sample problems is known (80.25% and now 92.5%).
• An algorithm has been developed.
• Walking through the algorithm simulated computer activities.

Implementation (accomplishment, fulfilling, making good, execution)
The analysis and design of simple problems could be done with pencil and paper. The implementation
phase of program development requires both software and hardware to obtain the deliverable. The
deliverable of the implementation phase is a program that runs correctly on a computer.
Implementation is the collection of activities required to complete the program so someone else can
use it. Here are some implementation phase activities and associated deliverables:

Activity Deliverable
Translate an algorithm into a programming language. Source code
Compile source code into byte code. Byte code
Run the program. A running program
Verify that the program does what it is supposed to do. A grade

 8

Whereas the design phase provided a solution in the form of a pseudocode algorithm, the
implementation phase requires nitty-gritty details. The programming language translation must be
written in a precise manner according to the syntax rules of that programming language. Attention must
be paid to the placement of semicolons, commas, and periods. For example, an algorithmic statement
such as this:

 Display the value of courseGrade

could be translated into Java source code that might look like this:
 System.out.println("Course Grade: " + courseGrade + "%");

This output step generates output to the computer screen that might look like this (assuming the state of
courseGrade is 92.5):

 Course Grade: 92.5%

Once a programmer has translated the user’s needs into pseudocode and then into a programming
language, software is utilized to translate your instructions into the lower levels of the computer.
Fortunately, there is a tool for performing these translations. Programmers use a compiler to translate
the high-level programming language source code (such as Java) into its byte code equivalent. This byte
code can then be sent to any machine with a Java virtual machine (JVM). The Java virtual machine then
converts the byte code into the machine language of that particular machine. In this way, the same Java
program can run on a variety of platforms such as Unix, Mac OS, Linux, and Windows. Finally, to
verify that the program works, the behavior of the executable
program must be observed. Input data may be entered, and
the corresponding output is observed. The output is
compared to what was expected. If the two match, the
program works for at least one particular set of input data.
Other sets of input data can be entered while the program is
running to build confidence that the program works as
defined by the problem specification. Program development
is summarized as shown to the right (at least this is one
opinion/summary).
 Although you will likely use the same compiler as in
industry, the roles of people will differ. In large software
organizations, many people—usually in teams—perform
analysis, design, implementation, and testing. In many of
these simple textbook problems, the user needs are what your
instructor requires, usually for grade assessment. You will
often play the role of analyst, designer, programmer, and
tester—perhaps as part of a team, but for the most part by
yourself.

Self-Check
1-9 Review the above figure and list the phases that are -a primarily performed by humans and -b

primarily performed by software. Select your answers from the set of I, II, III, IV, V, and VI.

A Preview of a Java Implementation
The following program—a complete Java translation of the algorithm—previews many programming

Chapter 1: Program Development

9

language details. You are not expected to understand this Java code. The details are presented in
Chapter 2. For now, just peruse the Java code as an implementation of the pseudocode algorithm. The
three variables test1, test2, and finalExam represent user input. The output variable is named
courseGrade. User input is made possible through a Scanner (discussed in Chapter 2).
// This program computes and displays a final course grade as a
// weighted average after the user enters the appropriate input.
import java.util.Scanner;

public class TestCourseGrade {

 public static void main(String[] args) {
 System.out.println("This program computes a course grade when");
 System.out.println("you have entered three requested values.");

 // I)nput test1, test2, and finalExam.
 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter first test: ");
 double test1 = keyboard.nextDouble();
 System.out.print("Enter second test: ");
 double test2 = keyboard.nextDouble();
 System.out.print("Enter final exam: ");
 double finalExam = keyboard.nextDouble();

 // P)rocess
 double courseGrade = (0.25 * test1) + (0.25 * test2) + (0.50 * finalExam);

 // O)utput the results
 System.out.println("Course Grade: " + courseGrade + "%");
 }
}

Dialogue
This program computes a course grade when
you have entered three requested values.
Enter first test: 80.0
Enter second test: 90.0
Enter final exam: 100.0
Course Grade: 92.5%

Testing
Although this “Testing” section appears at the end of our first example of program development, don’t
presume that testing is deferred until implementation. The important process of testing may, can, and
should occur at any phase of program development. The actual work can be minimal, and it’s worth the
effort. However, you may not agree until you have experienced the problems incurred by not testing.

Testing During All Phases of Program Development
• During analysis, establish sample problems to confirm your understanding of the problem.
• During design, walk through the algorithm to ensure that it has the proper steps in the proper order.
• During testing, run the program (or method) several times with different sets of input data. Confirm

that the results are correct.
• Review the problem specification. Does the running program do what was requested?
• In a short time you will see how a newer form of unit testing will help you develop software.

You should have a sample problem before the program is coded—not after. Determine the input values
and what you expect for output.
 When the Java implementation finally does generate output, the predicted results can then be

 10

compared to the output of the running program. Adjustments must be made any time the predicted
output does not match the program output. Such a conflict indicates that the problem example, the
program output, or perhaps both are incorrect. Using problem examples helps avoid the misconception
that a program is correct just because the program runs successfully and generates output. The output
could be wrong! Simply executing doesn’t make a program right.
 Even exhaustive testing does not prove a program is correct. E. W. Dijkstra has argued that testing
only reveals the presence of errors, not the absence of errors. Even with correct program output, the
program is not proven correct. Testing reduces errors and increases confidence that the program works
correctly.
 In Chapter 3, you will be introduced to an industry level testing tool that does not require user input.
You will be able to build reusable automated tests. In Chapter 2, the program examples will have user
input and output that must be compared manually (not automatically).

Self-Check
1-10 If the programmer predicts courseGrade should be 100.0 when all three inputs are

100.0 and the program displays courseGrade as 75.0, what is wrong: the
prediction, the program, or both?

1-11 If the programmer predicts courseGrade should be 90.0 when test1 is 80, test2
is 90.0, and finalExam is 100.0 and the program outputs courseGrade as 92.5,
what is wrong: the prediction, the program, or both?

1-12 If the programmer predicts courseGrade should be 92.5 when test1 is 80, test2
is 90.0, and finalExam is 100.0 and the program outputs courseGrade as 90.0,
what is wrong: the prediction, the program, or both?

Answers to Self-Check Questions

1-1 Input: pounds and perhaps todaysConversionRate, Output: USDollars

1-2 CDCollection, currentSelection

1-3 Problem Data Name Input or Output Sample Problem
 Compute the presentValue Input 1000.00
 future value of periods Input 360 (30 years)
 an investment monthlyInterestRate Input 0.0075 (9%/year)
 futureValue Output 14730.58

1-4 Turn the oven off (or you might recognize some other activity or detail that was omitted).

1-5 No (at least the author thinks it’s okay)

1-6 No (at least the author thinks it’s okay)

1-7 No. The courseGrade would be computed using undefined values for test1, test2, and finalExam.

1-8 No. The details of the process step are not present. The formula is missing.

1-9 -a I, II, III, and VI
 -b IV and V

1-10 The program is wrong.

1-11 The prediction is wrong. The problem asked for a weighted average, not a simple average.

1-12 The program is wrong.

Chapter 2

Java Fundamentals

Goals
• Introduce the Java syntax necessary to write programs
• Be able to write a program with user input and console output
• Evaluate and write arithmetic expressions
• Use a few of Java's types such as int and double

2.1 Elements of Java Programming
The essential building block of Java programs is the class. In essence, a Java class is a sequence of characters
(text) stored as a file, whose name always ends with .java. Each class is comprised of several elements, such as
a class heading (public class class-name) and methods—a collection of statements grouped together to
provide a service. Below is the general form for a Java class that has one method: main. Any class with a main
method, including those with only a main method, can be run as a program.

General Form: A simple Java program (only one class)
// Comments: any text that follows // on the same line
import package-name.class-name;

public class class-name {

 public static void main(String[] args) {
 variable declarations and initializations
 messages and operations such as assignments
 }
}

General forms describe the syntax necessary to write code that compiles. The general forms in this textbook use
the following conventions:

• Boldface elements must be written exactly as shown. This includes words such as public static void
main and symbols such as [,], (, and).

• Italicized items are defined somewhere else or must be supplied by the programmer.

12

A Java Class with One Method Named main

// Read a number and display that input value squared
import java.util.Scanner;

public class ReadItAndSquareIt {

 public static void main(String[] args) {
 // Allow user input from the keyboard
 Scanner keyboard = new Scanner(System.in);

 // I)nput Prompt user for a number and get it from the keyboard
 System.out.print("Enter an integer: ");
 int number = keyboard.nextInt();

 // P)rocess
 int result = number * number;

 // O)utput
 System.out.println(number + " squared = " + result);
 }
}

Dialog
Enter an integer: -12
-12 squared = 144

The first line in the program shown above is a comment indicating what the program will do. Comments in Java
are always preceded by the // symbol, and are “ignored” by the program. The next line contains the word
import, which allows a program to use classes stored in other files. This program above has access to a class
named Scanner for reading user input. If you omit the import statement, you will get this error:

Scanner keyboard = new Scanner(System.in);
Scanner cannot be resolved to a type

Java classes, also known as types, are organized into over seventy packages. Each package contains a set of
related classes. For example, java.net has classes related to networking, and java.io has a collection of
classes for performing input and output. To use these classes, you could simply use the import statement.
Otherwise you would have to precede the class name with the correct package name, like this:

java.util.Scanner keyboard = new java.util.Scanner(System.in);

The next line in the sample program is a class heading. A class is a collection of methods and variables (both
discussed later) enclosed within a set of matching curly braces. You may use any valid class name after public
class; however, the class name must match the file name. Therefore, the preceding program must be stored in a
file named ReadItAndSquareIt.java.

The file-naming convention
class-name.java

The next line in the program is a method heading that, for now, is best retyped exactly as shown (an
explanation−intentionally skipped here−is required to have a program):

 public static void main(String[] args) // Method heading

The opening curly brace begins the body of the main method, which is a collection of executable statements and
variables. This main method body above contains a variable declaration, variable initializations, and four

13

Chapter 2: Java Fundamentals

messages, all of which are described later in this chapter. When run as a program, the first statement in main will
be the first statement executed. The body of the method ends with a closing curly brace.
 This Java source code represents input to the Java compiler. A compiler is a program that translates source
code into a language that is closer to what the computer hardware understands. Along the way, the compiler
generates error messages if it detects a violation of any Java syntax rules in your source code. Unless you are
perfect, you will see the compiler generate errors as the program scans your source code.

Tokens — The Smallest Pieces of a Program
As the Java compiler reads the source code, it identifies individual tokens, which are the smallest recognizable
components of a program. Tokens fall into four categories:
Token Examples
Special symbols ; () , . { }

Identifiers main args credits courseGrade String List

Reserved identifiers public static void class double int

Literals (constant values) "Hello World!" 0 -2.1 'C' true

Tokens make up more complex pieces of a program. Knowing the types of tokens in Java should help you to:

• More easily write syntactically correct code.
• Better understand how to fix syntax errors detected by the compiler.
• Understand general forms.
• Complete programs more quickly and easily.

Special Symbols
A special symbol is a sequence of one or two characters, with one or possibly many specific meanings. Some
special symbols separate other tokens, for example: {, ;, and ,. Other special symbols represent operators in
expressions, such as: +, -, and /. Here is a partial list of single-character and double-character special symbols
frequently seen in Java programs:

 () . + - / * <= >= // { } == ;

Identifiers
Java identifiers are words that represent a variety of things. String, for example is the name of a class for
storing a string of characters. Here are some other identifiers that Java has already given meaning to:

 sqrt String get println readLine System equals Double

Programmers must often create their own identifiers. For example, test1, finalExam, main, and
courseGrade are identifiers defined by programmers. All identifiers follow these rules.

• Identifiers begin with upper- or lowercase letters a through z (or A through Z), the dollar sign $, or the
underscore character _.

• The first character may be followed by a number of upper- and lowercase letters, digits (0 through 9),
dollar signs, and underscore characters.

• Identifiers are case sensitive; Ident, ident, and iDENT are three different identifiers.

Valid Identifiers
main ArrayList incomeTax MAX_SIZE $Money$
Maine URL employeeName all_4_one _balance
miSpel String A1 world_in_motion balance

14

Invalid Identifiers
1A // Begins with a digit
miles/Hour // The / is not allowed
first Name // The blank space not allowed
pre-shrunk // The operator - means subtraction

Java is case sensitive. For example, to run a class as a program, you must have the identifier main. MAIN or Main
won’t do. The convention employed by Java programmers is to use the “camelBack” style for variables. The first
letter is always lowercase, and each subsequent new word begins with an uppercase letter. For example, you will
see letterGrade rather than lettergrade, LetterGrade, or letter_grade. Class names use the same
convention, except the first letter is also in uppercase. You will see String rather than string.

Reserved Identifiers
Reserved identifiers in Java are identifiers that have been set aside for a specific purpose. Their meanings are
fixed by the standard language definition, such as double and int. They follow the same rules as regular
identifiers, but they cannot be used for any other purpose. Here is a partial list of Java reserved identifiers, which
are also known as keywords.

Java Keywords
boolean default for new
break do if private
case double import public
catch else instanceof return
char extends int void
class float long while

The case sensitivity of Java applies to keywords. For example, there is a difference between double (a keyword)
and Double (an identifier, not a keyword). All Java keywords are written in lowercase letters.

Literals
A literal value such as 123 or -94.02 is one that cannot be changed. Java recognizes these numeric literals and
several others, including String literals that have zero or more characters enclosed within a pair of double
quotation marks.

"Double quotes are used to delimit String literals."
"Hello, World!"

Integer literals are written as numbers without decimal points. Floating-point literals are written as numbers with
decimal points (or in exponential notation: 5e3 = 5 * 103 = 5000.0 and 1.23e-4 = 1.23 x 10-4 = 0.0001234). Here
are a few examples of integer, floating-point, string, and character literals in Java, along with both Boolean literals
(true and false) and the null literal value.

The Six Types of Java Literals
 Integer Floating Point String Character Boolean Null
-2147483648 -1.0 "A" 'a' true null
 -1 0.0 "Hello World" '0' false
 0 39.95 "\n new line" '?'
 1 1.23e09 "1.23" ' '
2147483647 -1e6 "The answer is: " '7'

Note: Other literals are possible such as 12345678901L for integers > 2,147,483,647.

15

Chapter 2: Java Fundamentals

Comments
Comments are portions of text that annotate a program, and fulfill any or all of the following expectations:

• Provide internal documentation to help one programmer read and understand another’s program.
• Explain the purpose of a method.
• Describe what a method expects of the input arguments (n must be > 0, for example).
• Describe a wide variety of program elements.

Comments may be added anywhere within a program. They may begin with the two-character special symbol /*
when closed with the corresponding symbol */.

/*
 A comment may extend over many lines
 when using slash start at the beginning
 and ending the comment with a star slash.
*/

An alternate form for comments is to use // before a line of text. Such a comment may appear at the beginning of
a line, in which case the entire line is “ignored” by the program, or at the end of a line, in which case all code
prior to the special symbol will be executed.

// This Java program displays "hello, world to the console.
public class ShowHello {

 public static void main(String[] args) {
 System.out.println("hello, world");
 }
}

Comments can help clarify and document the purpose of code. Using intention-revealing identifiers and writing
code that is easy to understand, however, can also do this.

Self-Check
2-1 List each of the following as a valid identifier or explain why it is not valid.
 -a abc -i H.P.
 -b 123 -j double
 -c ABC -k 55_mph
 -d _.$ -l sales Tax
 -e my Age -m $$$$
 -f identifier -n ______
 -g (identifier) -o Mile/Hour
 -h mispellted -p Scanner

2-2 Which of the following are valid Java comments?
 -a // Is this a comment?
 -b / / Is this a comment?
 -c /* Is this a comment?

 -d /* Is this a comment? */

16

2.2 Java Types
Java has two types of variables: primitive types and reference types. Reference variables store information
necessary to locate complex values such as strings and arrays. On the other hand, Primitive variables store a
single value in a fixed amount of computer memory. The eight “primitive” (simple) types are closely related to
computer hardware. For example, an int value is stored in 32 bits (4 bytes) of memory. Those 32 bits represent
a simple positive or negative integer value. Here is summary of all types in Java along with the range of values for
the primitive types:

The Java Primitive Types
integers:
byte (8 bits) -128 .. 128
short (16 bits) -32,768 .. 32,767
int (32 bits) -2,147,483,648 .. 2,147,483,647
long (64 bits) -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807

real numbers:
float (32 bits), ±1.40129846432481707e-45 .. ±3.40282346638528860e+38
double (64 bits), ±4.94065645841246544e-324 .. ±1.79769313486231570e+308

other primitive types:
char 'A', '@', or 'z' for example
boolean has only two literal values false and true

The Java Reference Types
classes Chapter 5
arrays Chapters 8-11
interfaces Chapter 12

Declaring a primitive variable provides the program with a named data value that can change while the program is
running. An initialization allows the programmer to set the original value of a variable. This value can be
accessed or changed later in the program by using the variable name.

General Form: Initializing (declaring a primitive variable and giving it a value)
type identifier; // Declare one variable
type identifier = initial-value; // For primitive types like int and double

Example: The following code declares one int and two double primitive variables while it initializes grade.

int credits;
double grade = 4.0;
double GPA;

The following table summarizes the initial value of these variables:
Variable Name Value
credits ? // Unknown
grade 4.0 // This was initialized above
GPA ? // Unknown

If you do not initialize a variable, it cannot be used unless it is changed with an assignment statement. The Java
compiler would report this as an error.

17

Chapter 2: Java Fundamentals

Assignment
An assignment gives a value to a variable. The value of the expression to the right of the assignment operator (=)
replaces the value of the variable to the left of =.

General Form: Assignment
variable-name = expression;

The expression must be a value that can be stored by the type of variable to the left of the assignment operator (=).
For example, an expression that results in a floating-point value can be stored in a double variable, and likewise
an integer value can be stored in an int variable.

int credits = 4;
double grade = 3.0;
double GPA = (credits * grade) / credits; // * and / evaluate before =

The assignment operator = has a very low priority, it assigns after all other operators evaluate. For example,
(credits * grade) / credits evaluates to 3.0 before 3.0 is assigned to GPA. These three assignments change
the value of all three variables. The values can now be shown like this:

Variable Value
credits 4
grade 3.0
GPA 3.0

In an assignment, the Java compiler will check to make sure you are assigning the correct type of value to the
variable. For example, a string literal cannot be assigned to a numeric variable. A floating-point number cannot
be stored in an int.

grade = "Noooooo, you can't do that"; // Cannot store string in a double
credits = 16.5; // Cannot store a floating-point number in an int

Self-Check
2-3 Which of the following are valid attempts at assignment, given these two declarations?

 double aDouble = 0.0;
 int anInt = 0;

-a anInt = 1; -e aDouble = 1;
-b anInt = 1.5; -f aDouble = 1.5;
-c anInt = "1.5"; -g aDouble = "1.5";
-d anInt = anInt + 1; -h aDouble = aDouble + 1.5;

Input and Output (I/O)
Programs communicate with users. Such communication is provided through—but is not limited to—
keyboard input and screen output. In Java, this two-way communication is made possible by sending
messages, which provide a way to transfer control to another method that performs some well-defined
responsibility. You may have written that method, or it may very likely be a method you cannot see in
one of the existing Java classes. Some messages perform particular actions. Two such methods are the
print and println messages sent to System.out:

18

General Form: Output with print and println
System.out.print(expression);
System.out.println(expression);

System.out is an existing reference variable that represents the console—the place on the computer screen
where text is displayed (not actually printed). The expression between the parentheses is known as the argument.
In a print or println message, the value of the expression will be displayed on the computer screen. With print
and println, the arguments can be any of the types mentioned so far (int, double, char, boolean), plus
others. The semicolon (;) terminates messages. The only difference between print and println is that
println generates a new line. Subsequent output begins at the beginning of a new line. Here are some valid
output messages:

System.out.print("Enter credits: "); // Use print to prompt the user
System.out.println(); // Print a blank line

Input
To make programs more applicable to general groups of data—for example, to compute the GPA for any
student—variables are often assigned values through keyboard input. This allows the program to accept data
which is specific to the user. There are several options for obtaining user input from the keyboard. Perhaps the
simplest option is to use the Scanner class from the java.util package. This class has methods that allow
for easy input of numbers and other types of data, such as strings.
 Before you can use Scanner messages such as nextDouble or nextInt, your code must create a reference
variable to which messages can be sent. The following code initializes a reference variable named keyboard that
will allow the keyboard to be a source of input. (System.in is an existing reference variable that allows
characters to be read from the keyboard.)

Creating an Instance of Scanner to Read Numeric Input
// Store a reference variable named keyboard to read input from the user.
// System.in is a reference variable already associated with the keyboard
Scanner keyboard = new Scanner(System.in);

In general, a reference variable is initialized with the keyword new followed by class-name and (initial-values).

General Form: Initializing reference variables with new
class-name reference-variable-name = new class-name();
class-name reference-variable-name = new class-name(initial-value(s));

The expression to the right of = evaluates to a reference value, which is then stored in the reference variable to the
left of =. That reference value is used later for sending messages. Messages sent to keyboard can obtain textual
input from the keyboard and can convert that text (for example, 3.45 and 99) into numbers. Here are two
messages that allow users to input numbers into a program:

Numeric Input
keyboard.nextInt(); // Pause until user enters an integer
keyboard.nextDouble(); // Pause until user enters a floating-point number

In general, use this form to send a message to a reference variable that will, in turn, cause some operation to
execute:

General Form: Sending messages
reference-variable-name.message-name(argument-list)

When a nextInt or nextDouble message is sent to keyboard, the method waits until the user enters some type
of input and then presses the Enter key. If the user enters the number correctly, the text will be converted into the

19

Chapter 2: Java Fundamentals

proper machine representation of the number. If the user enters a letter when keyboard is expecting a number, the
program may terminate with an error message.
 These two methods are examples of expressions that evaluate to some value. Whereas a nextInt message
evaluates to a primitive int value, a nextDouble message evaluates to a primitive floating-point value. Because
nextInt and nextDouble return numeric values, they are often seen on the right-hand side of assignment
statements. These messages will be seen in text-based input and output programs (ones that have no graphical
user interface).
 For example, the following code prompts the user to enter two numbers using print, nextInt, and
nextDouble messages.

System.out.print("Enter credits: "); // Prompt the user
credits = keyboard.nextInt(); // Read and assign an integer
System.out.print("Enter grade: "); // Prompt the user
qualityPoints = keyboard.nextDouble(); // Read and assign a double

Dialog
Enter credits: 4
Enter grade: 3.0

In the last line of code above—the fourth message—the nextDouble message causes a pause in program
execution until the user enters a number. When the user types a number and presses the enter key, the
nextDouble method converts the text user into a floating-point number. That value is then assigned to the
variable qualityPoints. All of this happens in one line of code.

Prompt and Input
The output and input operations are often used together to obtain values from the user of the program. The
program informs the user what must be entered with an output message and then sends an input message to get
values for the variables. This happens so often that this activity can be considered to be a pattern. The Prompt
and Input pattern has two activities:

1. Request the user to enter a value (prompt).
2. Obtain the value for the variable (input).

Algorithmic Pattern: Prompt and Input
Pattern: Prompt and Input
Problem: The user must enter something.
Outline: 1. Prompt the user for input.
 2. Input the data
Code Example: System.out.println("Enter credits: ");

 int credits = keyboard.nextInt();

Strange things may happen if the prompt is left out. The user will not know what must be entered. Whenever you
require user input, make sure you prompt for it first. Write the code that tells the user precisely what you want.
First output the prompt and then obtain the user input. Here is another instance of the Prompt and Input pattern:

 System.out.println("Enter test #1: ");
 double test1 = keyboard.nextDouble(); // Initialize test1 with input
 System.out.println("You entered " + test1);

Dialogue
Enter test #1: 97.5
You entered 97.5

20

In general, tell the user what value is needed, then input a value into that variable with an input message such as
keyboard.nextDouble();.

General Form: Prompt and Input
System.out.println("prompt user for input : ");
input = keyboard.nextDouble(); // or keyboard.nextInt();

Arithmetic Expressions
Arithmetic expressions are made up of two components: operators and operands. An arithmetic operator is one
of the Java special symbols +, -, /, or *. The operands of an arithmetic expression may be numeric variable
names, such as credits, and numeric literals, such as 5 and 0.25.

An Arithmetic Expression may be Example
numeric variable double aDouble
numeric literal 100 or 99.5
expression + expression aDouble + 100
expression - expression aDouble - 100

expression * expression aDouble * 100
expression / expression aDouble / 99.5
(expression) (aDouble + 2.0)

The last definition of “expression” suggests that we can write more complex expressions.

 1.5 * ((aDouble - 99.5) * 1.0 / aDouble)

Since arithmetic expressions may be written with many literals, numeric variable names, and operators, rules are
put into force to allow a consistent evaluation of expressions. The following table lists four Java arithmetic
operators and the order in which they are applied to numeric variables.

Most Arithmetic Operators
* / % In the absence of parentheses, multiplication and division evaluate before addition and

subtraction. In other words, *, /, and % have precedence over + and -. If more than one of
these operators appears in an expression, the leftmost operator evaluates first.

+ - In the absence of parentheses, + and - evaluate after all of the *, /, and % operators, with
the leftmost evaluating first. Parentheses may override these precedence rules.

The operators of the following expression are applied to operands in this order: /, +, -.

 2.0 + 5.0 - 8.0 / 4.0 // Evaluates to 5.0

Parentheses may alter the order in which arithmetic operators are applied to their operands.

 (2.0 + 5.0 - 8.0) / 4.0 // Evaluates to -0.25

With parentheses, the / operator evaluates last, rather than first. The same set of oper-ators and operands, with
parentheses added, has a different result (-0.25 rather than 5.0).
 These precedence rules apply to binary operators only. A binary operator is one that requires one operand to
the left and one operand to the right. A unary operator requires one operand on the right. Consider this
expression, which has the binary multiplication operator * and the unary minus operator -.

 3.5 * -2.0 // Evaluates to -7.0

21

Chapter 2: Java Fundamentals

The unary operator evaluates before the binary * operator: 3.5 times negative 2.0 results in negative 7.0. Two
examples of arithmetic expressions are shown in the following complete program that computes the GPA for two
courses.

// This program calculates the grade point average (GPA) for two courses.
import java.util.Scanner;

public class TwoCourseGPA {

 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);

 // Prompt and Input the credits and grades for two courses
 System.out.print("Enter credits for first course: ");
 double credits1 = keyboard.nextDouble();
 System.out.print("Enter grade for first course: ");
 double grade1 = keyboard.nextDouble ();
 System.out.print("Enter credits for second course: ");
 double credits2 = keyboard.nextDouble ();
 System.out.print("Enter grade for second course: ");
 double grade2 = keyboard.nextDouble();

 // Compute the GPA
 double qualityPoints = (credits1 * grade1) + (credits2 * grade2);
 double GPA = qualityPoints / (credits1 + credits2);

 // Show the result
 System.out.println();
 System.out.println("GPA for these two courses: ");
 System.out.println(GPA);
 }
}
Output
Enter credits for first course: 3.0
Enter grade for first course: 4.0
Enter credits for second course: 2.0
Enter grade for second course: 3.0

GPA for these two courses
3.6

Self-Check
 2-4. Write a complete Java program that prompts for a number from 0.0 to 1.0 and echos (prints) the user's input.

The dialog generated by your program should look like this:

Enter relativeError [0.0 through 1.0]: 0.341
You entered: 0.341

2-5. Write the output generated by the following program:

public class Arithmetic {
 public static void main(String[] args) {
 double x = 1.2;
 double y = 3.4;
 System.out.println(x + y);
 System.out.println(x - y);
 System.out.println(x * y);
 }
}

22

2-6. Write the complete dialog (program output and user input) generated by the following program when the user
enters each of these input values for sale:

 a. 10.00 b. 12.34 c. 100.00

import java.util.Scanner;

public class InputProcessOutput {

 public static void main(String[] args) {
 double sale = 0.0;
 double tax = 0.0;
 double total = 0.0;
 double TAX_RATE = 0.07;
 Scanner keyboard = new Scanner(System.in);
 // I)nput
 System.out.print("Enter sale: ");
 sale = keyboard.nextDouble(); // User enters 10.00, 12.34, or 100.00
 // P)rocess
 tax = sale * TAX_RATE;
 total = sale + tax;

 // O)utput
 System.out.println("Sale: " + sale);
 System.out.println("Tax: " + tax);
 System.out.println("Total: " + total);
 }
}

2-7 Evaluate the following arithmetic expressions:
 double x = 2.5;
 double y = 3.0;

-a x * y + 3.0 -d 1.5 * (x - y)
-b 0.5 + x / 2.0 -e y + -x
-c 1.0 + x * 3.0 / y -f (x - 2.0) * (y - 1.0)

int Arithmetic
A variable declared as int can store a limited range of whole numbers (numbers without fractions). Java int
variables store integers in the range of -2,147,483,648 through 2,147,483,647 inclusive. All int variables have
operations similar to double (+, *, -, =), but some differences do exist, and there are times when int is the correct
choice over double. For example, a fractional remainder cannot be stored in an int. In fact, you cannot assign
a floating-point literal or double variable to an int variable. If you do, the compiler complains with an error.

int anInt = 1.999; // ERROR
int anotherInt = 0.0; // ERROR

The / operator has different meanings for int and double operands. Whereas the result of 3 / 4 is 0, the result of
3.0 / 4.0 is 0.75. Two integer operands with the / operator have an integer result—not a floating-point result, as in
the latter example. When writing programs, remember to choose an int or double data type correctly, in order
to appropriately reflect the type of value you would like to store.
 The remainder operation—symbolized with the % (modulus) operator—is also available for both int and
double operands. For example, the result of 18 % 4 is the integer remainder after dividing 18 by 4, which is 2.
Integer arithmetic is illustrated in the following code, which shows % and / operating on integer expressions, and /
operating on floating-point operands. In this example, the integer results describe whole hours and whole minutes
rather than the fractional equivalent.

23

Chapter 2: Java Fundamentals

public class DivMod {
 public static void main(String[] args) {

int totalMinutes = 254;
int hours = totalMinutes / 60;
int minutes = totalMinutes % 60;
System.out.println(totalMinutes + " minutes can be rewritten as ");
System.out.println(hours + " hours and " + minutes + " minutes");

 }
}

Output
254 minutes can be rewritten as
4 hours and 14 minutes

The preceding program indicates that even though ints and doubles are similar, there are times when
double is the more appropriate type than int, and vice versa. The double type should be specified when
you need a numeric variable with a fractional component. If you need a whole number, select int.

Mixing Integer and Floating-Point Operands
Whenever integer and floating-point values are on opposite sides of an arithmetic operator, the integer operand is
promoted to its floating-point equivalent. The integer 6, for example, becomes 6.0, in the case of 6 / 3.0. The
resulting expression is then a floating-point number, 2.0. The same rule applies when one operand is an int
variable and the other a double variable. Here are a few examples of expression with the operands are a mix of
int and double.

public class MixedOperands {

 public static void main(String[] args) {
 int number = 9;
 double sum = 567.9;
 System.out.println(sum / number); // Divide a double by an int
 System.out.println(number / 2); // Divide an int by an int
 System.out.println(number / 2.0); // Divide an int by a double
 System.out.println(2.0 * number); // Result is a double: 18.0 not 18
 }
}

Output
63.099999999999994
4
4.5
18.0

Expressions with more than two operands will also evaluate to floating-point values if one of the operands is
floating-point—for example, (8.8/4+3) = (2.2 + 3) = 5.2. Operator precedence rules also come into play—for
example, (3 / 4 + 8.8) = (0 + 8.8) = 8.8.

Self-Check
2-8 Evaluate the following expressions.

-a 5 / 9 -f 5 / 2
-b 5.0 / 9 -g 7 / 2.5 * 3 / 4
-c 5 / 9.0 -h 1 / 2.0 * 3
-d 2 + 4 * 6 / 3 -i 5 / 9 * (50.0 - 32.0)
-e (2 + 4) * 6 / 3 -j 5 / 9.0 * (50 - 32)

24

The boolean Type
Java has a primitive boolean data type to store one of two boolean literals: true and false. Whereas
arithmetic expressions evaluate to a number, boolean expressions, such as credits > 60.0, evaluate to one of
these boolean values. A boolean expression often contains one of these relational operators:

Operator Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

When a relational operator is applied to two operands that can be compared to one another, the result is one of
two possible values: true or false. The next table shows some examples of simple boolean expressions and their
resulting values.
Boolean Expression Result

double x = 4.0;
x < 5.0 true
x > 5.0 false
x <= 5.0 true
5.0 == x false
x != 5.0 true

Like primitive numeric variables, boolean variables can be declared, initialized, and assigned a value. The
assigned expression must be a boolean expression—thus, the result of the expression must also evaluate to true
or false. This is shown in the initializations, assignments, and output of three boolean variables in the following
code:

 // Initialize three boolean variables to false
 boolean ready = false;
 boolean willing = false;
 boolean able = false;
 double credits = 28.5;
 double hours = 9.5;
 // Assign true or false to all three boolean variables
 ready = hours >= 8.0;
 willing = credits > 20.0;
 able = credits <= 32.0;
 System.out.println("ready: " + ready);
 System.out.println("willing: " + willing);
 System.out.println("able: " + able);

Output
ready: true
willing: true
able: true

Self-Check
2-9 Evaluate the following expressions to their correct value.

 int j = 4;
 int k = 7;

a. (j + 4) == k e. j < k
b. j == 0 f. j == 4
c. j >= k g. j == (j + k - j)
d. j != k h. (k - 5) <= (j + 2)

25

Chapter 2: Java Fundamentals

Boolean Operators
Java has three boolean operators! to represent logical not, ¦¦ to represent logical or, and && to represent logical
and. These three Boolean operators allow us to write more complex boolean expressions to express our intentions.
For example, this boolean expression shows the boolean “and” operator (&&) applied to two boolean operands to
determine if test is in the range of 0 through 100 inclusive.
 (test >= 0) && (test <= 100)

Used in assertions, this Boolean expression evaluates to true when test is 97 and false when test is 977:

When test is 97 When test is 977

(test >= 0) && (test <= 100) (test >= 0) && (test <= 100)
(97 >= 0) && (97 <= 100) (977 >= 0) && (977 <= 100)
 true && true true && false
 true false

Since there are only two Boolean values, true and false, the following table shows every possible combination of
Boolean values and operators !, ¦¦, and &&:

! boolean “not” operator
Expression Result
! false true
! true false

¦¦ boolean “or” operator
Expression Result
true ¦¦ true true
true ¦¦ false true
false ¦¦ true true
false ¦¦ false false

&& boolean “and” operator
Expression Result
true && true true
true && false false
false && true false
false && false false

Precedence Rules

Programming languages have operator precedence rules governing the order in which operators are applied to
operands. For example, in the absence of parentheses, the relational operators >= and <= are evaluated before the
&& operator. Most operators are grouped (evaluated) in a left-to-right order: a/b/c/d is equivalent to
(((a/b)/c)/d).
 Table 6.1 lists some (though not all) of the Java operators in order of precedence. The dot . and () operators
are evaluated first (have the highest precedence), and the assignment operator = is evaluated last. This table shows
all of the operators used in this textbook (however, there are more).

26

Precedence rules for operators some levels of priorities are not shown
Precedence Operator Description Associativity
1 . Member reference Left to right
 () Method call
2 ! Unary logical complement (”not”) Right to left
 + Unary plus
 - Unary minus
3 new Constructor of objects
4 * Multiplication Left to right
 / Division
 % Remainder
5 + Addition (for int and double) Left to right
 + String concatenation
 - Subtraction
7 < Less than Left to right
 <= Less than or equal to
 > Greater than
 >= Greater than or equal to
8 == Equal Left to right
 != Not equal
12 && Boolean “and” Left to right
13 ¦¦ Boolean “or” Left to right
15 = Assignment Right to left

These elaborate precedence rules are difficult to remember. If you are unsure, use parentheses to clarify these
precedence rules. Using parentheses makes the code more readable and therefore more understandable that is
more easily debugged and maintained.

Self-Check
2-10 Evaluate the following expressions to true or false:

a. false ¦¦ true
b. true && false
c. (1 * 3 == 4 ¦¦ 2 != 2)
d. false ¦¦ true && false

e 3 < 4 && 3 != 4
f. !false && !true
g. (5 + 2 > 3 * 4) && (11 < 12)
h. ! ((false && true) ¦¦ false)

2-11 Write an expression that is true only when an int variable named score is in the range of 1
through 10 inclusive.

Errors
There are several categories of errors encountered when programming:

• syntax errors—errors that occur when compiling source code into byte code
• intent errors—the program does what you typed, not what you intended
• exception—errors that occur as the program executes

When programming, you will be writing source code using the syntax for the Java programming language. This
source code is translated into byte code by the compiler, and is then stored in a .class file. The byte code is the
same for each computer system.
For this byte code to execute, another program, called the Java virtual machine (JVM), translates the Java byte
code into instructions understood by that computer. This extra step is necessary for one of the main advantages of
Java: the same program can run in any computing environment! A computer might be running Windows,

27

Chapter 2: Java Fundamentals

MacOS, Solaris, Unix, or Linux—each computer system has its own Java virtual machine program. Having a
particular Java virtual machine for each computer system also allows the same Java .class file to be transported
around the Internet. The following figure shows the levels of translation needed in order to get executable
programs to run on most computers.
From Source Code to a Program that Runs on Many Computers

1. The programmer translates algorithms into Java source code.
2. The compiler translates the source code into byte code.
3. The Java virtual machine translates byte code into the instructions understood by the computer system

(Solaris, Unix, Linux, Mac OS, or Windows).

Syntax Errors Detected at Compile Time
When you are compiling source code or running your program on a computer, errors may crop up. The easiest
errors to detect and fix are the errors generated by the compiler. These are syntax errors that occur during
compile time, the time at which the compiler is examining your source code to detect and report errors, and/or to
attempt to generate executable byte code from error-free source code.
 A programming language requires strict adherence to its own set of formal syntax rules. It is not difficult for
programmers to violate these syntax rules! All it takes is one missing { or ; to foul things up. As you are writing
your source code, you will often use the compiler to check the syntax of the code you wrote. While the Java
compiler is translating source code into byte code so that it can run on a computer, it is also locating and reporting
as many errors as possible. If you have any syntax errors, the byte code will not be generated—the program
simply cannot run. If you are using the Eclipse integrated development, you will see compile time errors as you
type, sometimes because you haven't finished what you were doing. To get a properly running program, you need
to first correct ALL of your syntax errors.
 Compilers generate many error messages. However, it is your source code that is the origin of these errors.
Small typographical (and human) mistakes can be responsible for much larger roadblocks, from the compiler’s
perspective. Whenever your compiler appears to be nagging you, remember that the compiler is there to help you
correct your errors!
 The following program attempts to show several errors that the compiler should detect and report. Because
error messages generated by compilers vary among systems, the reasons for the errors below are indexed with
numbers to explanations that follow. Your system will certainly generate quite different error messages.

// This program attempts to convert pounds to UK notation.
// Several compile time errors have been intentionally retained.
public class CompileTimeErrors {

 public static void main(String[] args) {
 System.out.println("Enter weight in pounds: ")
 int pounds = keyboard.nextInt();
 System.out.print("In the U.K. you weigh);
 System.out.print(Pounds / 14 + " stone, "pounds % 14);
 }
}

28

 A semicolon (;) is missing
 keyboard was not declared
 A double quote (") is missing
 pounds was written as Pounds
 The extra expressions require a missing concatenation symbol (+)

Syntax errors take some time to get used to, so try to be patient and observe the location where the syntax error
occurred. The error is usually near the line where the error was detected, although you may have to fix preceding
lines. Always remember to fix the first error first. An error that was reported on line 10 might be the result of a
semicolon that was forgotten on line 5. The corrected source code, without error, is given next, followed by an
interactive dialog (user input and computer output):

// This program converts pounds to the UK weight measurement.
import java.util.Scanner;

public class ErrorFree {

 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter weight in pounds: ");
 int pounds = keyboard.nextInt();
 System.out.print("In the U.K. you weigh ");
 System.out.println((pounds / 14) + " stone, " + (pounds % 14));
 }
}

Dialog
Enter weight in pounds: 146
In the U.K. you weigh 10 stone, 6

A different type of error occurs when String[] args is omitted from the main method:
 public static void main()

When the program tries to run, it looks for a method named main with (String[] identifier). If you forget
to write String[] args, you would get the error below shown after the program begins. The same error occurs if
main has an uppercase M.
 Exception in thread "main" java.lang.NoSuchMethodError: main

This type of error, which occurs while the program is running, is known as an exception.

Exceptions
After your program compiles with no syntax errors, you will get a .class file containing the byte code that can be
run on the Java virtual machine. The virtual machine can be invoked by issuing a Java command with the .class
file name. For example, entering the command java ErrorFree at your operating system prompt will run the
above program, assuming that you have a Java runtime environment (jre) installed on your computer and that the
file ErrorFree.class exists.
 However, when a program runs, errors may still occur. If the user enters a string that is supposed to be a
number, what is the program to do? If the user enters "1oo" instead of "100" for example, is the program
supposed to assume that the user meant 100? What should happen when the user enters "Kim" instead of a
number? What should happen when an arithmetic expression results in division by zero? Or when there is an
attempt to read from a file on a disk, but there is no disk in the drive, or the file name is wrong? Such events that
occur while the program is running are known as exceptions.
One exception was shown above. The main method was valid, so the code compiled. However, when the
program ran, Java’s runtime environment was unable to locate a main method with String[] args. The error

29

Chapter 2: Java Fundamentals

could not be discovered until the user ran the program, at which time Java began attempted to locate the
beginning of the program. If Java cannot find a method with the following line of code, a runtime exception
occurs and the program terminates prematurely.

 public static void main(String[] args)

Now consider another example of an exception that occurs while the program is running. The output for the
following code indicates that Java does not allow integer division by zero. The compiler does a lot of things, but
it does not check the values of variables. If, at runtime, the denominator in a division happens to be 0, an
ArithmeticException occurs.
public class AnArithmeticException {

 public static void main(String[] args) {
 // Integer division by zero throws an ArithmeticException
 int numerator = 5;
 int denominator = 0;
 int quotient = numerator / denominator; // A runtime error
 System.out.println("This message will not execute.");
 }
}

Output
Exception in thread "main" java.lang.ArithmeticException: / by zero

 at A.main(A.java:8)

When you encounter one of these exceptions, consider the line number (7) where the error occurred. The reason
for the exception (/ by zero) and the name of the exception (ArithmeticException) are two other clues to
help you figure out what went wrong.

Intent Errors (Logic Errors)
Even when no syntax errors are found and no runtime errors occur, the program still may not execute properly. A
program may run and terminate normally, but it may not be correct. Consider the following program:

// This program finds the average given the sum and the size
import java.util.Scanner;

public class IntentError {

 public static void main(String[] args) {
 double sum = 0.0;
 double average = 0.0;
 int number = 0;
 Scanner keyboard = new Scanner(System.in);
 // Input:
 System.out.print("Enter sum: ");
 sum = keyboard.nextDouble();
 System.out.print("Enter number: ");
 number = keyboard.nextInt();
 // Process
 average = number / sum;
 // Output
 System.out.println("Average: " + average);
 }
}

30

Dialog
Enter sum: 291
Enter number: 3
Average: 0.010309278350515464

Such intent errors occur when the program does what was typed, not what was intended. The compiler cannot
detect such intent errors. The expression number / sum is syntactically correct—the compiler just has no way
of knowing that this programmer intended to write sum / number instead.
Intent errors, also known as logic errors, are the most insidious and usually the most difficult errors to correct.
They also may be difficult to detect—the user, tester, or programmer may not even know they exist! Consider the
program controlling the Therac 3 cancer radiation therapy machine. Patients received massive overdoses of
radiation resulting in serious injuries and death, while the indicator displayed everything as normal. Another
infamous intent error involved a program controlling a probe that was supposed to go to Venus. Simply because a
comma was missing in the Fortran source code, an American Viking Venus probe burnt up in the sun. Both
programs had compiled successfully and were running at the time of the accidents. However, they did what the
programmers had written—obviously not what was intended.

31

Chapter 2: Java Fundamentals

Answers to Self-Check Questions

2-1 -a VALID -i Periods (.) are not allowed.
 -b can’t start an identifier with digit 1 -j VALID
 -c VALID -k Can’t start identifiers with a digit.
 -d . is a special symbol. -l A space is not allowed.
 -e A space is not allowed. -m VALID but not very clear
 -f VALID -n VALID but not very clear
 -g () are not allowed. -o / is not allowed.
 -h VALID -p VALID (but don't use it, Java already does)

2-2 Which of the following are valid Java comments?
 -a // Is this a comment? Yes
 -b / / Is this a comment? No, there is a space between the slashes
 -c /* Is this a comment? No, the closing */ is missing
 -d /* Is this a comment? */ Yes

2-3 a VALID e VALID
 b attempts to assign a floating-point to an int. f valid
 c attempts to assign a string to an int g attempts to assign a string to a double.
 d VALID h VALID

2-4 import java.util.Scanner;
 public class RelativeError { // Your class name may vary
 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter relativeError [0.0 through 1.0]: ");
 double relativeError = keyboard.nextDouble();
 System.out.print("You entered: " + relativeError);
 }

}

2-5 4.6
 -2.2
 4.08

2-6 a. 10.00
 Enter sale: 10.00
 Sale: 10.0
 Tax: 0.7
 Total: 10.7

b. 12.34
Enter sale: 12.34
Sale: 12.34
Tax: 0.8638
Total: 13.2038

c. 100.00
Enter sale: 100.00
Sale: 100.0
Tax: 7.0
Total: 107.0

2.7
-a 10.5 -d -0.75
-b 1.75 -e 0.5
-c 3.5 -f 1.0

2-8
-a 0 -f 2
-b 0.55556 -g 2.1
-c 0.55556 -h 1.5
-d 10 -i 0.0 5/9 is 0, 0*18.0 is 0.0
-e 12 -j 10.0

32

2-9
-a false -e true
 -b false -f true
-c false -g false
-d true -h true

2-10
 a. true e true
 b. false f. false
 c. false g. false
 d. false h. true

2-11 (score >= 1) && (score <= 10)

Chapter 3

Objects and JUnit

Goals
This chapter is mostly about using objects and getting comfortable with sending messages to objects. Several new
types implemented as Java classes are introduced to show just a bit of Java’s extensive library of classes. This
small subset of classes will then be used in several places throughout this textbook. You will begin to see that
programs have many different types of objects. After studying this chapter, you will be able to:

• Use existing types by constructing objects
• Be able to use existing methods by reading method headings and documentation
• Introduce assertions with JUnit
• Evaluate Boolean expressions that result in true or false.

3.1 Find the Objects
Java has two types of values: primitive values and reference values. Only two of Java’s eight primitive types (int
and double) and only one of Java’s reference types (the Scanner class) have been shown so far. Whereas a
primitive variable stores only one value, a reference variable stores a reference to an object that may have many
values. Classes allow programmers to model real-world entities, which usually have more values and operations
than primitives.
 Although the Java programming language has only eight primitive types, Java also come with thousands of
reference types (implemented as Java classes). Each new release of Java tends to add new reference types. For
example, instances of the Java String class store collections of characters to represent names and addresses in
alphabets from around the world. Other classes create windows, buttons, and input areas of a graphical user
interface. Other classes represent time and calendar dates. Still other Java classes provide the capability of
accessing databases over networks using a graphical user interface. Even then, these hundreds of classes do not
supply everything that every programmer will ever need. There are many times when programmers discover they
need their own classes to model things in their applications. Consider the following system from the domain of
banking:

The Bank Teller Specification
Implement a bank teller application to allow bank customers to access bank accounts
through unique identification. A customer, with the help of the teller, may complete any of
the following transactions: withdraw money, deposit money, query account balances, and
see the most recent 10 transactions. The system must maintain the correct balances for all
accounts. The system must be able to process one or more transactions for any number of
customers.

34

You are not asked to implement this system now. However, you should be able to pick out some things (objects)
that are relevant to this system. This is the first step in the analysis phase of object-oriented software
development. One simple tool for finding objects that potentially model a solution is to write down the nouns and
noun phrases in the problem statement. Then consider each as a candidate object that might eventually represent
part of the system. The objects used to build the system come from sources such as

• the problem statement
• an understanding of the problem domain (knowledge of the system that the problem statement may

have missed or taken for granted)
• the words spoken during analysis
• the classes that come with the programming language

The objects should model the real world if possible. Here are some candidate objects:

Candidate Objects to Model a Solution
bank teller transaction
customers most recent 10 transactions
bank account window

Here is a picture to give an impression of the major objects in the bank teller system. The BankTeller will
accomplish this by getting help from many other objects.

We now select one of these objectsBankAccount.

BankAccount Objects
Implementing a BankAccount type as a Java class gives us the ability to have many (thousands of) BankAccount
objects. Each instance of BankAccount represents an account at a bank. Using your knowledge of the concept of a
bank account, you might recognize that each BankAccount object should have its own account number and its
own account balance. Other values could be part of every BankAccount object: a transaction list, a personal
identification number (PIN), and a mother’s maiden name, for example. You might visualize other banking
methods, such as creating a new account, making deposits, making withdrawals, and accessing the current
balance. There could also be many other banking messages—applyInterest and printStatement, for
example.
 As a preview to a type as a collection of methods and data, here is the BankAccount type implemented as a
Java class and used in the code that follows. The Java class with methods and variables to implement a new type
will be discussed in Chapters 4 (Methods) and 10 (Classes). Consider this class to be a blueprint that can be used
to construct many BankAccount objects. Each BankAccount object will have its their own balance and ID.
Each BankAccount will understand the same four messages: getID, getBalance, deposit, and withdraw.

35

Chapter 3: Objects and JUnit

// A type that models a very simple account at a bank.
public class BankAccount {

 // Values that each object "remembers":
 private String ID;
 private double balance;

 // The constructor:
 public BankAccount(String initID, double initBalance) {
 ID = initID;
 balance = initBalance;
 }

 // The four methods:
 public String getID() {
 return ID;
 }

 public double getBalance() {
 return balance;
 }

 public void deposit(double depositAmount) {
 balance = balance + depositAmount;
 }

 public void withdraw(double withdrawalAmount) {
 balance = balance - withdrawalAmount;
 }
}

This BankAccount type has been intentionally kept simple for ease of study. The available BankAccount
messages include—but are not limited to—withdraw, deposit, getID, and getBalance. Each will store an
account ID and a balance.
 Instances of BankAccount are constructed with two arguments to help initialize these two values. You can
supply two initial values in the following order:

1. a sequence of characters (a string) to represent the account identifier (a name, for example)
2. a number to represent the initial account balance

Here is one desired object construction that has two arguments for the purpose of initializing the two desired
values:

 BankAccount anAccount = new BankAccount("Chris", 125.50);

The construction of new objects (the creation of new instances) requires the keyword new with the class name and
any required initial values between parentheses to help initialize the state of the object. The general form for
creating an instance of a class:

General Form: Constructing objects (initial values are optional)
class-name object-name = new class-name(initial-value(s));

Every object has
1. a name (actually a reference variable that stores a reference to the object)
2. state (the set of values that the object remembers)
3. messages (the things objects can do and reveal)

Every instance of a class will have a reference variable to provide access to the object. Every instance of a class
will have its own unique state. In addition, every instance of a class will understand the same set of messages. For
example, given this object construction,

BankAccount anotherAccount = new BankAccount("Justin", 60.00);

36

we can derive the following information:

1. name: anotherAccount
2. state: an account ID of "Justin" and a balance of 60.00
3. messages: anotherAccount understands withdraw, deposit, getBalance, …

Other instances of BankAccount will understand the same set of messages. However, they will have their own
separate state. For example, after another BankAccount construction,

 BankAccount theNewAccount = new BankAccount("Kim", 1000.00);

theNewAccount has its own ID of "Kim" and its own balance of 1000.00. The three characteristics of an object
can be summarized with diagrams. This class diagram represents one class.

A class diagram lists the class name in the topmost compartment. The instance variables appear in the
compartment below it. The bottom compartment captures the methods.
 Objects can also be summarized in instance diagrams.

These three
object diagrams describe the current state of three different BankAccount objects. One class can be used to make
have many objects, each with its own separate state (set of values).

Sending Messages to Objects
In order for objects to do something, your code must send messages to them. A message is a request for the object
to provide one of it services through a method.

General Form: Sending a message to an object
object-name.message-name(argument1, argument2, ...)

Some messages ask for the state of the object. Other messages ask an object to do something, For example, each
BankAccount object was designed to have the related operations withdraw, deposit, getBalance, and
getID. These messages ask the two different BankAccount objects to return information:

 anAccount.getID();
 anAccount.getBalance();
 anotherAccount.getID();
 anotherAccount.getBalance();

These messages ask two different BankAccount objects to do something:
 anAccount.withdraw(40.00);
 anAccount.deposit(100.00);
 anotherAccount.withdraw(20.00);
 anotherAccount.deposit(157.89);

37

Chapter 3: Objects and JUnit

The optional arguments—expressions between the parentheses—are the values required by the method to fulfill
its responsibility. For example, withdraw needs to know how much money to withdraw. On the other hand,
getBalance doesn’t need any arguments to return the current balance of the BankAccount object. The output
below indicates deposit and withdraw messages modify the account balances in an expected manner:

// Construct two objects and send messages to them.
public class ShowTwoBankAccountObjects {

 public static void main(String[] args) {

 BankAccount b1 = new BankAccount("Kim", 123.45);
 BankAccount b2 = new BankAccount("Chris", 500.00);

 System.out.println("Initial values");
 System.out.println(b1.getID() + ": " + b1.getBalance());
 System.out.println(b2.getID() + ": " + b2.getBalance());

 b1.deposit(222.22);
 b1.withdraw(20.00);
 b2.deposit(55.55);
 b2.withdraw(10.00);
 System.out.println();
 System.out.println("Value after deposit and withdraw messages");
 System.out.println(b1.getID() + ": " + b1.getBalance());
 System.out.println(b2.getID() + ": " + b2.getBalance());
 }
}

Output
Initial values
Kim: 123.45
Chris: 500.0

Value after deposit and withdraw messages
Kim: 325.67
Chris: 545.55

3.2 Making Assertions about Objects with JUnit
The println statements in the program above reveal the changing state of objects. However, in such examples,
many lines can separate the output from the messages that affect the objects. This makes it a bit awkward to
match up the expected result with the code that caused the changes. The current and changing state of objects can
be observed and confirmed by making assertions. An assertion is a statement that can relay the current state of an
object or convey the result of a message to an object. Assertions can be made with methods such assertEquals.

General Form: JUnit's assertEquals method for int and double values
 assertEquals(int expected, int actual);
 assertEquals(double expected, double actual, double errorTolerance);
Examples to assert integer expressions:

 assertEquals(2, 5 / 2);
 assertEquals(14, 39 % 25);

Examples to assert a floating point expression:

 assertEquals(325.67, b1.getBalance(), 0.001);
 assertEquals(545.55, b2.getBalance(), 0.001);

38

With assertEquals, an assertion will be true—or will "pass"—if the expected value equals the actual value.
When comparing floating-point values, a third argument is needed to represent the error tolerance, which is the
amount by which two real numbers may differ and still be equal. (Due to round off error, and the fact that
numbers are stored in base 2 (binary) rather than in base 10 (decimal), two expressions that we consider “equal”
may actually differ by a very small amount. This textbook will often use the very small error tolerance of 1e-14 or
0.00000000000001. This means that the following two numbers would be considered equal within 1e-14:

 assertEquals(1.23456789012345, 1.23456789012346, 1e-14);

In contrast, these numbers are not considered equal when using an error factor of 1e-14.

 assertEquals(1.23456789012345, 1.23456789012347, 1e-14);

So using 1e14 ensures two values are equals to 13 decimal places, which is about as close as you can get. JUnit
assertions allow us to place the expected value next to messages that reveal the actual state. This makes it easer to
demonstrate the behavior of objects and to learn about new types. Later, you will see how assertions help in
designing and testing your own Java classes, by making sure they have the correct behavior.
The assertEquals method is in the Assert class of org.junit. The Assert class needs to be imported (shown
later) or assertEquals needs to be qualified (shown next).

 // Construct two BankAccount objects
 BankAccount anAccount = new BankAccount("Kim", 0.00);
 BankAccount anotherAccount = new BankAccount("Chris", 500.00);

 // These assertions pass
 org.junit.Assert.assertEquals(0.00, anAccount.getBalance(), 1e-14);
 org.junit.Assert.assertEquals("Kim", anAccount.getID());
 org.junit.Assert.assertEquals("Chris", anotherAccount.getID());
 org.junit.Assert.assertEquals(500.00, anotherAccount.getBalance(), 1e-14);

 // Send messages to the BankAccount objects
 anAccount.deposit(222.22);
 anAccount.withdraw(20.00);
 anotherAccount.deposit(55.55);
 anotherAccount.withdraw(10.00);

 // These assertions pass
 org.junit.Assert.assertEquals(202.22, anAccount.getBalance(), 1e-14);
 org.junit.Assert.assertEquals(545.55, anotherAccount.getBalance(), 1e-14);

To make these assertions, you must have access to the JUnit testing framework, which is available in virtually all
Java development environments. Eclipse does. Then assertions like those above can be placed in methods
preceded by @Test. These methods are known as test methods. They are most often used to test a new method.
The test methods here demonstrate some new types. A test method begins in a very specific manner:

 @org.junit.Test
 public void testSomething() { // more to come

Much like the main method, test methods are called from another program (JUnit). Test methods need things
from the org.junit packages. This code uses fully qualified names .

public class FirstTest {

 @org.junit.Test // Marks this as a test method.
 public void testDeposit() {
 BankAccount anAccount = new BankAccount("Kim", 0.00);
 anAccount.deposit(123.45);
 org.junit.Assert.assertEquals(123.45, anAccount.getBalance(), 0.01);
 }
}

39

Chapter 3: Objects and JUnit

Adding imports shortens code in all test methods. This feature allows programmers to write the method name
without the class to which the method belongs. The modified class shows that imports reduce the amount of code
by org.junit.Assert and ord.junit for every test method and assertion, which is a good thing since much
other code that is required.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class FirstTest {

 @Test // Marks this as a test method.
 public void testDeposit() {
 BankAccount anAccount = new BankAccount("Kim", 0.00);
 anAccount.deposit(123.45);
 assertEquals(123.45, anAccount.getBalance());
 }

 @Test // Marks this as a test method.
 public void testWithdraw() {
 BankAccount anotherAccount = new BankAccount("Chris", 500.00);
 anotherAccount.withdraw(160.01);
 assertEquals(339.99, anotherAccount.getBalance());
 }

} // End unit test for BankAccount

Running JUnit
An assertion passes when the actual value equals the expected value in assertEquals.

 assertEquals(4, 9 / 2); // Assertion passes

An assertion failes when the actual values does not equal the expected value.

 assertEquals(4.5, 9 / 2, 1e-14); // Assertion fails

With integrated development environments such as Eclipse, Netbeans, Dr. Java, BlueJ, when an assertion fails,
you see a red bar. For example, this screenshot of Eclipse shows a red bar.

40

The expected and actual values are shown in the lower left corner when the code in FirstTest.java is run as a JUnit
test. Changing the testDeposit method to have the correct expected value results in a green bar, indicating all
assertions have passed successfully. Here is JUnit's window when all assertions pass:

Red bar

Green bar

41

Chapter 3: Objects and JUnit

assertTrue and assertFalse
JUnit Assert class has several other methods to demonstrate and test code. The assertTrue assertion passes if
its Boolean expression argument evaluates to true. The assertFalse assertion passes if the Boolean expression
evaluates to false.

// Use two other Assert methods: assertTrue and assertFalse
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class SecondTest {

 @Test
 public void showAssertTrue() {
 int quiz = 98;
 assertTrue(quiz >= 60);
 }

 @Test
 public void showAssertFalse() {
 int quiz = 55;
 assertFalse(quiz >= 60);
 }
}

The three Assert methodsassertEquals, assertTrue, and assertFalsecover most of what we'll need.

3.3 String Objects
Java provides a String type to store a sequence of characters, which can represent an address or a name, for
example. Sometimes a programmer is interested in the current length of a String (the number of characters). It
might also be necessary to discover if a certain substring exists in a string. For example, is the substring ", "
included in the string "Last, First". and if so, where does substring "the" begin? Java’s String type,
implemented as a Java class, provides a large number of methods to help with such problems required knowledge
of the string value. You will use String objects in many programs.
Each String object stores a collection of zero or more characters. String objects can be constructed in two
ways.

General Form: Constructing String objects in two different ways
String identifier = new String(string-literal);
String identifier = string-literal;

Examples
String stringReference = new String("A String Object");
String anotherStringReference = "Another";

String length
For more specific examples, consider two length messages sent to two different String objects. Both messages
evaluate to the number of characters in the String.

42

import static org.junit.Assert.assertEquals;
import org.junit.Test;
public class StringTest {

 @Test
 public void showLength() {
 String stringReference = new String("A String Object");
 String anotherStringReference = "Another";
 // These assertions pass
 assertEquals(15, stringReference.length());
 assertEquals(7, anotherStringReference.length());
 }

 // . . . more test methods will appear below
}

String charAt
A charAt message returns the character located at the index passed as an int argument. Notice that String
objects have zero-based indexing. The first character is located at index 0, and the second character is located at
index 1, or charAt(1).

 @Test
 public void showcharAt() {
 String stringReference = new String("A String");

 assertEquals('A', stringReference.charAt(0)); // Evaluates to 'A'
 assertEquals('r', stringReference.charAt(4)); // Evaluates to 'r'

 int len = stringReference.length() - 1;
 assertEquals('g', stringReference.charAt(len)); // The last char
 }

String indexOf
An indexOf message sent to a String object returns the index of the first character where the String argument
is found. For example, "no-yes".indexOf("yes") returns 3. If the String argument does not exist,
indexOf returns -1.

 @Test
 public void showIndexOf() {
 String stringReference = new String("A String Object");
 assertEquals(3, stringReference.indexOf("tri"));
 assertEquals(-1, stringReference.indexOf("not here"));
 }

Concatenation with the + operator
Programmers often make one String object from two separate strings with the + operator, that concatenates
(connects) two or more strings into one string.

 @Test
 public void showConcatenate() {
 String firstName = "Kim";
 String lastName = "Madison";
 String fullName = lastName + ", " + firstName;
 assertEquals("Madison, Kim", fullName);
 }

43

Chapter 3: Objects and JUnit

String substring
A substring message returns the part of a string indexed by the beginning index through the ending index minus 1.

 @Test
 public void showSubString() {
 String str = "Smiles a Lot";
 assertEquals("mile", str.substring(1, 5));
 }

String toUpperCase and toLowerCase
A toUpperCase message sent to a String object returns a new string that is the uppercase equivalent of the
receiver of the message. A toLowerCase message returns a new string with all uppercase letters in lowercase.

 @Test
 public void testToUpperCase() {
 String str = new String("MiXeD cAsE!");
 assertEquals("MIXED CASE!", str.toUpperCase());
 assertEquals("mixed case!", str.toLowerCase());
 assertEquals("MiXeD cAsE!", str); // str did not change!
 }

Although it may sound like toUpperCase and toLowerCase modify String objects, they do not. Once
constructed, String objects can not be changed. String objects are immutable. Simply put, there are no
String messages that can modify the state of a String object. The final assertion above shows that
str.equals("MiXeD cAsE!") still, even after the other two messages were sent. Strings are immutable
to save memory. Java also supplies StringBuilder, a string type that has methods that do modify the
objects.
 Use an assignment if you want to change the String reference to refer to a different String.

 @Test
 public void showHowToUpperCaseWithAssignment() {
 String str = new String("MiXeD cAsE!");
 str = str.toUpperCase();
 assertEquals("MIXED CASE!", str); // str references a new string
 }

Comparing Strings with equals
JUnit's assertEquals method uses Java's equals method to compare the strings. This is the way to see if two
String objects have the same sequence of characters. It is case sensitive.

 @Test
 public void showStringEquals() {
 String s1 = new String("Casey");
 String s2 = new String("Casey");
 String s3 = new String("CaSEy");
 assertTrue(s1.equals(s2));
 assertFalse(s1.equals(s3));
 }

Avoid using == to compare strings. The results can be surprising.

 @Test
 public void showCompareStringsWithEqualEqual() {
 String s1 = new String("Casey");
 assertTrue(s1 == "Casey"); // This assertion fails.
 }

Almost never use ==
to compare string
objects. Use equals

44

The == with objects compares references, not the values of the objects. The above code generates two different
String objects that just happen to have the same state. Use the equals method of String. The equals method
was designed to compare the actual values of the stringthe characters, not the reference values.

 @Test
 public void showCompareStringWithEquals() {
 String s1 = "Casey";
 assertTrue(s1.equals("Casey")); // This assertion passes.
 }

Self-Check
3-1 Each of the lettered lines has an error. Explain why.

 BankAccount b1 = new BankAccount("B. "); // a
 BankAccount b2("The ID", 500.00); // b
 BankAccount b3 = new Account("N. Li", 200.00); // c
 b1.deposit(); // d
 b1.deposit("100.00"); // e
 b1.Deposit(100.00); // f
 withdraw(100); // g
 System.out.println(b4.getID()); // h
 System.out.println(b1.getBalance); // i

3-2 What values makes these assertions pass (fill in the blanks)?

 @Test public void testAcct() {
 BankAccount b1 = new BankAccount("Kim", 0.00);
 BankAccount b2 = new BankAccount("Chris", 500.00);
 assertEquals(, b1.getID());
 assertEquals(, b2.getID());
 b1.deposit(222.22);
 b1.withdraw(20.00);
 assertEquals(, b1.getBalance(), 0.001);
 b2.deposit(55.55);
 b2.withdraw(10.00);
 assertEquals(, b2.getBalance(), 0.001);
 }
}

3-3 What value makes this assertion pass?
 String s1 = new String("abcdefghi");
 assertEquals(, s1.indexOf("g"));

3-4 What value makes this assertion pass?
 String s2 = "abcdefghi";
 assertEquals(, s2.substring(4, 6));

3-5 Write an expression to store the middle character of a String into a char variable named mid. If there is an
even number of characters, store the char to the right of the middle. For example, the middle character of
"abcde" is 'c' and of "Jude" is 'd'.

45

Chapter 3: Objects and JUnit

3-6 For each of the following messages, if there is something wrong, write “error”; otherwise, write the value of
the expression.

 String s = new String("Any String");

 a. length(s) d. s.indexOf(" ")
 b. s.length e. s.substring(2, 5)
 c. s(length) f. s.substring("tri")

46

Answers to Self-Checks
3-1 -a Missing the second argument in the object construction. Add the starting balance—a number.
 -b Missing = new BankAccount.
 -c Change Account to BankAccount.
 -d Missing a numeric argument between (and).
 -e Argument type wrong. pass a number, not a String.
 -f Deposit is not a method of BankAccount. Change D to d.
 -g Need an object and a dot before withdraw.
 -h b4 is not a BankAccount object. It was never declared to be anything.
 -i Missing ().

3-2 a? "Kim"
b? "Chris"
c? 202.22
d? 545.55

3-3 6

3-4 "ef"

3-5 String aString = "abcde";
int midCharIndex = aString.length() / 2;
char mid = aString.charAt(midCharIndex);

3-6 -a error -d 3
 -b error -e y S
 -c error -f error (wrong type of argument)

Chapter 4

Methods

Goal

• Implement well-tested Java methods

4.1 Methods
A java class typically has two or more methods. There are two major components to a method:

1. the method heading
2. the block (a pair of curly braces with code to complete the method’s functionality

Several modifiers may begin a method heading, such as public or private. The examples shown here
will use only the modifier public. Whereas private methods are only accessible from the class in
which they exist, public methods are visible from other classes. Here is a general form for method
headings.

General Form: A public method heading
public return-type method-name(parameter-1, parameter-2, …, parameter-n)

The return-type represents the type of value returned from the method. The return type can be any primitive type,
such as int or double (as in String’s length method or BankAccount’s withdraw method, for example).
Additionally, the return type can be any reference type, such as String or Scanner. The return type may also be
void to indicate that the method returns nothing, as see in void main methods.
 The method-name is any valid Java identifier. Since most methods need one or more values to get the job
done, method headings may also specify parameters between the required parentheses. Here are a few
syntactically correct method headings:

Example Method Headings
public int charAt(int index) // String
public void withdraw(double withdrawalAmount) // BankAccount
public int length() // String
public String substring(int startIndex, int endIndex) // String

The other part of a method is the body. A method body begins with a curly brace and ends with a curly brace.
This is where the programmer places variable declarations, object constructions, assignments, and other messages
that accomplish the purpose of the method. For example, here is the very simple deposit method from the
BankAccount class. This method has access to the parameter depositAmount and to the BankAccount instance
variable named myBalance (instance variables are discussed in a later chapter).

 // The method heading . . .
 public void deposit(double depositAmount) {
 // followed by the method body
 myBalance = myBalance + depositAmount;
 }

48

Parameters
A parameter is an identifier declared between the parentheses of a method heading. Parameters specify the
number and type of arguments that must be used in a message. For example, depositAmount in the deposit
method heading above is a parameter of type double. The programmer who wrote the method specified the
number and type of values the method would need to do its job.
 A method may need one, two, or even more arguments to accomplish its objectives. “How much money do
you want to withdraw from the BankAccount object?” “What is the beginning and ending index of the
substring you want?” “How many days do you want to add". Parameters provide the mechanism to get the
appropriate information to the method when it is called. For example, a deposit message to a BankAccount
object requires that the amount to be deposited, (a double), be supplied.

public void deposit(double depositAmount)

 ↑
 anAccount.deposit(123.45);

When this message is sent to anAccount, the value of the argument 123.45 is passed on to the associated
parameter depositAmount. It may help to read the arrow as an assignment statement. The argument 123.45 is
assigned to depositAmount and used inside the deposit method. This example has a literal argument
(123.45). The argument may be any expression that evaluates to the parameter’s declared type, such as
(checks + cash).

 double checks = 123.45;
 double cash = 100.00;
 anAccount.deposit(checks + cash);

When there is more than one parameter, the arguments are assigned in order. The replace method of the String
type requires two character values so the method knows which character to replace and with which character.

 public String replace(char oldChar, char newChar)

 String newString = str.replace('t', 'X');

Reading Method Headings
When properly documented, the first part of a method, the heading, explains what the method does and
describe the number of arguments and the type All of these things allow the programmer to send
messages to objects without knowing the details of the implementation of those methods. For example,
to send a message to an object, the programmer must:

• know the method name
• supply the proper number and type of arguments
• use the return value of the method correctly

All of this information is specified in the method heading. For example, the substring method of
Java’s String class takes two int arguments and evaluates to a String.

 // Return portion of this string indexed from beginIndex through endIndex-1
 public String substring(int beginIndex, int endIndex)

49

Chapter 3: Objects and JUnit

The method heading for substring provides the following information:

• type of value returned by the method: String
• method name: substring
• number of arguments required: 2
• type of the arguments required: both are int

Since substring is a method of the String class, the message begins with a reference to a string before
the dot.

 String str = new String("small");
 assertEquals("mall", str.substring(1, str.length()));

 // Can send messages to String literals ...
 assertEquals("for", "forever".substring(0, 3));

A substring message requires two arguments, which specify the beginning and ending index of the
String to return. This can be observed in the method heading below, which has two parameters named
beginIndex and endIndex. Both arguments in the message fullName.substring(0,6) are of type int
because the parameters in the substring method heading are declared as type int.

public String substring(int beginIndex, int endIndex)
 ↑ ↑
 fullName.substring(0, 6);

When this message is sent, the argument 0 is assigned to the parameter beginIndex, and the argument
6 is assigned to the parameter endIndex. Control is then transferred to the method body where this
information is used to return what the method promises. In general, when a method requires more than
one argument, the first argument in the message will be assigned to the first parameter, the second
argument will be assigned to the second parameter, and so on. In order to get correct results, the
programmer must also order the arguments correctly. Whereas not supplying the correct number and
type of arguments in a message results in a compile time (syntax) error, supplying the correct number
and type of arguments in the wrong order results in a logic error (i.e., the program does what you typed,
not what you intended).
And finally, there are several times when the substring method will throw an exception because the
integer arguments are not in the correct range.

 String str = "abc";
 str.substring(-1, 1) // Runtime error because beginIndex < 0
 str.substring(0, 4) // Runtime error because endIndex of 4 is off by 1
 str.substring(2, 1) // Runtime error because beginIndex > endIndex

Self-Check

Use the following method heading to answer the first three questions that follow. This concat method is from
Java’s String class.

 // Return the concatenation of str at the end of this String object
 public String concat(String str)

4-1 Using the method heading above, determine the following for String's concat method:
 -a return type -d first argument type (or class)
 -b method name -e second argument type (or class)
 -c number of arguments

50

4-2 Assuming String s = new String("abc");, write the return value for each valid message or explain
why the message is invalid.

 -a s.concat("xyz"); -d s.concat("x", "y");
-b s.concat(); -e s.concat("wx" + " yz");
-c s.concat(5); -f s.concat("d");

4-3 What values make these assertions pass?

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringTest {

 @Test
 public void testConcat() {
 String s = "abc";
 assertEquals(, s.concat("!"));
 assertEquals(, s.concat("cba"));
 assertEquals(, s.concat("123"));
 }
}

Use the following method heading to answer the first three questions that follow. This concat method is from
Java’s String class.

 // Returns a new string resulting from replacing all
 // occurrences of oldChar in this string with newChar.
 public String replace(char oldChar, char newChar)

4-4 Using the method heading above, determine the following for String's replace method:
 -a return type -d first argument type
 -b method name -e second argument type
 -c number of arguments

4-5 Assuming String s = new String("abcabc");, write the return value for each valid message or
explain why the message is invalid.

-a s.replace("a"); -d s.replace("x", "y");
-b s.replace('c', 'Z'); -e s.replace('a', 'X');
-c s.replace('b', 'Z'); -f s.concat('X', 'a');

4-6 What values make the assertions pass?

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringTest {
 @Test
 public void testReplace () {
 String s = "aabbcc";
 assertEquals("__a.___", s.replace('a', 'T'));
 assertEquals("__b.___", s.replace ('b', ' '));
 assertEquals("__c.___", s.replace ('c', 'Y'));
 }
}

51

Chapter 3: Objects and JUnit

Methods that return Values
When a method is called, the values of the arguments are copied to the parameters so the values can be
used by the method. The flow of control then transfers to the called method where those statements are
executed. One of those statements in all non-void methods must return a value. This is done with the
Java return statement that allows a method to return information. Here is the general form:

General Form return statement
 return expression;

The following examples show the return statement in the context of complete methods. The three methods are
captured in a class named ExampleMethods, which implies there is no relationship between the methods. It
simply provides methods with different return types.

// This class contains several unrelated methods to provide examples.
public class ExampleMethods {

 // Return a number that is twice the value of the argument.
 public double f(double argument) {
 return 2.0 * argument;
 }

 // Return true if argument is an odd integer, false when argument is even.
 public boolean isOdd(int argument) {
 return (argument % 2 != 0);
 }

 // Return the first two and last two characters of the string.
 // Precondition: str.length() >= 4
 public String firstAndLast(String str) {
 int len = str.length();
 String firstTwo = str.substring(0, 2);
 String lastTwo = str.substring(len - 2, len);
 return firstTwo + lastTwo;
 }
} // End of class with three example methods.

When a return statement is encountered, the expression that follows return replaces the message part
of the statement. This allows a method to communicate information back to the caller. Whereas a void
method returns nothing (see any of the void main methods or test methods), any method that has a
return type other than void must return a value that matches the return type. So, a method declared to
return a String must return a reference to a String object. A method declared to return a double must
return a primitive double value. Fortunately, the compiler will complain if you forget to return a value
or you attempt to return the wrong type of value.
 As suggested in Chapter 1, testing can occur at many times during software development. When you write a
method, test it. For example, a test method for firstAndLast could look like this.

 @Test
 public void testFirstAndLast() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals("abef", myMethods.firstAndLast("abcdef"));
 assertEquals("raar", myMethods.firstAndLast("racecar"));
 assertEquals("four", myMethods.firstAndLast("four"));
 assertEquals("A ng", myMethods.firstAndLast("A longer string"));
 }

52

Methods may exist in any class. We could use test methods in the same class as the methods being tested because
it is convenient to write methods and tests in the same file. That approach would also have the benefit not
requiring an new ExampleMethods() object thereby requiring us to write less code. However, it is common
practice to write tests in a separate test class. Conveniently, we can place test methods for each of the three
ExampleMethods in another file keeping tests separate from the methods.

// This class is used to test the three methods in ExampleMethods.
import static org.junit.Assert.*;
import org.junit.Test;

public class ExampleMethodsTest {

 @Test
 public void testF() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals(9.0, myMethods.f(4.5), 1e-14);
 assertEquals(0.0, myMethods.f(0.0), 1e-14);
 assertEquals(-4.4, myMethods.f(-2.2), 1e-14);
 }

 @Test
 public void testIsOdd() {
 ExampleMethods myMethods = new ExampleMethods();
 assertTrue(myMethods.isOdd(5));
 assertFalse(myMethods.isOdd(4));
 assertFalse(myMethods.isOdd(0));
 assertTrue(myMethods.isOdd(-3));
 assertFalse(myMethods.isOdd(-2));
 }

 @Test
 public void testFirstAndLast() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals("abef", myMethods.firstAndLast("abcdef"));
 assertEquals("raar", myMethods.firstAndLast("racecar"));
 assertEquals("four", myMethods.firstAndLast("four"));
 assertEquals("A ng", myMethods.firstAndLast("A longer string"));
 }
}

This is a relatively new way to implement and test methods made possible with the JUnit testing framework. Most
college textbooks use printlns and user input to show the results of running code that requires several program
runs with careful input of values and careful inspection of the output each time. This textbook integrates testing
with JUnit, an industry-level testing framework that makes software development more efficient and less error
prone. It is easer to test and debug your code. You are more likely to find errors more quickly. When run as a
JUnit test, all assertions pass in all three test-methods and the green bar appears.

53

Chapter 3: Objects and JUnit

With JUnit, you can set up your tests and methods and run them with no user input. The process can be easily
repeated while you debug. Writing assertions also makes us think about what the method should do before writing
the method. Writing assertions will help you determine how to best test code now and into the future, a
worthwhile skill to develop that costs little time.

Self-Check

4-7 a) Write a complete test method named testInRange as if it were in class
ExampleMethodsTest to test method inRange that will be placed in class ExampleMethods. Here is
the method heading for the method that will go into class ExampleMethods.

 // Return true if number is in the range of 1 through 10 inclusive.
 public boolean inRange(int number)

b) Write the complete method named inRange as if it were in ExampleMethods.

4-8 a) Write a complete test method named testAverageOfThree as if it were in class
ExampleMethodsTest to test method averageOfThree that will be placed in class
ExampleMethods. Here is the method heading for the method that will go into class
ExampleMethods.

 // Return the average of the three arguments.
 public double averageOfThree(double a, double b, double c)

b) Write the complete method named averageOfThree as if it were in ExampleMethods.

54

4-9 a) Write a complete test method named testRemoveMiddleTwo as if it were in class
ExampleMethodsTest to test method removeMiddleTwo that will be placed in class
ExampleMethods. removeMiddleTwo should return a string that has all characters except the two in the
middle. Assume the String argument has two or more characters. Here is the method heading for the
method that will go into class ExampleMethods.

 // Return the String argument with the middle two character missing.
 // removeMiddleTwo("abcd") should return "ad"
 // removeMiddleTwo("abcde") should return "abd"
 // Precondition: sr.length() >= 2
 public String removeMiddleTwo(String str)

b) Write the complete method named removeMiddleTwo as if it were in the ExampleMethods class.

How do we know what to test?
Methods are deigned to have parameters to allow different arguments. This makes them generally useful in future
applications. But how do we know these methods work? Is it important that they are correct? Software quality is
important. It is impossible to write perfect code.
 One effective technique to ensure a method does what it is supposed to do is to write assertions to fully test
the method. Asserting a method returns the correct value for one value is usually not enough. How many
assertions should we make? What arguments should we use? The answers are not preordained. However, by
pushing the limits of all the possible assertions and values we can think of, and doing this repeatedly, we get
better at testing. Examples help. Consider this maxOfThree method.

// Return the maximum value of the integer arguments.
public int maxOfThree(int a, int b, int c)

As recommended in Chapter 1, it helps to have sample input with the expected result. Some test cases to consider
include all three numbers the same, all 0, and certainly all different. Testing experts will tell you that test cases
include all permutations of the different integers. So the test cases should include the max of (1, 2, 3), (1, 3, 2), (2,
1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Whenever negative numbers are allowed, write assertions with negative
numbers.
 This large number of test cases probably seems excessive, but it doesn't take much time. There are a large
number of algorithms that will make maxOfThree work. I have personally seen many of these that work in most
cases, but not all cases. Especially interesting are the test cases when two are equal (students often write > rather
than >=). So other test cases should include the max of (1, 2, 2), (2, 1, 2), and (2, 2, 1).
 Since we can setup these test cases with the expected value and actual value next to each other and then run
the tests once (or more than once if you detect a bug or use incorrect expected values). This test method contains
more assertions than you would typically need due to the nature of the problem where the largest could be any of
the three arguments and any one could equal another two.

 @Test
 public void testMaxOfThree() {
 ExampleMethods myMethods = new ExampleMethods();

 // All equal
 assertEquals(5, myMethods.maxOfThree(5, 5, 5));
 assertEquals(-5, myMethods.maxOfThree(-5, -5, -5));
 assertEquals(0, myMethods.maxOfThree(0, 0, 0));

 // All permutations of 3 different arguments
 assertEquals(3, myMethods.maxOfThree(1, 2, 3));
 assertEquals(3, myMethods.maxOfThree(1, 3, 2));
 assertEquals(3, myMethods.maxOfThree(2, 1, 3));

55

Chapter 3: Objects and JUnit

 assertEquals(3, myMethods.maxOfThree(2, 3, 1));
 assertEquals(3, myMethods.maxOfThree(3, 1, 2));
 assertEquals(3, myMethods.maxOfThree(3, 2, 1));

 // All permutations of two integers that are the largest
 assertEquals(2, myMethods.maxOfThree(1, 2, 2));
 assertEquals(2, myMethods.maxOfThree(2, 1, 2));
 assertEquals(2, myMethods.maxOfThree(2, 2, 1));

 // All permutations of two integers that are the smallest
 assertEquals(2, myMethods.maxOfThree(1, 1, 2));
 assertEquals(2, myMethods.maxOfThree(2, 1, 1));
 assertEquals(2, myMethods.maxOfThree(1, 2, 1));
 }

Self-Check
4-10 Consider a method that takes three integer arguments representing the three sides of a triangle. The method
must reports whether the triangle is scalene (three sides different), isosceles (two sides equal), equilateral, or not a
triangle (cannot be). What tests should be written and for each, what should the result be?

4-11 Boggle tests your ability to find words in a random array of dice with letters. Words must be in the range of
3..16 characters inclusive. Method inRange(String str) must return true if the length of str is in the range
of 3 through 16 characters inclusive. What tests should be written and for each, what should the result be?

Answers to Self-Check Questions
4-1 -a String -d String
 -b concat -e There is no second parameter
 -c 1

4-2 -a "abcxyz -d One too many arguments
 -b needs argument -e "abcwx yz"
 -c 5 wrong type; -f "abcd"

4-3 assertEquals("abc!", s.concat("!"));
 assertEquals("abccba" , s.concat("cba"));
 assertEquals("abc123", s.concat("123"));

4-4 -a String -d char
 -b replace -e char
 -c 2

4-5 -a need 2 char arguments -d wrong type arguments. Need char, not String
 -b "abZabZ" -e "XbcXbc"
 -c "aZcaZb -f Wrong type and number of arguments for concat

4-6 assertEquals("TTbbcc", s.replace('a', 'T'));
 assertEquals("aa cc", s.replace('b', ' '));
 assertEquals("aabbYY", s.replace('c', 'Y'));

4-7 a) @Test
 public void testInRange() {
 assertFalse(inRange(0));
 assertTrue(inRange(1));
 assertTrue(inRange(5));
 assertTrue(inRange(10));
 assertFalse(inRange(11));
 }

56

 b) public boolean inRange(int number) {
 return (number >= 1) && (number <= 10);
 }

4-8 a) @Test
 public void testAverageThree() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals(0.0, myMethods.averageOfThree(0.0, 0.0, 0.0), 0.1);
 assertEquals(90.0, myMethods.averageOfThree(90.0, 90.0, 90.0), 0.1);
 assertEquals(82.5, myMethods.averageOfThree(90.0, 80.5, 77.0), 0.1);
 assertEquals(-2.0, myMethods.averageOfThree(-1, -2, -3), 0.1);
 }

 b) public double averageOfThree(double a, double b, double c) {
 return (a + b + c) / 3.0;
 }

4-9 a) @Test
 public void testRemoveMiddleTwo() {
 ExampleMethods myMethods = new ExampleMethods();
 assertEquals("", myMethods.removeMiddleTwo("12"));
 assertEquals("ad", myMethods.removeMiddleTwo("abcd"));
 assertEquals("ade", myMethods.removeMiddleTwo("abcde"));
 assertEquals("abef", myMethods.removeMiddleTwo("abcdef"));
 }

b) public String removeMiddleTwo(String str) {
 int mid = str.length() / 2;
 return str.substring(0, mid-1) + str.substring(mid + 1, str.length());
 }

4-10 Equilateral: (5, 5, 5)
 Isosceles with permutations: (3, 3, 2) (2, 3, 3) (3, 2, 3)
 Scalene with permutations: (2, 3, 4) (2 ,4, 3) (3, 2, 4) (3, 4, 2) (4 , 2, 3) (4, 3, 2)
 Not a triangle and permutations: (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 2, 1) (3, 1, 2)
 Not a triangle and permutations: (1, 2, 4) (1, 4, 2) (2, 1, 4) (2, 4, 1) (4, 2, 1) (4, 1, 2)
 Not a triangle and permutations: (0, 2, 3) (1, 0, 2) (2, 1, 0)
 Not a triangle with negative lengths and permutations: (-1, 2, 3) (1, -2, 3) (1, 2, -3)
 Not a triangle, all negative, but would be if equilateral if positive: (-5, -5, -5)

4-11 @Test
 public void testInRangeString() {
 ExampleMethods myMethods = new ExampleMethods();
 assertFalse(myMethods.inRange("")); // Empty string
 assertFalse(myMethods.inRange("ab")); // On the border -1
 assertTrue(myMethods.inRange("abc")); // On the border
 assertTrue(myMethods.inRange("abcd")); // On the border + 1
 assertTrue(myMethods.inRange("abcdef")); // In the middle
 assertTrue(myMethods.inRange("1234567890")); // In the middle
 assertTrue(myMethods.inRange("123456789012345")); // On the border - 1
 assertTrue(myMethods.inRange("1234567890123456")); // On the border
 assertFalse(myMethods.inRange("12345678901234567")); // On the border + 1
 }

Chapter 5

Selection

Goals
It is sometimes appropriate for certain actions to execute one time but not at other times. Sometimes the specific
code that executes must be chosen from many alternatives. This chapter presents statements that allow such
selections. After studying this chapter, you will be able to:

• see how Java implements the Guarded Action pattern with the if statement
• implement the Alternative Action pattern with the Java if else
• implement the Multiple Selection pattern with nested the if else statement

5.1 Selection
Programs must often anticipate a variety of situations. For example, an automated teller machine (ATM) must
serve valid bank customers, but it must also reject invalid access attempts. Once validated, a customer may wish
to perform a balance query, a cash withdrawal, or a deposit. The code that controls an ATM must permit these
different requests. Without selective forms of control—the statements covered in this chapter—all bank customers
could perform only one particular transaction. Worse, invalid PINs could not be rejected!

Before any ATM becomes operational, programmers must implement code that anticipates all possible
transactions. The code must turn away customers with invalid PINs. The code must prevent invalid transactions
such as cash withdrawal amounts that are not in the proper increment (of 10.00 or 20.00, for instance). The code
must be able to deal with customers who attempt to withdraw more than they have. To accomplish these tasks, a
new form of control is needed—a way to permit or prevent execution of certain statements depending on the
current state.

The Guarded Action Pattern
Programs often need actions that do not always execute. At one moment, a particular action must occur. At some
other time—the next day or the next millisecond perhaps—the same action must be skipped. For example, one
student may make the dean’s list because the student’s grade point average (GPA) is 3.5 or higher. That student
becomes part of the dean’s list. The next student may have a GPA lower than 3.5 and should not become part of
the dean’s list. The action—adding a student to the dean’s list—is guarded.

Algorithmic Pattern 5.1
Pattern: Guarded Action
Problem: Do something only if certain conditions are true.
Outline: if (true-or-false-condition is true)
 execute this action
Code Example: if (GPA >= 3.5)
 System.out.println("Made the dean's list");

58

The if Statement
This Guarded Action pattern occurs so frequently it is implemented in most programming languages with the if
statement.

General Form: if statement
if (Boolean-expression)
 true-part

A Boolean-expression is any expression that evaluates to either true or false. The true-part may be any valid Java
statement, including a block. A block is a sequence of statements within the braces { and }.

Examples of if Statements
if (hoursStudied > 4.5)
 System.out.println("You are ready for the test");

if (hoursWorked > 40.0) {
 // With a block with { } for the true part so both statements may execute
 regularHours = 40.0;
 overtimeHours = hoursWorked - 40.0;
}

When an if statement is encountered, the boolean expression is evaluated to false or true. The “true part”
executes only if the boolean expression evaluates to true. So in the first example above, the output "You are
ready for the test" appears only when the user enters something greater than 4.5. When the input is 4.5 or
less, the true part is skipped—the action is guarded. Here is a flowchart view of the Guarded Action pattern:

Flowchart view of the Guarded Action pattern

boolean expression

true

false

true part
A statement

or a block

A test method for withdraw illustrates that a BankAccount object should not change for negative arguments.

 @Test
 public void testGetWithdrawWhenNotPositive() {
 BankAccount anAcct = new BankAccount("Angel", 100.00);
 // Can't withdraw amounts <= 0.0;
 anAcct.withdraw(0.00);
 // Balance remains the same
 assertEquals(100.00, anAcct.getBalance(), 0.1);
 anAcct.withdraw(-0.99);
 // Balance remains the same
 assertEquals(100.00, anAcct.getBalance(), 0.1);
 }

Nor should any BankAccount object change when the amount is greater than the balance.

59

Chapter 5: Selection

 @Test
 public void testGetWithdrawWhenNotEnoughMoney() {
 BankAccount anAcct = new BankAccount("Angel", 100.00);
 // Do not want withdrawals when the amount > balance;
 anAcct.withdraw(100.01);
 // Balance should remain the same
 assertEquals(100.00, anAcct.getBalance(), 0.1);
 }

The if statement in this modified wthdraw method guards against changing the balancean instance
variablewhen the argument is negative or greater than the balance

 public void withdraw(double withdrawalAmount) {
 if (withdrawalAmount > 0.00 && withdrawalAmount <= balance) {
 balance = balance - withdrawalAmount;
 }

 }

Through the power of the if statement, the same exact code results in two different actions. The if statement
controls execution because the true part executes only when the Boolean expression is true. The if statement also
controls statement execution by disregarding statements when the Boolean expression is false.

Self-Check
5-1 Write the output generated by the following pieces of code:
-a int grade = 45;
 if(grade >= 70)
 System.out.println("passing");
 if(grade < 70)
 System.out.println("dubious");
 if(grade < 60)
 System.out.println("failing");

-b int grade = 65;
 if(grade >= 70)
 System.out.println("passing");
 if(grade < 70)
 System.out.println("dubious");
 if(grade < 60)
 System.out.println("failing");

-c String option = "D";
 if(option.equals("A"))
 System.out.println("addRecord");
 if(option.equals("D"))
 System.out.println("deleteRecord")

5.2 The Alternative Action Pattern
Programs must often select from a variety of actions. For example, say one student passes with a final grade that
is ≥ 60.0. The next student fails with a final grade that is < 60.0. This example uses the Alternative Action
algorithmic pattern. The program must choose one course of action or an alternative.

Algorithmic Pattern: Alternate Action
Pattern: Alternative Action
Problem: Need to choose one action from two alternatives.
Outline: if (true-or-false-condition is true) execute action-1 otherwise execute action-2

60

 Code Example: if(finalGrade >= 60.0)
 System.out.println("passing");
 else
 System.out.println("failing");

The if else Statement
The Alternative Action pattern can be implemented with Java’s if else statement. This control structure can be
used to choose between two different courses of action (and, as shown later, to choose between more than two
alternatives).

The if else Statement
if(boolean-expression)
 true-part
else
 false-part

The if else statement is an if statement followed by the alternate path after an else. The true-part and the
false-part may be any valid Java statements or blocks (statements and variable declarations between the curly
braces { and }).

Example of if else Statements
 if (sales <= 20000.00)
 System.out.println("No bonus");
 else
 System.out.println("Bonus coming");

 if (withdrawalAmount <= myAcct.getBalance()) {
 myAcct.withdraw(withdrawalAmount);
 System.out.println("Current balance: " + myAcct.getBalance());
 }
 else {
 System.out.println("Insufficient funds");
 }

When an if else statement is encountered, the Boolean expression evaluates to either false or true. When
true, the true part executes—the false part does not. When the Boolean expression evaluates to false, only the
false part executes.

Flowchart view of the Alternative Action pattern

true false
True part False part

logical

expression

statement(s) statement(s)

61

Chapter 5: Selection

Self-Check
5-2 Write the output generated by each code segment given these initializations of j and x:

 int j = 8;
 double x = -1.5;

-a if(x < -1.0)
 System.out.println("true");
 else
 System.out.println("false");
 System.out.println("after if...else");

-b if(j >= 0)
 System.out.println("zero or pos");
 else
 System.out.println("neg");

-c if(x >= j)
 System.out.println("x is high");
 else
 System.out.println("x is low");

-d if(x <= 0.0)
 if(x < 0.0) // True part is another if...else
 System.out.println("neg");
 else
 System.out.println("zero");
 else
 System.out.println("pos");

5-3 Write an if else statement that displays your name if int option is an odd integer or displays your school
if option is even.

A Block with Selection Structures
The special symbols { and } have been used to gather a set of statements and variable declarations that are treated
as one statement for the body of a method. These two special symbols delimit (mark the boundaries) of a block.
The block groups together many actions, which can then be treated as one. The block is also useful for combining
more than one action as the true or false part of an if else statement. Here is an example:

 double GPA;
 double margin;
 // Determine the distance from the dean's list cut-off
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter GPA: ");
 GPA = keyboard.nextDouble();

 if(GPA >= 3.5) {
 // True part contains more than one statement in this block
 System.out.println("Congratulations, you are on the dean's list.");
 margin = GPA - 3.5;
 System.out.println("You made it by " + margin + " points.");
 }
 else {
 // False part contains more than one statement in this block
 System.out.println("Sorry, you are not on the dean's list.");
 margin = 3.5 - GPA;
 System.out.println("You missed it by " + margin + " points.");
 }

62

The block makes it possible to treat many statements as one. When GPA is input as 3.7, the Boolean expression
(GPA >= 3.5) is true and the following output is generated:

Dialog
Enter GPA: 3.7
Congratulations, you are on the dean's list.
You made it by 0.2 points.

When GPA is 2.9, the Boolean expression (GPA >= 3.5) is false and this output occurs:

Dialog
Enter GPA: 2.9
Sorry, you are not on the dean's list.
You missed it by 0.6 points.

This alternate execution is provided by the two possible evaluations of the boolean expression GPA >= 3.5. If it
evaluates to true, the true part executes; if false, the false part executes.

The Trouble in Forgetting { and }

Neglecting to use a block with if else statements can cause a variety of errors. Modifying the previous example
illustrates what can go wrong if a block is not used when attempting to execute both output statements.

if(GPA >= 3.5)
 margin = GPA - 3.5;
 System.out.println("Congratulations, you are on the dean's list.");
 System.out.println("You made it by " + margin + " points.");
else // <- ERROR: Unexpected else

With { and } removed, there is no block; the two bolded statements no longer belong to the preceding if else,
even though the indentation might make it appear as such. This previous code represents an if statement followed
by two println statements followed by the reserved word else. When else is encountered, the Java compiler
complains because there is no statement that begins with an else.

Here is another example of what can go wrong when a block is omitted. This time, { and } are omitted after
else.

else
 margin = 3.5 - GPA;
 System.out.println("Sorry, you are not on the dean's list.");
 System.out.println("You missed it by " + margin + " points.");

There are no compiletime errors here, but the code does contain an intent error. The final two statements always
execute! They do not belong to if else. If GPA >= 3.5 is false, the code does execute as one would expect. But
when this boolean expression is true, the output is not what is intended. Instead, this rather confusing output
shows up:

Congratulations, you are on the dean's list.
You made it by 0.152 points.
Sorry, you are not on the dean's list.
You missed it by -0.152 points.

Although it is not necessary, always using blocks for the true and false parts of if and if else statements could
help you. The practice can make for code that is more readable. At the same time, it could help to prevent intent
errors such as the one above. One of the drawbacks is that there are more lines of code and more sets of curly
braces to line up. In addition, the action is often only one statement and the block is not required.

63

Chapter 5: Selection

5.3 Multiple Selection
“Multiple selection” refers to times when programmers need to select one action from many possible actions. This
pattern is summarized as follows:

Algorithmic Pattern: Multiple Selection
Pattern: Multiple Selection
Problem: Must execute one set of actions from three or more alternatives.
Outline: if (condition-1 is true)
 execute action-1
 else if(condition-2 is true)
 execute action-2
 else if(condition n-1 is true)
 execute action n-1
 else
 execute action-n

Code Example: // Return a message related to the "comfyness"
 // of the size of the string argument
 public String comfy(String str) {
 String result = "?";
 int size = str.length();

 if (size < 2)
 result = "Way too small";
 else if (size < 4)
 result = "Too small";
 else if (size == 4)
 result = "Just right";
 else if (size > 4 && size <= 8)
 result = "Too big";
 else
 result = "Way too big";

 return result;

}

The following code contains an instance of the Multiple Selection pattern. It selects from one of three possible
actions. Any grade point average (GPA) less than 3.5 (including negative numbers) generates the output “Try
harder.” Any GPA less than 4.0 but greater than or equal to 3.5 generates the output “You made the dean’s list.”
And any GPA greater than or equal to 4.0 generates the output “You made the president’s list.” There is no upper
range or lower range defined in this problem.

 // Multiple selection, where exactly one println statement
 // executes no matter what value is entered for GPA.
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter your GPA: ");
 double GPA = keyboard.nextDouble();
 if (GPA < 3.5)
 System.out.println("Try harder");
 else {
 // This false part of this if else is another if else
 if (GPA < 4.0)
 System.out.println("You made the dean's list");
 else
 System.out.println("You made the president's list");
 }

64

Notice that the false part of the first if else statement is another if else statement. If GPA is less than 3.5, Try
harder is output and the program skips over the nested if else. However, if the boolean expression is false
(when GPA is greater than or equal to 3.5), the false part executes. This second if else statement is the false part
of the first if else. It determines if GPA is high enough to qualify for either the dean’s list or the president’s list.
 When implementing multiple selection with if else statements, it is important to use proper indentation so
the code executes as its written appearance suggests. The readability that comes from good indentation habits
saves time during program implementation. To illustrate the flexibility you have in formatting, the previous
multiple selection may be implemented in the following preferred manner to line up the three different paths
through this control structure:

 if (GPA < 3.5)
 System.out.println("Try harder");
 else if (GPA < 4.0)
 System.out.println("You made the dean's list");
 else
 System.out.println("You made the president's list");

Another Example — Determining Letter Grades
Some schools use a scale like the following to determine the proper letter grade to assign to a student. The letter
grade is based on a percentage representing a weighted average of all of the work for the term. Based on the
following table, all percentage values must be in the range of 0.0 through 100.0:

Value of Percentage Assigned Grade
90.0 ≤ percentage ≤ 100.0 A
80.0 ≤ percentage < 90.0 B
70.0 ≤ percentage < 80.0 C
60.0 ≤ percentage < 70.0 D
 0.0 ≤ percentage < 60.0 F

This problem is an example of choosing one action from more than two different actions. A method to determine the
range weightedAverage falls into could be implemented with unnecessarily long separate if statements:

 public String letterGrade(double weightedAverage) {
 String result = "";
 if(weightedAverage >= 90.0 && weightedAverage <= 100.0)
 result = "A";
 if(weightedAverage >= 80.0 && weightedAverage < 90.0)
 result = "B";
 if(weightedAverage >= 70.0 && weightedAverage < 80.0)
 result = "C";
 if(weightedAverage >= 60.0 && weightedAverage < 70.0)
 result = "D";
 if(weightedAverage >= 0.0 && weightedAverage < 60.0)
 result = "F";
 return result;
 }

When given the problem of choosing from one of six actions, it is better to use multiple selection, not guarded
action. The preferred multiple selection implementationshown belowis more efficient at runtime. The
solution above is correct, but it requires the evaluation of six complex boolean expression every time. The
solution shown below, with nested if else statements, stops executing when the first boolean test evaluates to
true. The true part executes and all of the remaining nested if else statements are skipped.

Additionally, the multiple selection pattern shown next is less prone to intent errors. It ensures that an error

65

Chapter 5: Selection

message will be returned when weightedAverage is outside the range of 0.0 through 100.0 inclusive. There is a
possibility, for example, an argument will be assigned to weightedAverage as 777 instead of 77. Since 777 >=
90.0 is true, the method in the code above could improperly return an emtpy String when a "C" would have
likely been the intended result.

The nested if else solution first checks if weightedAverage is less than 0.0 or greater than 100.0. In this
case, an error message is concatenated instead of a valid letter grade.

 if ((weightedAverage < 0.0) || (weightedAverage > 100.0))
 result = weightedAverage + " not in the range of 0.0 through 100.0";

If weightedAverage is out of rangeless than 0 or greater than 100the result is an error message and the
program skips over the remainder of the nested if else structure. Rather than getting an incorrect letter grade
for percentages less than 0 or greater than 100, you get a message that the value is out of range.

However, if the first boolean expression is false, then the remaining nested if else statements check the
other five ranges specified in the grading policy. The next test checks if weightedAverage represents an A. At
this point, weightedAverage is certainly less than or equal to 100.0, so any value of weightedAverage >=
90.0 sets result to "A".

 public String letterGrade(double weightedAverage) {
 String result = "";
 if ((weightedAverage < 0.0) || (weightedAverage > 100.0))
 result = weightedAverage + " not in the range of 0.0 through 100.0";
 else if (weightedAverage >= 90)
 result = "A";
 else if (weightedAverage >= 80.0)
 result = "B";
 else if (weightedAverage >= 70.0)
 result = "C";
 else if (weightedAverage >= 60.0)
 result = "D";
 else
 result = "F";
 return result;

 }

The return value depends on the current value of weightedAverage. If weightedAverage is in the range and
is also greater than or equal to 90.0, then “A” will be the result. The program skips over all other statements
after the first else. If weightedAverage == 50.0, then all boolean expressions are false and the program
executes the action after the final else; "F" is concatenated to result.

Testing Multiple Selection
Consider how many method calls should be made to test the letterGrade method with multiple selection—or for
that matter, any method or segment of code containing multiple selection. To test this particular example to ensure
that multiple selection is correct for all possible percentage arguments, the method could be called with all
numbers in the range from -1.0 through 101.0. However, this would require an infinite number of method calls for
arguments such as 1.000000000001 and 1.999999999999, for example. With integers, it would be a lot easier, but
still tedious. Such testing is unnecessary.

First consider a set of test data that executes every possible branch through the nested if else. Branch coverage
testing means observing what happens when every statement (including the true and false parts) of a nested if else
executes once.

Testing should also include the cut-off (boundary) values. This extra effort could go a long way. For example,
testing the cut-offs might avoid situations where students with 90.0 are accidentally shown to have a letter grade
of B rather than A. This would occur when the Boolean expression (percentage >= 90.0) is accidentally

66

coded as (percentage > 90.0). The arguments of 60.0, 70.0, 80.0, and 90.0 complete the boundary testing of
the code above.

The best testing strategy is to select test values that combine branch and boundary testing at the same time.
For example, a percentage of 90.0 should return "A". The value of 90.0 not only checks the path for returning an
A, it also tests the boundary—90.0 as one cut-off. Counting down by tens to 60 checks all boundaries. However,
this still misses one path: the one that sets result to "F". Adding 59.9 completes the test driver. These three things
are necessary to correctly perform branch coverage testing:

• Establish a set of data that executes all branches (all possible paths through the multiple selection)
and boundary (cut-off) values.

• Execute the portion of the program containing the multiple selection for all selected data values. This
can be done with a test method and several assertions.

• Observe that the all assertions pass (green bar).

For example, the following data set executes all branches of letterGrade while checking the boundaries:

 101.1 -0.1 0.0 59.9 60.0 69.9 70.0 79.9 80.0 89.9 90.0 99.9 100.0

These two methods do branch and boundary testing.

@Test
public void testLetterGradeWhenArgumentNotInRange() {
 assertEquals("100.1 not in the range of 0.0 through 100.0", letterGrade(100.1));
 assertEquals("-0.1 not in the range of 0.0 through 100.0", letterGrade(-0.1));
}

@Test
public void testLetterGradeWhenArgumentIsInRange() {
 assertEquals("F", letterGrade(0.0));
 assertEquals("F", letterGrade(59.9));
 assertEquals("D", letterGrade(60.0));
 assertEquals("D", letterGrade(69.9));
 assertEquals("C", letterGrade(70.0));
 assertEquals("C", letterGrade(79.9));
 assertEquals("B", letterGrade(80.0));
 assertEquals("B", letterGrade(89.9));
 assertEquals("A", letterGrade(90.0));
 assertEquals("A", letterGrade(99.9));
 assertEquals("A", letterGrade(100.0));
}

Self-Check
5-4 Which value of weightedAverage detects the intent error in the following code when you see this

feedback from JUnit org.junit.ComparisonFailure: expected:<[A]> but was:<[B]>?

 if(weightedAverage > 90)
 result = "A";
 else if(weightedAverage >=80)
 result = "B";
 else if(weightedAverage >= 70)
 result = "C";
 else if(weightedAverage >= 60)
 result = "D";
 else

 result = "F";

5-5 What String would be incorrectly assigned to letterGrade for this argument (answer to 5-4)?
5-6 Would you be happy if your grade were incorrectly computed in this manner?

67

Chapter 5: Selection

 Use method currentConditions to answer the questions that follow

 public String currentConditions(int currentTemp) {
 String result;
 if (currentTemp <= -40)
 result = "dangerously cold";
 else if (currentTemp <= 0)
 result = "freezing";
 else if (currentTemp <= 10)
 result = "cold";
 else if (currentTemp <= 20)
 result = "mild";
 else if (currentTemp <= 30)
 result = "warm";
 else if (currentTemp <= 40)
 result = "hot";
 else if (currentTemp <= 45)
 result = "very hot";
 else
 result = "dangerously hot";
 return result;
 }
}

5-7 List the range of integers that would cause currentConditions to return warm.

5-8 List a range of integers that would cause currentConditions to return freezing.
5-9 Establish a list of arguments that tests the boundaries in currentConditions.
5-10 Establish a list of arguments that tests the branches in currentConditions.
5-11 Write in the correct expected value so each assertion passes.
import static org.junit.Assert.*;
import org.junit.Test;

public class LittleWeatherTest {

 @Test
 public void testLittleWeather() {

 assertEquals("________________", currentConditions(-41));

 assertEquals("________________", currentConditions(-40));

 assertEquals("________________", currentConditions(-39));

 assertEquals("________________", currentConditions(0));

 assertEquals("________", currentConditions(1));

 assertEquals("________", currentConditions(10));

 assertEquals("________", currentConditions(11));

 assertEquals("________", currentConditions(20));

 assertEquals("________", currentConditions(21));

 assertEquals("________", currentConditions(30));

 assertEquals("________", currentConditions(31));

 assertEquals("________", currentConditions(40));

 assertEquals("________", currentConditions(41));

 assertEquals("________", currentConditions(45));

 assertEquals("________", currentConditions(46));
 }

68

Answers to Self-Check Questions
5-1 -a dubious

 failing
 -b dubious
 -c deleteRecord

5-2 -a true

 after if else The last prinltn is not part of the else. It always executes
 -b zero or pos
 -c x is low
 -d neg

5-3 if(option % 2 == 0)

 System.out.println("Your School");
else

 System.out.println("Your name");

5-4 90
5-5 B (instead of the deserved A).
5-6 I wouldn’t be happy; I doubt you would either.
5-7 21 through 30 inclusive
5-8 -39 through 0 inclusive
5-9 -40 0 10 20 30 40 45
5-10 any integer < -41, -15 (or any integer in the range of -30 through -1), 5, 15, 25, 35, 42, and any integer > 46
5-11 assertEquals("dangerously cold", currentConditions(-41));
 assertEquals("dangerously cold", currentConditions(-40));
 assertEquals("freezing", currentConditions(-39));
 assertEquals("freezing", currentConditions(0));
 assertEquals("cold", currentConditions(1));
 assertEquals("cold", currentConditions(10));
 assertEquals("mild", currentConditions(11));
 assertEquals("mild", currentConditions(20));
 assertEquals("warm", currentConditions(21));
 assertEquals("warm", currentConditions(30));
 assertEquals("hot", currentConditions(31));
 assertEquals("hot", currentConditions(40));
 assertEquals("very hot", currentConditions(41));
 assertEquals("very hot", currentConditions(45));
 assertEquals("dangerously hot", currentConditions(46));

Chapter 6

Repetition

Goals
This chapter introduces the third major control structure—repetition (sequential and selection being the first two).
Repetition is discussed within the context of two general algorithmic patterns—the determinate loop and the
indeterminate loop. Repetitive control allows for execution of some actions either a specified, predetermined
number of times or until some event occurs to terminate the repetition. After studying this chapter, you will be
able to

• Use the Determinate Loop pattern to execute a set of statements until an event occurs to stop.
• Use the Indeterminate Loop pattern to execute a set of statements a predetermined number of times
• Design loops

6.1 Repetition
Repetition refers to the repeated execution of a set of statements. Repetition occurs naturally in non-computer
algorithms such as these:

• For every name on the attendance roster, call the name. Write a checkmark if present.
• Practice the fundamentals of a sport
• Add the flour ¼-cup at a time, whipping until smooth.

Repetition is also used to express algorithms intended for computer implementation. If something can be done
once, it can be done repeatedly. The following examples have computer-based applications:

• Process any number of customers at an automated teller machine (ATM)
• Continuously accept hotel reservations and cancellations
• While there are more fast-food items, sum the price of each item
• Compute the course grade for every student in a class
• Microwave the food until either the timer reaches 0, the cancel button is pressed, or the door opens

Many jobs once performed by hand are now accomplished by computers at a much faster rate. Think of a payroll
department that has the job of producing employee paychecks. With only a few employees, this task could
certainly be done by hand. However, with several thousand employees, a very large payroll department would be
necessary to compute and generate that many paychecks by hand in a timely fashion. Other situations requiring
repetition include, but are certainly not limited to, finding an average, searching through a collection of objects for
a particular item, alphabetizing a list of names, and processing all of the data in a file.

The Determinate Loop Pattern
Without the selection control structures of the preceding chapter, computers are little more than nonprogrammable
calculators. Selection control makes computers more adaptable to varying situations. However, what makes
computers powerful is their ability to repeat the same actions accurately and very quickly. Two algorithmic

70

patterns emerge. The first involves performing some action a specific, predetermined (known in advance) number
of times. For example, to find the average of 142 test grades, you would repeat a set of statements exactly 142
times. To pay 89 employees, you would repeat a set of statements 89 times. To produce grade reports for 32,675
students, you would repeat a set of statements 32,675 times. There is a pattern here.
 In each of these examples, a program requires that the exact number of repetitions be determined somehow.
The number of times the process should be repeated must be established before the loop begins to execute. You
shouldn’t be off by one. Predetermining the number of repetitions and then executing some appropriate set of
statements precisely a predetermined number of times is referred to here as the Determinate Loop pattern.

Algorithmic Pattern: Determinate Loop
Pattern: Determinate Loop
Problem: Do something exactly n times, where n is known in advance.
Outline: Determine n as the number of times to repeat the actions
 Set a counter to 1
 While counter <= n, do the following
 Execute the actions to be repeated
Code Example: // Print the integers from 1 through n inclusive

int counter = 1;
int n = 5;
while (counter <= n) {
 System.out.println(counter);
 counter = counter + 1;
}

The Java while statement can be used when a determinate loop is needed.

General Form: while statement
while (loop-test) {
 repeated-part
}

Example
int start = 1;
int end = 6;
while (start < end) {
 System.out.println(start + " " + end);
 start = start + 1;
 end = end - 1;
}
Output
1 6
2 5
3 4

The loop-test is a boolean expression that evaluates to either true or false. The repeated-part may be any Java
statement, but it is usually a set of statements enclosed in { and }.
When a while loop is encountered, the loop test evaluates to either true or false. If true, the repeated part
executes. This process continues while (as long as) the loop test is true.

71

Chapter 6: Repetition

Flow Chart View of one Indeterminate Loop

To implement the Determinate Loop Pattern you can use some int variable—named n here—to represent how
often the actions must repeat. However, other appropriate variable names are certainly allowed, such as
numberOfEmployees. The first thing to do is determine the number of repetitions somehow. Let n represent the
number of repetitions.

 n = number of repetitions

The number of repetitions may be input, as in int n = keyboard.nextInt(); or n may be established at
compiletime, as in int n = 124; or n may be passed as an argument to a method as shown in the following
method heading.

 // Return the sum of the first n integers.
 // Precondition: n >= 0
 public int sumOfNInts(int n)

The method call sumOfNInts(4) should return the sum of all positive integers from 1 through 4 inclusive or 1 +
2 + 3 +4 = 10. The following test method shows four other expected values with different values for n.

 @Test
 public void testSumOfNInts() {
 assertEquals(0, sumOfNInts(0));
 assertEquals(1, sumOfNInts(1));
 assertEquals(3, sumOfNInts(2));
 assertEquals(1 + 2 + 3 + 4 + 5 + 6 + 7, sumOfNInts(7));
 }

Once n is known, another int variable, named counter in the sumOfNInts method below, helps control the
number of loop iterations.

 // Return the sum of the first n integers
 public int sumOfNInts(int n) {
 int result = 0;

 int counter = 1;
 // Add counter to result as it changes from 1 through n
 while (counter <= n) {

72

 result = result + counter;
 counter = counter + 1;
 }
 return result;
 }

The action to be repeated is incrementing result by the value of counter as it progresses from 1 through n.
Incrementing counter at each loop iteration gets the loop one step closer to termination.

Determinate Loop with Strings
Sometimes an object carries information to determine the number of iterations to accomplish the task. Such is the
case with String objects. Consider numSpaces(String) that returns the number of spaces in the String
argument. The following assertions must pass

 @Test
 public void testNumSpaces() {
 assertEquals(0, numSpaces(""));
 assertEquals(2, numSpaces(" a "));
 assertEquals(7, numSpaces(" a bc "));
 assertEquals(0, numSpaces("abc"));
 }

The solution employs the determinate lop pattern to look at each and every character in the String. In this case,
str.length() represents the number of loop iterations. However, since the characters in a string are indexed
from 0 through its length() – 1, index begins at 0.

 // Return the number of spaces found in str.
 public int numSpaces(String str) {
 int result = 0;
 int index = 0;
 while (index < str.length()) {
 if (str.charAt(index) == ' ')
 result = result +1;
 index++;
 }
 return result;
 }

Infinite Loops
It is possible that a loop may never execute, not even once. It is also possible that a while loop never terminates.
Consider the following while loop that potentially continues to execute until external forces are applied such as
terminating the program, turning off the computer or having a power outage. This is an infinite loop, something
that is usually undesirable.

// Print the integers from 1 through n inclusive
int counter = 1;
int n = 5;
while (counter <= n) {
 System.out.println(counter);
}

The loop repeats virtually forever. The termination condition can never be reached. The loop test is always true
because there is no statement in the repeated part that brings the loop closer to the termination condition. It should
increment counter so it eventually becomes greater than to make the loop test is false. When writing while loops,
make sure the loop test eventually becomes false.

73

Chapter 6: Repetition

Self-Check
6-1 Write the output from the following Java program fragments:

int n = 3;
int counter = 1;
while (counter <= n) {
 System.out.print(counter + " ");
 counter = counter + 1;
}

int low = 1;
int high = 9;
while (low < high) {
 System.out.println(low + " " + high);
 low = low + 1;
 high = high - 1;
}

int last = 10;
int j = 2;
while (j <= last) {
 System.out.print(j + " ");
 j = j + 2;
}

int counter = 10;
// Tricky, but an easy-to-make mistake
while (counter >= 0); {
 System.out.println(counter);
 counter = counter - 1;
}

6-2 Write the number of times “Hello” is printed. “Zero” and “Infinite” are valid answers.

int counter = 1;
int n = 20;
while (counter <= n) {
 System.out.print("Hello ");
 counter = counter + 1;
}

int j = 1;
int n = 5;
while (j <= n) {
 System.out.print("Hello ");
 n = n + 1;
 j = j + 1;
}

int counter = 1;
int n = 5;
while (counter <= n) {
 System.out.print("Hello ");
 counter = counter + 1;
}

// Tricky
int n = 5;
int j = 1;
while (j <= n)
 System.out.print("Hello ");
 j = j + 1;

6-3 Implement method factorial that return n!. factorial(0) must return 1, factorial(1) must
return 1, factorial(2) must return 2*1, factorial(3) must return 3*2*1, and factorial(4) must
return is 4*3*2*1. The following assertions must pass.

 @Test
 public void testFactorial() {
 assertEquals(1, factorial(0));
 assertEquals(1, factorial(1));
 assertEquals(2, factorial(2));
 assertEquals(6, factorial(3));
 assertEquals(7 * 6 * 5 * 4 * 3 * 2 * 1, factorial(7));
 }

6-4 Implement method duplicate that returns a string where every letter is duplicated. Hint: Create an empty
String referenced by result and concatenate each character in the argument to result twice. The following
assertions must pass.

 @Test
 public void testDuplicate() {
 assertEquals("", duplicate(""));
 assertEquals(" ", duplicate(" "));
 assertEquals("zz", duplicate("z"));
 assertEquals("xxYYzz", duplicate("xYz"));
 assertEquals("1122334455", duplicate("12345"));
 }

74

6.2 Indeterminate Loop Pattern
It is often necessary to execute a set of statements an undetermined number of times. For example, to process
report cards for every student in a school where the number of students changes from semester to semester.
Programs cannot always depend on prior knowledge to determine the exact number of repetitions. It is often more
convenient to think in terms of “process a report card for all students” rather than “process precisely 310 report
cards.” This leads to a recurring pattern in algorithm design that captures the essence of repeating a process an
unknown number of times. It is a pattern to help design a process of iterating until something occurs to indicate
that the looping is finished. The Indeterminate Loop pattern occurs when the number of repetitions is not
known in advance.

Algorithmic Pattern
Pattern: Indeterminate Loop
Problem: A process must repeat an unknown number of times.
Outline: while (the termination condition has not occurred) {
 perform the actions
 do something to bring the loop closer to termination
 }
Code Example // Return the greatest common divisor of two positive integers.
 public int GCD(int a, int b) {
 while (b != 0) {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
 }

The code example above is an indeterminate loop because the algorithm cannot determine how many times a must
be subtracted from b or b from a. The loop repeats until there is nothing more to subtract. When b becomes 0, the
loop terminates. When the following test method executes, the loop iterates a varying number of times:

 @Test
 public void testGCD() {
 assertEquals(2, GCD(6, 4));
 assertEquals(7, GCD(7, 7));
 assertEquals(3, GCD(24, 81));
 assertEquals(5, GCD(15, 25));
 }

GCD(6, 4) → 2 GCD(7, 7) → 7 GCD(24, 81) → 3 GCD(15, 25) → 5

a b
6 4
2 4
2 2
2 0

a b
7 7
7 0

a b
24 81
24 57
24 33
24 9
15 9
6 9
6 3
3 3
3 0

a b
15 25
15 10
5 10
5 5
5 0

75

Chapter 6: Repetition

The number of iterations in the four assertions ranges from 1 to 8. However, GCD(1071, 532492) results in 285
loop iterations to find there is no common divisor other than 1. The following alternate algorithm for GCD(a, b)
using modulus arithmetic more quickly finds the GCD in seven iterations because b approaches 0 more quickly
with %.

 // Return the greatest common divisor of two
 // positive integers with fewer loop iterations
 public int GCD(int a, int b) {
 while (b != 0) {
 int temp = a;
 a = b;
 b = temp % b;
 }
 return a;
 }

Indeterminate Loop with Scanner(String)
Sometimes a stream of input from the keyboard or a file needs to be read until there is no more needed input. The
amount of input may not be known until there is no more. A convenient way to expose this processing is to use a
Scanner with a String argument to represent input from the keyboard or a file.

 // Constructs a new Scanner that produces values scanned from the specified
 // string. The parameter source is the string to scan
 public void Scanner(String source)

Scanner has convenient methods to determine if there is any more input of a certain type and to get the next value
of that type. For example to read white space separated strings, use these two methods from
java.util.Scanner.

 // Returns true if this scanner has another token in its input.
 // This method may block while waiting for keyboard input to scan.
 public boolean hasNext()

 // Return the next complete token as a string.
 public String next()

The following test methods demonstrates how hasNext() will eventually return false after next() has been
called for every token in scanner's string.

 @Test
 public void showScannerWithAStringOfStringTokens() {
 Scanner scanner = new Scanner("Input with four tokens");
 assertTrue(scanner.hasNext());
 assertEquals("Input", scanner.next());
 assertTrue(scanner.hasNext());
 assertEquals("with", scanner.next());
 assertTrue(scanner.hasNext());
 assertEquals("four", scanner.next());
 assertTrue(scanner.hasNext());
 assertEquals("tokens", scanner.next());

 // Scanner has scaned all tokens, so hasNext() should now be false.
 assertFalse(scanner.hasNext());
 }

You can also have the String argument in the Scanner constructor contain numeric data. You have used
nextInt() before in Chapter 2's console based programs.

a b
532492 1071
1071 205
205 46
46 21
21 4
4 1
1 0

76

 // Returns true if the next token in this scanner's input
 // can be interpreted as an int value.
 public boolean hasNextInt()

 // Scans the next token of the input as an int.
 public int nextInt()

The following test method has an indeterminate loop that repeats as long as there is another valid integer to read.

 @Test
 public void showScannerWithAStringOfIntegerTokens() {
 Scanner scanner = new Scanner("80 70 90");
 // Sum all integers found as tokens in scanner
 int sum = 0;
 while (scanner.hasNextInt()) {
 sum = sum + scanner.nextInt();
 }
 assertEquals(240, sum);
 }

Scanner also has many such methods whose names indicate what they do: hasNextDouble() with
nextDouble(), hasNextLine() with nextLine(), and hasNextBoolean() with nextBoolean().

A Sentinel Loop
A sentinel is a specific input value used only to terminate an indeterminate loop. A sentinel value should be the
same type of data as the other input. However, this sentinel must not be treated the same as other input. For
example, the following set of inputs hints that the input of -1 is the event that terminates the loop and that -1 is not
to be counted as a valid test score. If it were counted as a test score, the average would not be 80.

Dialogue
Enter test score #1 or -1.0 to quit: 80
Enter test score #2 or -1.0 to quit: 90
Enter test score #3 or -1.0 to quit: 70
Enter test score #4 or -1.0 to quit: -1
Average of 3 tests = 80.0

This dialogue asks the user either to enter test scores or to enter -1.0 to signal the end of the data. With sentinel
loops, a message is displayed to inform the user how to end the input. In the dialogue above, -1 is the sentinel. It
could have some other value outside the valid range of inputs, any negative number, for example.
 Since the code does not know how many inputs the user will enter, an indeterminate loop should be used.
Assuming that the variable to store the user input is named currentInput, the termination condition is
currentInput == -1. The loop should terminate when the user enters a value that flags the end of the data. The
loop test can be derived by taking the logical negation of the termination condition. The while loop test becomes
currentInput != -1.
 while (currentInput != -1)

The value for currentInput must be read before the loop. This is called a “priming read,” which goes into the
first iteration of the loop. Once inside the loop, the first thing that is done is to process the currentInput from the
priming read (add its value to sum and add 1 to n). Once that is done, the second currentInput is read at the
“bottom” of the loop. The loop test evaluates next. If currentInput != -1, the second input is processed. This
loop continues until the user enters -1. Immediately after the nextInt message at the bottom of the loop,
currentValue is compared to SENTINEL. When they are equal, the loop terminates. The SENTINEL is not added to
the running sum, nor is 1 added to the count. The awkward part of this algorithm is that the loop is processing
data read in the previous iteration of the loop.

77

Chapter 6: Repetition

 The following method averages any number of inputs. It is an instance of the Indeterminate Loop pattern
because the code does not assume how many inputs there will be.

import java.util.Scanner;
// Find an average by using a sentinel of -1 to terminate the loop
// that counts the number of inputs and accumulates those inputs.
public class DemonstrateIndeterminateLoop {

 public static void main(String[] args) {
 double accumulator = 0.0; // Maintain running sum of inputs
 int n = 0; // Maintain total number of inputs
 double currentInput;
 Scanner keyboard = new Scanner(System.in);

 System.out.println("Compute average of numbers read.");
 System.out.println();
 System.out.print("Enter number or -1 to quit: ");
 currentInput = keyboard.nextDouble();

 while (currentInput != -1) {
 accumulator = accumulator + currentInput; // Update accumulator
 n = n + 1; // Update number of inputs so far
 System.out.print("Enter number or -1 to quit: ");
 currentInput = keyboard.nextDouble();
 }

 if (n == 0)
 System.out.println("Can't average zero numbers");
 else
 System.out.println("Average: " + accumulator / n);
 }
}

Dialogue
Compute average of numbers read.

Enter number or -1.0 to quit: 70.0
Enter number or -1.0 to quit: 90.0
Enter number or -1.0 to quit: 80.0
Enter number or -1.0 to quit: -1.0
Average: 80.0

The following table traces the changing state of the important variables to simulate execution of the previous
program. The variable named accumulator maintains the running sum of the test scores. The loop also
increments n by +1 for each valid currentInput entered by the user. Notice that -1 is not treated as a valid
currentInput.
Iteration Number currentInput accumulator n currentInput != SENTINEL
Before the loop NA 0.0 0 NA
Loop 1 70.0 70.0 1 True
Loop 2 90.0 160.0 2 True
Loop 3 80.0 240.0 3 True
After the loop NA 240.0 3 NA

78

Self-Check
6-5 Determine the value assigned to average for each of the following code fragments by simulating execution when

the user inputs 70.0, 60.0, 80.0, and -1.0.

 Scanner keyboard = new Scanner(System.in);
 int n = 0;
 double accumulator = 0.0;
 double currentInput = keyboard.nextDouble();
 while (currentInput != -1.0) {
 currentInput = keyboard.nextDouble();
 accumulator = accumulator + currentInput; // Update accumulator
 n = n + 1; // Update total # of inputs
 }
 double average = accumulator / n;

6-6 If you answered 70.0 for 6-5, try again until you get an answers for !- 70.

6-7 What is the value of numberOfWords after this code executes with the dialogue shown (read the input
carefully).

 String SENTINEL = "QUIT";
 Scanner keyboard = new Scanner(System.in);
 String theWord = "";
 int numberOfWords = 0;
 System.out.println("Enter words or 'QUIT' to quit");
 while (!theWord.equals(SENTINEL)) {
 numberOfWords = numberOfWords + 1;
 theWord = keyboard.next();
 }
 System.out.println("You entered " + numberOfWords + " words.");

Output
Enter words or 'QUIT' to quit
The quick brown fox quit and then jumped over the lazy dog. QUIT
You entered ___ words.

The for Statement
Java has several structures for implementing repetition. The while statement shown above can be used to
implement indeterminate and determinate loop patterns. Java also has added a for loop that combines all looping
logic into more compact code. The for loop was added to programming languages because the Determinate Loop
Pattern arises so often. Here is the general form of the Java for loop:

General Form: for statement
for(initial-statement; loop-test; update-step) {
 repeated-part;
}

The following for statement shows the three components that maintain the Determinate Loop pattern: the
initialization (n = 5 and j = 1), the loop test for determining when to stop (j <= n), and the update step (j = j + 1)
that brings the loop one step closer to terminating.

// Predetermined number of iterations
int n = 5;
for (int j = 1; j <= n; j = j + 1) {
 // Execute this block n times
}

79

Chapter 6: Repetition

In the preceding for loop, j is first assigned the value of 1. Next, j <= n (1 <= 5) evaluates to true and the block
executes. When the statements inside the block are done, j increments by 1 (j=j+1). These three components
ensure that the block executes precisely n times.

j = 1 // Initialize counter
j <= n // Loop test
j = j + 1 // Update counter

When a for loop is encountered, the initial-statement is executed first and only once. The loop-test evaluates to
either true or false before each execution of the repeated-part. The update-step executes after each iteration of
the repeated part. This process continues until the loop test evaluates to false.

Flowchart view of a for loop

true

loop test

repeated part

update step

false

init statement

The following for statement simply displays the value of the loop counter named j as it ranges from 1 through 5
inclusive:

int n = 5;
for (int j = 1; j <= n; j = j + 1) {
 System.out.print(j + " ");
}

Output
1 2 3 4 5

Other Increment and Assignment Operators
Assignment operations alter computer memory even when the variable on the left of = is also involved in the
expression to the right of =. For example, the variable int j is incremented by 1 with this assignment operation:

j = j + 1;

This type of update—incrementing a variable—is performed so frequently that Java offers operators with the
express purpose of incrementing variables. The ++ and -- operators increment and decrement a variable by 1,
respectively. For example, the expression j++ adds 1 to the value of j, and the expression x-- reduces x by 1. The
++ and -- unary operators alter the numeric variable that they follow (see the table below).

80

Statement Value of j
int j = 0; 0
j++; 1
j++; 2
j--; 1

So, within the context of the determinate loop, the update step can be written as j++ rather than j = j + 1. This
for loop

 for (int j = 1; j <= n; j = j + 1) {
 // ...
 }

may also be written with the ++ operator for equivalent behavior:

 for(int j = 1; j <= n; j++) {
 // ...
 }

These new assignment operators are shown because they provide a convenient way to increment and decrement a
counter in for loops. Also, most Java programmers use the ++ operator in for loops. You will see them often.
 Java has several assignment operators in addition to =. Two of them, += and -=, add and subtract value from
the variable to the left, respectively.
Operator Equivalent Meaning
+= Increment variable on left by value on right.
-= Decrement variable on left by value on right.

These two new operators alter the numeric variable that they follow.
Statement Value of j
int j = 0; 0
j += 3; 3
j += 4; 7

j -= 2; 5

Whereas the operators ++ and -- increment and decrement the variable by one, the operators += and -= increment and
decrement the variable by any amount. The += operator is most often used to accumulate values inside a loop.
 The following comparisons show the for loop was designed to put the initialization and the update step
together with the loop test. The for loops also use the shorter ++ operator. This makes the code a bit more
compact and a bit more difficult to read. However, you will get used to it, especially when the for loop will be
used extensively in the next chapters.

While loop For loop equivalent
public int sumOfNInts(int n) {
 int result = 0;
 int counter = 1;
 while (counter <= n) {
 result = result + counter;
 counter++;
 }
 return result;

}

public int sumOfNInts(int n) {
 int result = 0;

 for (int counter = 1; counter <= n; counter++) {
 result = result + counter;
 }

 return result;
}

81

Chapter 6: Repetition

public int numSpaces(String str) {
 int result = 0;

 int index = 0;
 while (index < str.length()) {
 if (str.charAt(index) == ' ')
 result++;
 index++;
 }
 return result;
}

public int numSpaces(String str) {
 int result = 0;

 for (int index = 0; index < str.length();index++) {
 if (str.charAt(index) == ' ')
 result++;
 }

 return result;
}

Self-Check
6-8 Does a for loop execute the update step at the beginning of each iteration?

6-9 Must an update step increment the loop counter by +1?

6-10 Do for loops always execute the repeated part at least once?

6-11 Write the output generated by the following for loops.

 for(int j = 0; j < 5; j++) {
 System.out.print(j + " ");
 }

for(int j = 1; j < 10; j += 2) {
 System.out.print(j + " ");
}

 int n = 5;
 for(int j = 1; j <= n; j++) {
 System.out.print(j + " ");
 }

int n = 0;
System.out.print("before ");
for(int j = 1; j <= n; j++) {
 System.out.print(j + " ");
}
System.out.print(" after");

 int n = 3;
 for (int j = -3; j <= n; j += 2) {
 System.out.print(j + " ");
 }

for (int j = 5; j >= 1; j--) {
 System.out.print(j + " ");
}

6-12 Write a for loop that displays all of the integers from 1 to 100 inclusive on separate lines.

6-13 Write a for loop that displays all of the integers from 10 down to 1 inclusive on separate lines.

6.3 Loop Selection and Design
For some people, loops are easy to implement, even at first. For others, infinite loops, being off by one iteration,
and intent errors are more common. In either case, the following outline is offered to help you choose and design
loops in a variety of situations:

 1. Determine which type of loop to use.
 2. Determine the loop test.
 3. Write the statements to be repeated.
 4. Bring the loop one step closer to termination.
 5. Initialize variables if necessary.

Determine Which Type of Loop to Use
If the number of repetitions is known in advance or is read as input, it is appropriate to use the Determinate Loop
pattern. The for statement was specifically designed for this pattern. Although you can use the while loop to
implement the Determinate Loop pattern, consider using the for loop instead. The while implementation allows

82

you to omit one of the key parts with no compile time errors thus making any intent errors more difficult to detect
and correct. If you leave off one of the parts from a for loop, you get an easier-to-detect-and-correct compiletime
error.
 The Indeterminate Loop pattern is more appropriate when you need to wait until some event occurs during
execution of the loop. In this case, use the while loop. If you need to process all the data in an input file, consider
using a Scanner object with one of the hasNext methods as the loop test. This is an indeterminate loop.

Determining the Loop Test
If the loop test is not obvious, try writing the conditions that must be true for the loop to terminate. For example,
if you want the user to enter QUIT to stop entering input, the termination condition is

inputName.equals("QUIT") // Termination condition

The logical negation !inputName.equals("QUIT") can be used directly as the loop test of a while loop.

 while(! inputName.equals("QUIT")) {
 // . . .
 }

Write the Statements to Be Repeated
This is why the loop is being written in the first place. Some common tasks include keeping a running sum,
keeping track of a high or low value, and counting the number of occurrences of some value. Other tasks that will
be seen later include searching for a name in a list and repeatedly comparing all string elements of a list in order
to alphabetize it.

Bring the Loop One Step Closer to Termination
To avoid an infinite loop, at least one action in the loop must bring it closer to termination. In a determinate loop
this might mean incrementing or decrementing a counter by some specific value. Inputting a value is a way to
bring indeterminate loops closer to termination. This happens when a user inputs data until a sentinel is read, for
example. In a for loop, the repeated statement should be designed to bring the loop closer to termination, usually
by incrementing the counter.

Initialize Variables if Necessary
Check to see if any variables used in either the body of the loop or the loop test need to be initialized. Doing this
usually ensures that the variables of the loop and the variables used in the iterative part have been initialized. This
code attempts to use many variables in expressions before they have been initialized. In certain other languages,
these variables are given garbage values and the result is unpredictable. Fortunately, the Java compiler flags these
uninitialized variables as errors.

Self-Check
6-14 Which kind of loop best accomplishes these tasks?

-a Sum the first five integers (1 + 2 + 3 + 4 + 5).
-b Find the average for a list of numbers when the size of the list is known.
-c Find the average value for a list of numbers when the size of the list is not known in advance.
-d Obtain a character from the user that must be an uppercase S or Q.

6-15 To design a loop that processes inputs called value until -1 is entered,
-a describe the termination condition.
-b write the Boolean expression that expresses the logical negation of the termination condition. This

will be the loop test.

83

Chapter 6: Repetition

6-16 To design a loop that visits all the characters of theString, from the first to the last.
-a describe the termination condition.
-b write the Boolean expression that expresses the logical negation of the termination condition. This

will be the loop test.

6-17 Which variables are not initialized but should be?
-a while(j <= n) { }
-b for(int j = 1; j <= n; j = j + inc) { }

Answers to Self-Checks

6-1 1 2 3

1 9
2 8
3 7
4 6

 2 4 6 8 10

No output, this is an infinite loop, it does nothing. The code
between) and ; (an empty statement) until the program is
externally terminated.

6-2 20 Infinite since n grows as fast as j, j will always be
less than n

 5

Infinite since j++ is not part of the loop. Add {
and }

84

6-3 public int factorial(int n) {
 int result = 1;
 int counter = 1;
 while (counter <= n) {
 result = result * counter;
 counter++;
 }
 return result;
 }

6-4 public String duplicate(String str) {
 String result = "";
 int index = 0;
 while (index < str.length()) {
 result = result + str.charAt(index) + str.charAt(index);
 index++;
 }
 return result;
 }

6-5 46.3
6-6 Trace your code again if necessary.

6-7 The answer of 13 includes QUIT. The solution does not include the priming read.
You entered 13 words.

6-8 No, the update step happens at the end of the loop iteration. The init statement happens first, and only once.

6-9 No, you can use increments of any amount, including negative increments (decrements).

6-10 No, consider for(int j = 1; j < n; j++) { /*do nothing*/ } when n == 0.

6-11 0 1 2 3 4 1 3 5 7 9
 1 2 3 4 5 before after
 -3 -1 1 3 5 4 3 2 1

6-12 for(int j = 1; j <= 100; j++) {
 System.out.println(j);
 }

6-13 for(int k = 10; k >= 1; k--) {
 System.out.println(k);
 }

6-14 -a A for loop, since number of repetition is known.
 -b A for loop, since the number of repetitions would be known in advance.
 -c An indeterminate loop, perhaps a while loop that terminates when the sentinel is read.
 -d An indeterminate loop, perhaps a while loop that terminates when the sentinel is read.

6-15 -a The value just input equals -1
 -c value != -1

6-16 -a An index starting at 0 becomes the length of the string
 -c index < theString.length()

6-17 -a Both j and n
 -b Both n and inc

Chapter 7

Arrays

Goals

This chapter introduces the Java array for storing collections of many objects. Individual elements are referenced
with the Java subscript operator []. After studying this chapter you will be able to

4. declare and use arrays that can store reference or primitive values
5. implement methods that perform array processing

7.1 The Java Array Object
Java array objects store collections of elements. They allow a large number of elements to be conveniently
maintained together under the same name. The first element is at index 0 and the second is at index 1. Array
elements may be any one of the primitive types, such as int or double. Array elements can also be references to
any object.
 The following code declares three different arrays named balance, id, and tinyBank. It also initializes all
five elements of those three arrays. The subscript operator [] provides access to individual array elements.

// Declare two arrays that can store up to five elements each
double[] balance = new double[5];
String[] id = new String[5];

// Initialize the array of double values
balance[0] = 0.00;
balance[1] = 111.11;
balance[2] = 222.22;
balance[3] = 333.33;
balance[4] = 444.44;

// Initialize all elements in an array of references to String objects
id[0] = "Bailey";
id[1] = "Dylan";
id[2] = "Hayden";
id[3] = "Madison";
id[4] = "Shannon";

The values referenced by the arrays can be drawn like this, indicating that the arrays balance, and id, store
collections. balance is a collection of primitive values; id is a collection of references to String objects.

86

balance[0] 0.0 id[0] "Bailey"
balance[1] 1.11 id[1] "Dylan"
balance[2] 2.22 id[2] "Hayden"
balance[3] 3.33 id[3] "Madison"
balance[4] 4.44 id[4] "Shannon"

The two arrays above were constructed using the following general forms:

General Form: Constructing array objects

type[] array-name = new type [capacity];

class-name[] array-name = new class-name [capacity];

• type specifies the type (either a primitive or reference type) of element that will be stored in the array.
• array-name is any valid Java identifier. With subscripts, the array name can refer to any and all elements

in the array.
• capacity is an integer expression representing the maximum number of elements that can be stored in the

array. The capacity is always available through a variable named length that is referenced as array-
name.length.

Example: array declarations
 int[] test = new int[100]; // Store up to 100 integers
 double[] number = new double[10000]; // Store up to 10000 numbers
 String[] name = new String[500]; // Store up to 500 strings
 BankAccount[] customer = new BankAccount[1000]; // 1000 BankAccount references

Accessing Individual Elements
Arrays support random access. The individual array elements can be found through subscript notation. A subscript
is an integer value between [and] that represents the index of the element you want to get to. The special
symbols [and] represent the mathematical subscript notation. So instead of x0, x1, and xn-1, Java uses x[0],
x[1], and x[n-1].
General Form: Accessing one array element
array-name [index] // Index should range from 0 to capacity - 1

The subscript range of a Java array is an integer value in the range of 0 through its capacity - 1. Consider the
following array named x.

 double[] x = new double[8];

The individual elements of x may be referenced using the indexes 0, 1, 2, … 7. If you used -1 or 8 as an index,
you would get an ArrayIndexOutOfBoundsException. This code assigns values to the first two array elements:

 // Assign new values to the first two elements of the array named x:
 x[0] = 2.6;
 x[1] = 5.7;

Java uses zero-based indexing. This means that the first array element is accessed with index 0; the same indexing
scheme used with String. The index 0 means the first element in the collection. With arrays, the first element is
found in subscript notation as x[0]. The fifth element is accessed with index 4 or with subscript notation as x[4].
This subscript notation allows individual array elements to be displayed, used in expressions, and modified with
assignment and input operations. In fact, you can do anything to an individual array element that can be done to a

87

Chapter 7: Arrays

variable of the same type. The array is simply a way to package together a collection of values and treat them as
one.
 The familiar assignment rules apply to array elements. For example, a String literal cannot be assigned to an
array element that was declared to store double values.

 // ERROR: x stores numbers, not strings
 x[2] = "Wrong type of literal";

Since any two double values can use the arithmetic operators, numeric array elements can also be used in
arithmetic expressions like this:

 x[2] = x[0] + x[1]; // Store 8.3 into the third array element

Each array element is a variable of the type declared. Therefore, these two integers will be promoted to double
before assignment.

 x[3] = 12; // Stores 12.0
 x[4] = 9;

Arrays of primitive double values are initialized to a default value of 0.0 (an array of ints have elements
initialized to 0, arrays of objects to null). The array x originally had all 8 elements to 0.0. After the five
assignments above, the array would look like this.

Element

 Reference

Value

x[0] 2.6
x[1] 5.7
x[2] 8.3
x[3] 12.0
x[4] 9.0
x[5] 0.0
x[6] 0.0
x[7] 0.0

The value of an array is a reference to memory where elements are stored in a contiguous (next to each other)
fashion. Here is another view of an array reference value and the elements as the data may exist in the computer's
memory.

 x

2.6 5.7 8.3 12.0 9.0 0.0 0.0 0.0 0.0

Out-of-Range Indexes
Java checks array indexes to ensure that they are within the proper range of 0 through capacity - 1. The following
assignment results in an exception being thrown. The program usually terminates prematurely with a message like
the one shown below.

 x[8] = 4.5; // This out-of-range index causes an exception

The program terminates prematurely (the output shows the index, which is 8 here).

 java.lang.ArrayIndexOutOfBounds exception: 8

88

This might seem like a nuisance. However, without range checking, such out-of-range indexes could destroy the
state of other objects in memory and cause difficult-to-detect bugs. More dramatically, your computer could
“hang” or “crash.” Even worse, with a workstation that runs all of the time, you could get an error that affects
computer memory now, but won’t crash the system until weeks later. However, in Java, you get the more
acceptable occurrence of an ArrayIndexOutOfBounds exception while you are developing the code.

Self-Check
Use this initialization to answer the questions that follow:

 int[] arrayOfInts = new int[100];

7-1 What type of element can be properly stored as elements in arrayOfInts?

7-2 How many integers may be properly stored as elements in arrayOfInts?

7-3 Which integer is used as the indearrayOfInts to access the first element in arrayOfInts?

7-4 Which integer is used as the indearrayOfInts to access the last element in arrayOfInts?

7-5 What is the value of arrayOfInts[23]?

7-6 Write code that stores 78 into the first element of arrayOfInts.

7-7 What would happen when this code executes? ArrayOfInts[100] = 100;

7.2 Array Processing with Determinate Loops
Programmers must frequently access consecutive array elements. For example, you might want to display all of
the meaningful elements of an array containing test scores. The Java for loop provides a convenient way to do
this.

int[] test = new int[10];
test[0] = 91;
test[1] = 82;
test[2] = 93;
test[3] = 65;
test[4] = 74;

for (int index = 0; index < 5; index++) {
 System.out.println("test[" + index + "] == " + test[index]);
}

Output
test[0] == 91
test[1] == 82
test[2] == 93
test[3] == 65
test[4] == 74

Changing the int variable index from 0 through 4 provide accesses to all meaningful elements in the array
referenced by test. This variable index acts both as the loop counter and as an array index inside the for loop
(test[index]). With index serving both roles, the specific array element accessed as test[index] depends
on the value of index. For example, when index is 0, test[index] references the first element in the array
named test. When index is 4, test[index] references the fifth element. Here is a more graphical view that
shows the changing value of index.

89

Chapter 7: Arrays

test index 0, 1, 2, 3, 4, 5 loop terminates at 5

91 82 93 65 74 0 0 0 0 0

Shortcut Array Initialization and the length Variable
Java also provides a quick and easy way to initialize arrays without using new or the capacity.

 int[] test = { 91, 82, 93, 65, 74 };

The compiler sets the capacity of test to be the number of elements between { and }. The first value (91) is
assigned to test[0], the second value (82) to test[1], and so on. Therefore, this shortcut array creation and
assignment on one line are equivalent to these six lines of code for a completely filled array (no meaningless
values).

 int[] test = new int[5];
 test[0] = 91;
 test[1] = 82;
 test[2] = 93;
 test[3] = 65;
 test[4] = 74;

This shortcut can be applied to all types.
 double x[] = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6 };
 char[] vowels = { 'a', 'e', 'i', 'o', 'u' };
 String[] names = { "Tyler", "Angel", "Justice", "Reese" };

 BankAccount[] accounts = { new BankAccount("Tyler", 100.00),
 new BankAccount("Angel", 200.00),
 new BankAccount("Justice", 300.00),
 new BankAccount("Reese", 400.00)
 };

The length variable stores the capacity of an array. It is often used to avoid out-of-range index exceptions. For
example, the index range of the array x is 0 through x.length - 1. The capacity is referenced as the array name, a
dot, and the variable named length. Do not use () after length as you would in a String message.
 // Assert the capacities of the four arrays above
 assertEquals(7, x.length);
 assertEquals(5, vowels.length);
 assertEquals(4, names.length);
 assertEquals(4, accounts.length);

Argument/Parameter Associations
At some point, you will find it necessary to pass an array to another method. In this case, the parameter syntax
requires [] and the correct type to mark the parameter can be matched to the array argument.

General Form: Array parameters
type[] array-reference

Example Array Parameters in method headings
 public static void main(String[] args)
 public double max(double[] x)
 public boolean equal(double[] array1, double[] array2)

90

This allows array references to be passed into a method so that method has access to all elements in the array. For
example, this method inspects the meaningful array elements (indexed from 0 through n - 1) to find the smallest
value and return it.

 public int min(int[] array, int n) {
 // Assume the first element is the smallest
 int smallest = array[0];
 // Inspect all other meaningful elements in array[1] through array[n-1]
 for (int index = 1; index < n; index++) {
 if (array[index] < smallest)
 smallest = array[index];
 }
 return smallest;
 }

An array often stores fewer meaningful elements than its capacity. Therefore, the need arises to store the number
of elements in the array that have been given meaningful values. In the previous code, n was used to limit the
elements being referenced. Only the first five elements were considered to potentially be the smallest. Only the
first five should have been considered. Without limiting the search to the meaningful elements (indexed as 0
through n - 1), would the smallest be 65 or would it be one of the 0s stored as one of the fifteen elements at the
end that Java initialized to the default value of 0?
 Consider the following test method that accidentally passes the array capacity as test.length (20) rather
than the number of meaningful elements in the array (5).

 @Test
 public void testMin() {
 int[] test = new int[20];
 test[0] = 91;
 test[1] = 82;
 test[2] = 93;
 test[3] = 65;
 test[4] = 74;
 assertEquals(65, min(test, test.length)); // Should be 5
 }

The assertion fails with this message:
 java.lang.AssertionError: expected:<65> but was:<0>

If an array is "filled" with meaningful elements, the length variable can be used to process the array. However,
since arrays often have a capacity greater than the number of meaningful elements, it may be better to use some
separate integer variable with a name like n or size.

Messages to Individual Array Elements
The subscript notation must be used to send messages to individual elements. The array name must be
accompanied by an index to specify the particular array element to which the message is sent.

General Form: Sending messages to individual array elements
array-name [index].message-name(arguments)

The index distinguishes the specific object the message is to be sent to. For example, the uppercase equivalent of
id[0] (this element has the value "Dylan") is returned with this expression:

 names[0].toUpperCase(); // The first name in an array of Strings

The expression names.toUpperCase() is a syntax error because it attempts to find the uppercase version of the
entire array, not one of its String elements. The toUpperCase method is not defined for standard Java array
objects. On the other hand, names[0] does understand toUpperCase since names[0] is indeed a reference to a

91

Chapter 7: Arrays

String. names is a reference to an array of Strings.
 Now consider determining the total of all the balances in an array of BankAccount objects. The following test
method first sets up a miniature database of four BankAccount objects. Note: A constructor call—with new—
generates a reference to any type of object. Therefore this assignment

 // A constructor first constructs an object, then returns its reference
 account[0] = new BankAccount("Hall", 50.00);

first constructs a BankAccount object with the ID "Hall" and a balance of 50.0. The reference to this object is
stored in the first array element, account[0].

 @Test
 public void testAssets() {
 BankAccount[] account = new BankAccount[100];
 account[0] = new BankAccount("Hall", 50.00);
 account[1] = new BankAccount("Small", 100.00);
 account[2] = new BankAccount("Ewall", 200.00);
 account[3] = new BankAccount("Westphall", 300.00);
 int n = 4;
 // Only the first n elements of account are meaningful, 96 are null
 double actual = assets(account, n);
 assertEquals(650.00, actual, 0.0001);
 }

The actual return value from the assets method should be the sum of all account balances indexed from 0..n-1
inclusive, which is expected to be 650.0.

 // Accumulate the balance of n BankAccount objects stored in account[]
 public double assets(BankAccount[] account, int n) {
 double result = 0.0;
 for (int index = 0; index < n; index++) {
 result += account[index].getBalance();
 }
 return result;
 }

Modifying Array Arguments
Consider the following method that adds the incValue to every array element. The test indicates that changes to
the parameter x also modifies the argument intArray.

 @Test
 public void testIncrementBy() {
 int[] intArray = { 1, 5, 12 };
 increment(intArray, 6);
 assertEquals(7, intArray[0]); // changing the elements of parameter x
 assertEquals(11, intArray[1]); // in increment is the same as changing
 assertEquals(18, intArray[2]); // intArray in this test method
 }

 public void increment(int[] x, int incValue) {
 for (int index = 0; index < x.length; index++)
 x[index] += incValue;

 }

To understand why this happens, consider the characteristics of reference variables.
 A reference variable stores the location of an object, not the object itself. By analogy, a reference variable is
like the address of a friend. It may be a description of where your friend is located, but it is not your actual friend.
You may have the addresses of many friends, but these addresses are not your actual friends.

92

 When the Java runtime system constructs an object with the new operator, memory for that object gets
allocated somewhere in the computer's memory. The new operation then returns a reference to that newly
constructed object. The reference value gets stored into the reference variable to the left of =. For example, the
following construction stores the reference to a BankAccount object with "Chris" and 0.0 into the reference
variable named chris.

 BankAccount chris = new BankAccount("Chris", 0.00);

A programmer can now send messages to the object by way of the reference value stored in the reference variable
named chris. The memory that holds the actual state of the object is stored elsewhere. Because you will use the
reference variable name for the object, it is intuitive to think of chris as the object. However, chris is actually
the reference to the object, which is located elsewhere.
 The following code mimics the same assignments that were made to the primitive variables above. The big
difference is that the deposit message sent to chris actually modifies kim. This happens because both reference
variables chris and kim—refer to the same object in memory after the assignment kim = chris. In fact, the
object originally referred to by the reference variable named kim is lost forever. Once the memory used to store
the state of an object no longer has any references, Java’s garbage collector reclaims the memory so it can be
reused later to store other new objects. This allows your computer to recycle memory that is no longer needed.

 BankAccount chris = new BankAccount("Chris", 0.00);
 BankAccount kim = new BankAccount("Kim", 100.00);
 kim = chris;
 // The values of the object were not assigned.
 // Rather, the reference to chris was assigned to the reference variable kim.
 // Now both reference variables refer to the same object.
 System.out.println("Why does a change to 'chris' change 'kim'?");
 chris.deposit(555.55);
 System.out.println("Kim's balance was 0.00, now it is " + kim.getBalance());

Output
Why does a change to 'chris' change 'kim'?
Kim's balance was 0.00, now it is 555.55

Assignment statements copy the values to the right of = into the variable to the left of =. When the
variables are primitive number types like int and double, the copied values are numbers. However,
when the variables are references to objects, the copied values are the references to the objects in
memory as illustrated in the following diagram.

93

Chapter 7: Arrays

After the assignment kim = chris, kim and chris both refer to the same object in memory. The state of the
object is not assigned. Intead, the reference to the object is assigned. A message to either reference variable
(chris or kim) accesses or modifies the same object, which now has the state of “Chris” and 555.55. An
assignment of a reference value to another reference variable of the same type does not change the object itself.
The state of an object can only be changed with messages designed to modify the state.
 The big difference is that the deposit message to chris actually modified kim. This happens because both
reference variables—chris and kim—refer to the same object in memory after the assignment kim = chris.
 The same assignment rules apply when an argument is assigned to a parameter. In this method and test, chris
and kim both refer to the same object.

 @Test
 public void testAddToBalance() {
 BankAccount kim = new BankAccount("Chris", 0.00);
 assertEquals(0.0, kim.getBalance(), 0.0001);
 increment(kim);
 assertEquals(555.55, kim.getBalance(), 1e-14);
 }

 public void increment(BankAccount chris) {
 chris.deposit(555.55);
 }

Java has one argument/parameter association. It is called pass by value. When an argument is assigned to a
parameter, the argument’s value is copied to the parameter. When the argument is a primitive type such as int or
double, the copied values are primitive numeric values or char values. No method can change the primitive

94

arguments of another method. However, when an object reference is passed to a method, the value is a reference
value. The argument is the location of the object in computer memory.
 At that moment, the parameter is an alias (another name) for the argument. Two references to the same object
exist. The parameter refers to the same object as the argument. This means that when a method modifies the
parameter, the change occurs in the object referenced by the argument.
 In this code that reverses the array elements, three reference variables reference the array of ints constructed
in the test method.

Method Array Reference

testReverse intArray

reverse x

swap a

 2 4 6 8 10

@Test
public void testReverse() {
 int[] intArray = { 2, 4, 6, 8, 10 };
 reverse(intArray);
 assertEquals(10, intArray[0]); // was 2
 assertEquals(8, intArray[1]); // was 4
 assertEquals(6, intArray[2]); // was 6
 assertEquals(4, intArray[3]); // was 8
 assertEquals(2, intArray[4]); // was 10
}

// Reverse the array elements so x[0] gets exchanged with x[x.length-1],
// x[1] with x[x.length-2], x[2] with x[x.length-3], and so on.
public void reverse(int[] x) {
 int leftIndex = 0;
 int rightIndex = x.length - 1;
 while (leftIndex < rightIndex) {
 swap(x, leftIndex, rightIndex);
 leftIndex++;
 rightIndex--;
 }
}

// Exchange the two integers in the specified indexes
// inside the array referenced by a.
private void swap(int[] a, int leftIndex, int rightIndex) {
 int temp = a[leftIndex]; // Need to store a[leftIndex] before
 a[leftIndex] = a[rightIndex]; // a[leftIndex] gets erased in this assignment
 a[rightIndex] = temp;
}

95

Chapter 7: Arrays

Self-Check
7-8 Given the small change of < to <= in the for loop, describe what would happen when this

method is called where the number of meaningful elements is n.
 // Accumulate the balance of n BankAccount objects stored in account[]
 public double assets(BankAccount[] account, int n) {
 double result = 0.0;
 for (int index = 0; index <= n; index++) {
 result += account[index].getBalance();
 }
 return result;
 }

7-9 Write method sameEnds to return true if the integer in the first index equals the integer in the
last index. This code must compile and the assertions must pass.

 @Test public void testSameEnds() {
 int[] x1 = { 1, 2, 3, 4, 5 };
 int[] x2 = { 4, 3, 2, 1, 0, 1, 2, 4 };
 int[] x3 = { 5, 6 };
 int[] x4 = { 5, 5 };
 assertFalse(sameEnds(x1));
 assertTrue(sameEnds(x2));
 assertFalse(sameEnds(x3));
 assertTrue(sameEnds(x4));
 }

7-10 Write method swapEnds that switches the end elements in an array of Strings. The following
code must compile and the assertions must pass.

 @Test public void testSwapEnds() {
 String[] strings = { "a", "b", "c", "x" };
 swapEnds(strings);
 assertEquals("x", strings[0]);
 assertEquals("b", strings[1]);
 assertEquals("c", strings[2]);
 assertEquals("a", strings[3]);
 }

 @Test public void testSwapEndsWhenLengthIsTwo() {
 String[] strings = { "a", "x" };
 swapEnds(strings);
 assertEquals("x", strings[0]);
 assertEquals("a", strings[1]);
 }

 @Test public void testSwapEndsWhenTooSmall() {
 String[] strings = { "a" };

 // There should be no exceptions thrown. Use guarded action.
 swapEnds(strings);
 assertEquals("a", strings[0]);
 }

7-11 Write method for accountsLargerThan that takes an array of BankAccount references s and
returns the number of accounts with a balance greater than the second argument of type double.
The following test method must compile and the assertions must pass.

96

 @Test
 public void testAssets() {
 BankAccount[] account = new BankAccount[100];
 account[0] = new BankAccount("Hall", 50.00);
 account[1] = new BankAccount("Small", 100.00);
 account[2] = new BankAccount("Ewall", 200.00);
 account[3] = new BankAccount("Westphall", 300.00);
 int n = 4;

 int actual = studentsFun.accountsLargerThan(0.00, account, n);
 assertEquals(4, actual);
 actual = studentsFun.accountsLargerThan(50.00, account, n);
 assertEquals(3, actual);
 actual = studentsFun.accountsLargerThan(100.00, account, n);
 assertEquals(2, actual);
 actual = studentsFun.accountsLargerThan(200.00, account, n);
 assertEquals(1, actual);
 actual = studentsFun.accountsLargerThan(300.00, account, n);
 assertEquals(0, actual);
 }

Answers to Self-Checks
7-1 int 7-2 100 7-3 0 7-4 99 7-5 0 7-6 x[0] = 78;

7-7 ArrayIndexOutOfBounds exception would terminate the program

7-8 There would be a getBalance() message sent to account[n+1] which is probably null. Program terminates

7-9 public boolean sameEnds(int[] array) {
 return array[0] == array[array.length-1];
 }

7-10 private void swapEnds(String[] array) {
 if (array.length >= 2) {
 int rightIndex = array.length - 1;
 String temp = array[rightIndex];
 array[rightIndex] = array[0];
 array[0] = temp;
 }
 }

7-11 public int accountsLargerThan(double amt, BankAccount[] account, int n) {
 int result = 0;
 for (int index = 0; index < n; index++) {
 if(account[index].getBalance() > amt)
 result ++;
 }
 return result;
 }

Chapter 8
Search and Sort

Goals
This chapter begins by showing two algorithms used with arrays: selection sort and binary search. After studying
this chapter, you will be able to

• understand how binary search finds elements more quickly than sequential search
• arrange array elements into ascending or descending order (sort them)
• Analyze the runtime of algorithms

8.1 Binary Search
The binary search algorithm accomplishes the same function as sequential search (see Chapter 8, “Arrays”). The
binary search presented in this section finds things more quickly. One of the preconditions is that the collection
must be sorted (a sorting algorithm is shown later).
The binary search algorithm works like this. If the array is sorted, half of the elements can be eliminated from the
search each time a comparison is made. This is summarized in the following algorithm:

Algorithm: Binary Search, used with sorted arrays
while the element is not found and it still may be in the array {
 if the element in the middle of the array is the element being searched for
 store the reference and signal that the element was found so the loop can terminate
 else
 arrange it so that the correct half of the array is eliminated from further search
}

Each time the search element is not the element in the middle, the search can be narrowed. If the search item is
less than the middle element, you search only the half that precedes the middle element. If the item being sought
is greater than the middle element, search only the elements that are greater. The binary search effectively
eliminates half of the array elements from the search. By contrast, the sequential search only eliminates one
element from the search field with each comparison. Assuming that an array of strings is sorted in alphabetic
order, sequentially searching for "Ableson" does not take long. "Ableson" is likely to be located near the front
of the array elements. However, sequentially searching for "Zevon" takes much more timeespecially if the
array is very big (with millions of elements).
 The sequential search algorithm used in the indexOf method of the previous chapter would have to compare
all of the names beginning with A through Y before arriving at any names beginning with Z. Binary search gets to
"Zevon" much more quickly. When an array is very large, binary search is much faster than sequential search.
The binary search algorithm has the following preconditions:

1. The array must be sorted (in ascending order, for now).
2. The indexes that reference the first and last elements must represent the entire range of meaningful elements.

98

The index of the element in the middle is computed as the average of the first and last indexes. These three
indexes—named first, mid, and last—are shown below the array to be searched.

 int n = 7;
 String[] name = new String[n];
 name[0] = "ABE";
 name[1] = "CLAY";
 name[2] = "KIM";
 name[3] = "LAU";
 name[4] = "LISA";
 name[5] = "PELE";
 name[6] = "ROY";
 // Binary search needs several assignments to get things going
 int first = 0;
 int last = n - 1;
 int mid = (first + last) / 2;
 String searchString = "LISA";
 // –1 will mean that the element has not yet been found
 int indexInArray = -1;

Here is a more refined algorithm that will search as long as there are more elements to look at and the element has
not yet been found.

Algorithm: Binary Search (more refined, while still assuming that the items have been sorted)
while indexInArray is -1 and there are more array elements to look through {
 if searchString is equal to name[mid] then
 let indexInArray = mid // This indicates that the array element equaled searchString
 else if searchString alphabetically precedes name[mid]
 eliminate mid . . . last elements from the search
 else
 eliminate first . . . mid elements from the search
 mid = (first + last) / 2; // Compute a new mid for the next loop iteration (if there is one)
}
// At this point, indexInArray is either -1, indicating that searchString was not found,
// or in the range of 0 through n - 1, indicating that searchString was found.

As the search begins, one of three things can happen (the code is searching for a String that equals
searchString):

1. The element in the middle of the array equals searchString. The search is complete. Store mid into
indexInArray to indicate where the String was found.

2. searchString is less than (alphabetically precedes) the middle element. The second half of the array can be
eliminated from the search field (last = mid - 1).

3. searchString is greater than (alphabetically follows) the middle element. The first half of the array can be
eliminated from the search field (first = mid + 1).

In the following code, if the String being searched for is not found, indexInArray remains –1. As soon as an
array element is found to equal searchString, the loop terminates. The second part of the loop test stops the
loop when there are no more elements to look at, when first becomes greater than last, or when the entire
array has been examined.

99

Chapter 8: Search and Sort

 // Binary search if searchString
 // is not found and there are more elements to compare.
 while (indexInArray == -1 && (first <= last)) {
 // Check the three possibilities
 if (searchString.equals(name[mid]))
 indexInArray = mid; // 1. searchString is found
 else if (searchString.compareTo(name[mid]) < 0)
 last = mid - 1; // 2. searchString may be in first half
 else
 first = mid + 1; // 3. searchString may be in second half

 // Compute a new array index in the middle of the search area
 mid = (first + last) / 2;
 } // End while

 // indexInArray now either is -1 to indicate the String is not in the array
 // or when indexInArray >= 0 it is the index of the first equal string found.

At the beginning of the first loop iteration, the variables first, mid, and last are set as shown below. Notice
that the array is in ascending order (binary search won't work otherwise).

Array and binary search indexes before comparing searchString ("LISA") to name[mid] ("LAU"):

name[0] "ABE" ⇐ first == 0
name[1] "CLAY"
name[2] "KIM"
name[3] "LAU" ⇐ mid == 3
name[4] "LISA"
name[5] "PELE"
name[6] "ROY" ⇐ last == 6

After comparing searchString to name[mid], first is increased from 0 to mid + 1, or 4; last remains 6;
and a new mid is computed as (4 + 6) / 2 = 5.

name[0] "ABE" Because "LISA" is greater than name[mid],
name[1] "CLAY" the objects name[0] through name[3] no longer
name[2] "KIM" need to be searched through and can be eliminated from
name[3] "LAU" subsequent searches. That leaves only three possibilities.
name[4] "LISA" ⇐ first == 4
name[5] "PELE" ⇐ mid == 5
name[6] "ROY" ⇐ last == 6

With mid == 5, "LISA".compareTo("PELE") < 0 is true. So last is decreased (5 - 1 = 4), first remains
4, and a new mid is computed as mid = (4 + 4) / 2 = 4.

name[0] "ABE"
name[1] "CLAY"
name[2] "KIM"
name[3] "LAU"
name[4] "LISA" ⇐ mid == 4 ⇐ first == 4 ⇐ last == 4
name[5] "PELE"
name[6] "ROY" Because "LISA" is less than name[mid], eliminate name[6].

Now name[mid] does equal searchString ("LISA".equals("LISA")), so indexInArray = mid. The loop
terminates because indexInArray is no longer -1. The following code after the loop and the output confirm that
"LISA" was found in the array.

100

 if (indexInArray == -1)
 System.out.println(searchString + " not found");
 else
 System.out.println(searchString + " found at index " + indexInArray);

Output
LISA found at index 4

Terminating when searchName Is Not Found
Now consider the possibility that the data being searched for is not in the array; if searchString is
"DEVON", for example.

 // Get the index of DEVON if found in the array
 String searchName = "DEVON";

This time the values of first, mid, and last progress as follows:
 first mid last Comment
#1 0 3 6 Compare "DEVON" to "LAU"
#2 0 1 2 Compare "DEVON" to "CLAY"
#3 2 2 2 Compare "DEVON" to "KIM"
#4 2 2 1 first <= last is false—the loop terminates

When the searchString ("DEVON") is not in the array, last becomes less than first (first > last). The
two indexes have crossed each other. Here is another trace of binary search when the searched for element is not
in the array.

 #1 #2 #3 #4
name[0] "ABE" ⇐ first ⇐ first
name[1] "CLAY" ⇐ mid last
name[2] "KIM" ⇐ last ⇐ first, mid, last first
name[3] "LAU" ⇐ mid
name[4] "LISA"
name[5] "PELE"
name[6] "ROY" ⇐ last

After searchString ("DEVON") is compared to name[2] ("KIM"), no further comparisons are necessary.
Since DEVON is less than KIM, last becomes mid - 1, or 1. The new mid is computed to be 2, but it is never
used as an index. This time, the second part of the loop test terminates the loop.

 while(indexInArray == -1 && (first <= last))

Since first is no longer less than or equal to last, searchString cannot be in the array. The indexInArray
remains -1 to indicate that the element was not found.

Comparing Running Times
The binary search algorithm can be more efficient than the sequential search algorithm. Whereas sequential search
only eliminates one element from the search per comparison, binary search eliminates half of the elements for
each comparison. For example, when the number of elements (n) == 1,024, a binary search eliminates 512
elements from further search in the first comparison, 256 during the second comparison, then 128, 64, 32, 16, 4, 2,
and 1.
 When n is small, the binary search is not much faster than sequential search. However, when n gets large, the
difference in the time required to search for something can make the difference between selling the software and
having it flop. Consider how many comparisons are necessary when n grows by powers of two. Each doubling of

101

Chapter 8: Search and Sort

n would require potentially twice as many loop iterations for sequential search. However, the same doubling of n
would require potentially only one more comparison for binary search.

 The Maximum Number of Comparisons during Two Different Search Algorithms
Power
of 2

n Sequential
Search

Binary
Search

22 4 4 2
24 16 16 4
28 256 256 8
212 4,096 4,096 12
224 16,777,216 16,777,216 24

As n gets very large, sequential search has to do a lot more work. The numbers above represent the maximum
number of iterations to find an element or to realize it is not there. The difference between 24 comparisons and
almost 17 million comparisons is quite dramatic even on a fast computer.
 In general, as the number of elements to search (n) doubles, binary search requires only one iteration to
eliminate half of the elements from the search. The growth of this function is said to be logarithmic. The
following graph illustrates the difference between linear search and binary search as the size of the array grows.

log n

n

f(n)

n

Self-Check
8-1 Give at least one precondition for a successful binary search.

8-2 What is the maximum number of comparisons (approximately) performed on a list of 1,024 elements during a binary
search? (Hint: After one comparison, only 512 array elements need be searched; after two searches, only 256 elements
need be searched, and so on.)

8-3 During a binary search, what condition signals that the search element does not exist in an array?

8-4 What changes would be made to the binary search when the elements are sorted in descending order?

8.2 One Sorting Algorithm
The elements of a collection are often arranged into either ascending or descending order through a process
known as sorting. To sort an array, the elements must be compared. For int and double, < or > suffices. For
String, Integer, and BankAccount objects, the compareTo method is used.
 There are many sorting algorithms. Even though others are more efficient (run faster), the relatively simple
selection sort is presented here. The goal here is to arrange an array of integers into ascending order, the natural
ordering of integers.

102

Object
Name

Unsorted
Array

Sorted
Array

data[0]
data[1]
data[2]
data[3]
data[4]

76.0
91.0
100.0
62.0
89.0

62.0
76.0
89.0
91.0
100.0

With the selection sort algorithm, the largest integer must end up in data[n - 1] (where n is the number of
meaningful array elements). The smallest number should end up in data[0]. In general, an array x of size n is
sorted in ascending order if x[j] <= x[j + 1] for j = 0 to n-2.
 The selection sort begins by locating the smallest element in the array by searching from the first element
(data[0]) through the last (data[4]). The smallest element, data[2] in this array, is then swapped with the
top element, data[0]. Once this is done, the array is sorted at least through the first element.

top == 0 Before After Sorted
data[0]
data[1]
data[2]
data[3]
data[4]

76.0
91.0
100.0
62.0
89.0

62.0
91.0
100.0
76.0
89.0

⇐

The task of finding the smallest element is accomplished by examining all array elements and keeping track of the
index with the smallest integer. After this, the smallest array element is swapped with data[0]. Here is an
algorithm that accomplishes these two tasks:

Algorithm: Finding the smallest in the array and switching it with the topmost element

(a) top = 0
// At first, assume that the first element is the smallest
(b) indexOfSmallest = top
// Check the rest of the array (data[top + 1] through data[n - 1])
(c) for index ranging from top + 1 through n - 1
 (c1) if data[index] < data[indexOfSmallest]
 indexOfSmallest = index
// Place the smallest element into the first position and place the first array
// element into the location where the smallest array element was located.
(d) swap data[indexOfSmallest] with data[top]

The following algorithm walkthrough shows how the array is sorted through the first element. The smallest
integer in the array will be stored at the "top" of the arraydata[0]. Notice that indexOfSmallest changes
only when an array element is found to be less than the one stored in data[indexOfSmallest]. This happens the
first and third times step c1 executes.

 indexOf

 Step top Smallest index [0] [1] [2] [3] [4] n
 ? ? ? 76.0 91.0 100.0 62.0 89.0 5
(a) 0 " " " " " " " "
(b) " 0 " " " " " " "
(c) " " 1 " " " " " "
(c1) " 1 " " " " " " "
(c) " " 2 " " " " " "
(c1) " " " " " " " " "
(c) " " 3 " " " " " "

Placing the Largest Value in the
"Top" Position (index 0)

103

Chapter 8: Search and Sort

(c1) " 2 " " " " " " "
(c) " " 4 " " " " " "
(c1) " " " " " " " " "
(c) " " 5 " " " " " "
(d) " " " 62.0 " " 76.0 " "

This algorithm walkthrough shows indexOfSmallest changing twice to represent the index of the smallest
integer in the array. After traversing the entire array, the smallest element is swapped with the top array element.
Specifically, the preceding algorithm swaps the values of the first and fourth array elements, so 62.0 is stored in
data[0] and 76.0 is stored in data[3]. The array is now sorted through the first element!
 The same algorithm can be used to place the second smallest element into data[1]. The second traversal
must begin at the new "top" of the array—index 1 rather than 0. This is accomplished by incrementing top from
0 to 1. Now a second traversal of the array begins at the second element rather than the first. The smallest element
in the unsorted portion of the array is swapped with the second element. A second traversal of the array ensures
that the first two elements are in order. In this example array, data[3] is swapped with data[1] and the array is
sorted through the first two elements.

top == 1 Before After Sorted
data[0]
data[1]
data[2]
data[3]
data[4]

62.0
91.0
100.0
76.0
89.0

62.0
76.0
100.0
91.0
89.0

⇐
⇐

This process repeats a total of n - 1 times.

top == 2 Before After Sorted
data[0]
data[1]
data[2]
data[3]
data[4]

62.0
76.0
100.0
91.0
89.0

62.0
76.0
89.0
91.0
100.0

⇐
⇐
⇐

An element may even be swapped with itself.

top == 3 Before After Sorted
data[0]
data[1]
data[2]
data[3]
data[4]

62.0
76.0
89.0
91.0
100.0

62.0
76.0
89.0
91.0
100.0

⇐
⇐
⇐
⇐

When top goes to data[4], the outer loop stops. The last element need not compared to anything. It is
unnecessary to find the smallest element in an array of size 1. This element in data[n - 1] must be the largest
(or equal to the largest), since all of the elements preceding the last element are already sorted in ascending order.

104

top == 3 and 4 Before After Sorted
data[0]
data[1]
data[2]
data[3]
data[4]

62.0
76.0
89.0
91.0
100.0

62.0
76.0
89.0
91.0
100.0

⇐
⇐
⇐
⇐
⇐

Therefore, the outer loop changes the index top from 0 through n - 2. The loop to find the smallest index in a
portion of the array is nested inside a loop that changes top from 0 through n - 2 inclusive.

Algorithm: Selection Sort
for top ranging from 0 through n - 2 {
 indexOfSmallest = top
 for index ranging from top + 1 through n - 1 {
 if data[indexOfSmallest] < data[index] then
 indexOfSmallest = index
 }
 swap data[indexOfSmallest] with data[top]
}

Here is the Java code that uses selection sort to sort the array of numbers shown. The array is printed before and
after the numbers are sorted into ascending order.

 double[] data = { 76.0, 91.0, 100.0, 62.0, 89.0 };
 int n = data.length;

 System.out.print("Before sorting: ");
 for(int j = 0; j < data.length; j++)
 System.out.print(data[j] + " ");
 System.out.println();

 int indexOfSmallest = 0;

 for(int top = 0; top < n - 1; top++) {
 // First assume that the smallest is the first element in the subarray
 indexOfSmallest = top;

 // Then compare all of the other elements, looking for the smallest
 for(int index = top + 1; index < data.length; index++)
 { // Compare elements in the subarray
 if(data[index] < data[indexOfSmallest])
 indexOfSmallest = index;
 }

 // Then make sure the smallest from data[top] through data.size
 // is in data[top]. This message swaps two array elements.
 double temp = data[top]; // Hold on to this value temporarily
 data[top] = data[indexOfSmallest];
 data[indexOfSmallest] = temp;
 }
 System.out.print(" After sorting: ");
 for (int j = 0; j < data.length; j++)
 System.out.print(data[j] + " ");
 System.out.println();

Output
Before sorting: 76.0 91.0 100.0 62.0 89.0
 After sorting: 62.0 76.0 89.0 91.0 100.0

105

Chapter 8: Search and Sort

Sorting an array usually involves elements that are more complex. The sorting code is most often located in a
method. This more typical context for sorting will be presented later.
 This selection sort code arranged the array into ascending numeric order. Most sort routines arrange the
elements from smallest to largest. However, with just a few simple changes, any primitive type of data (such as
int, char, and double) may be arranged into descending order using the > operator.

 if(data[index] < data[indexOfSmallest])
 indexOfSmallest = index;

becomes
 if(data[index] > data[indexOfLargest])
 indexOfLargest = index;

Only primitive types can be sorted with the relational operators < and >. Arrays of other objects, String and
BankAccount for example, have a compareTo method to check the relationship of one object to another.

Self-Check
8-5 Alphabetizing an array of strings requires a sort in which order, ascending or descending?

8-6 If the smallest element in an array already exists as first, what happens when the swap function is called for the
first time (when top = 0)?

8-7 Write code that searches for and stores the largest element of array x into largest. Assume that all elements
from x[0] through x[n - 1] have been given meaningful values.

106

Answers to Self-Check Questions
8-1 The array is sorted.
8-2 1,024; 512; 256; 128; 64; 32; 16; 8; 4; 2; 1 == 11
8-3 When first becomes greater than last.
8-4 Change the comparison from less than to greater than.
 if(searchString.compareTo(str[mid]) > 0)
 last = mid - 1;
 else
 first= mid + 1; // ...

8-5 Ascending
8-6 The first element is swapped with itself.
8-7 int largest = x[0];
 for(int j = 0; j < n; j++) {
 if(x[j] > largest)
 largest = x[j];
 }

Chapter 9

Classes with Instance Variables

Goals
• Implement Java Classes as a set of methods and variables
• Experience designing and testing a class that is part of a large system

9.1 Constructing Objects from Classes
Object-oriented programs use objects constructed from many different classes. They may be established Java
classes that are part of the download, classes bought from other software developers, classes downloaded for free,
or classes designed by programmers to fulfill the needs of a particular application. A class provides a blueprint
for constructing objects, and defines the messages that will be available to instances of each class. The class also
defines the values that are encapsulated in every object as the object's state.

One class constructing three objects, each with its own set of values (state)

Every Java class has methods that represent the messages each object will understand. Each object of the class has
its own set of instance variables to store the values contained in each object. The collection of instance variables
is also known as the state of the object.

Methods and Data Together
All classes have these things in common:

• private instance variables that store the state of the objects
• constructors that initialize the state
• methods to modify the state of objects
• methods to provide access to the current state of objects

108

Java classes begin with public class followed by the class name. The instance variables and methods follow
within a set of matching curly braces. The methods and state should have some sort of meaningful connection.

Simplified General Form: A Java class
public class class-name {

 // Instance variables (every instance of this class will get its own)
 private variable declaration;
 private variable initialization;

 // Constructor(s) (methods with the same name as the class and no return type)
 public class-name(parameters) {
 // …
 }

 // Any number of methods
 public return-type method-name-1(parameters) {
 // …
 }
}

Here is a simplified version of the BankAccount class. The two instance variables ID and balance are available
to all methods of the class.

// This class models a minimal bank account.
public class BankAccount {

 // Instance variables--every BankAccount object will have its own values.
 private String ID;
 private double balance;

 // Initialize instance variables during construction.
 public BankAccount(String initialID, double initialBalance) {
 ID = initialID;
 balance = initialBalance;
 }

 public void deposit(double depositAmount) {
 balance = balance + depositAmount;
 }

 public void withdraw(double withdrawalAmount) {
 balance = balance - withdrawalAmount;
 }

 public String getID() {
 return ID;
 }
 public double getBalance() {
 return balance;
 }
}

With the class stored in a file, it can be used as a blueprint to construct many objects. Each object will have its
own ID and balance. Each object will understand the withdraw, deposit, getID, and getBalance methods. In
the following program, the numbers (for example) indicate which method will execute when the message is
sent. For example, represents transfer of control from the main method to the deposit method in the

109

Chapter 9: Classes with Instance Variables

BankAccount class.

 @Test
 public void testToDemonstrateControlFlow() {
 BankAccount acctOne = new BankAccount("01543C", 100.00);
 acctOne.deposit(50.0);
 acctOne.withdraw(25.0);
 assertEquals("01543C", acctOne.getID());
 assertEquals(125.0, acctOne.getBalance(), 1e-14);
 }

Instance Variables
In this first example of a type implemented as a Java class, each BankAccount object stores data to represent a
simple account at a bank. Each BankAccount object stores some unique identification ID and an account balance.
BankAccount methods include making deposits, making withdrawals, and accessing the ID and the current
balance.
 The private instance variables represent the state. BankAccount has two private instance variables: ID (a
String) and balance (a double). Every BankAccount object remembers its own ID and its own current balance.
 Notice that the instance variables are not declared within a method. They are declared within the set of curly
braces that bounds the class. This means that the instance variables will be accessible throughout the class, and
every method will have access to them.
 If you look at the BankAccount class again, you will notice that every method references at least one of the
instance variables. Also, each instance variable is accessed by at least two methods (both the constructor
BankAccount and getID need ID).
 Because the instance variables are declared private, programs using instances of the class cannot access the
instance variables directly. This is good. The class safely encapsulated the state, which was initialized by the
constructor (described below). The only way to then change or access the state of an object is through public
methods.

Constructors
The BankAccount class shows that all BankAccount method headings are public. They also have return types
(including void to mean return nothing). Some have parameters. However, do you notice something different
about the method named BankAccount?
 The BankAccount method has no return type. It also has the same name as the class! This special method is
known as a constructor, because it is the method called when objects are constructed. When a constructor is
called, memory is allocated for the object. Then, the instance variables are initialized, often with the arguments to
the constructor. Here are some object constructions that result in executing the class’s constructor while passing
values:

 new String("An initial part of this object's state");
 new BankAccount("Charlie", 10.00);

Constructor parameters often initialize the private instance variables. The constructor returns a reference to the
new object. This reference value can then be assigned to an object reference of the same type. That is why you
often see the class name on both sides of the assignment operator =. For example, the following code constructs a
BankAccount object with an initial ID of "Phoenix" and an initial balance of 507.34. After the constructor has
been called, the reference to this new BankAccount object is assigned to the reference variable named one.

 BankAccount one = new BankAccount("Phoenix", 507.34);
The following code implements BankAccount’s two-parameter constructor:

 // This constructor initializes the values of the instance variables
 // using the arguments use when objects are constructed.

110

 public BankAccount(String accountID, double initialBalance) {
 ID = accountID;
 balance = initialBalance;
 }

This method executes whenever a BankAccount gets constructed with two arguments (a String followed by a
double). For example, in the following code, the ID "Jessie" is passed to the parameter ID, which in turn is
assigned to the private instance variable ID. The starting balance of 500.00 is also passed to the parameter named
initialBalance, which in turn is assigned to the private instance variable balance.

 BankAccount anAccount = new BankAccount("Jessie", 500.00);

Some methods provide access to private instance variables. They are sometimes called “getters”, because the
method "gets" the value of an instance variable (and they usually begin with get). These methods often simply
return the value of an instance variable with the return statement. Getter methods are necessary because the
instance variables are not directly accessible when they are declared private.

 public String getID() {
 return ID;
 }

 public double getBalance() {
 return balance;
 }

To get the ID and balance, send the object separate getID and getBalance messages.

 @Test
 public void showMessagesWayAhead() {
 BankAccount anAccount = new BankAccount("Jessie", 500.00);
 assertEquals("Jessie", anAccount.getID());
 assertEquals(500.00, anAccount.getBalance(), 1e-14);
 }

The state of an object can change. Some methods are designed to modify the values of the instance variables.
Both deposit and withdraw change the state.

 public void deposit(double depositAmount) {
 balance = balance + depositAmount;
 }

 public void withdraw(double withdrawalAmount) {
 balance = balance - withdrawalAmount;
 }

These two simple test methods assert the changing state of an object.

 @Test
 public void testDepositWithPositiveAmount() {
 BankAccount anAccount = new BankAccount("Jessie", 500.00);
 anAccount.deposit(123.45);
 assertEquals(623.45, anAccount.getBalance(), 1e-14);
 }

 @Test
 public void testWithdrawWithPositiveAmount() {
 BankAccount anAccount = new BankAccount("Jessie", 500.00);
 anAccount.withdraw(123.45);
 assertEquals(376.55, anAccount.getBalance(), 1e-14);
 }

111

Chapter 9: Classes with Instance Variables

Self-Check
Use the following SampleClass to answer the Self-Check question that follows.

// A class that has no meaning other than to show the syntax of a class.
public class SampleClass {

 // Instance variables
 private int first;
 private int second;

 public SampleClass(int initalFirst, int initialSecond) {
 first = initalFirst;
 second = initialSecond;
 }

 public int getFirst() {
 return first;
 }

 public int getSecond() {
 return second;
 }

 public void change(int amount) {
 first = first + amount;
 second = second - amount;
 }
} // End SampleClass

9-1 Fill in the blanks that would make the assertions pass.

// A unit test to test class SampleClass
import static org.junit.Assert.*;
import org.junit.Test;

public class SampleClassTest {

 @Test
 public void testGetters() {
 SampleClass sc1 = new SampleClass(1, 4);
 SampleClass sc2 = new SampleClass(3, 5);
 assertEquals(, sc1.getFirst());
 assertEquals(, sc1.getSecond());
 assertEquals(, sc2.getFirst());
 assertEquals(, sc2.getSecond());
 }

 @Test
 public void testChange() {
 SampleClass sc1 = new SampleClass(1, 4);
 SampleClass sc2 = new SampleClass(3, 5);
 sc1.change(7);
 sc2.change(-3);
 assertEquals(, sc1.getFirst());
 assertEquals(, sc1.getSecond());
 assertEquals(, sc2.getFirst());
 assertEquals(,sc2.getSecond());
 }
}

112

Use this Java class to answer the questions that follow.

// A class to model a simple library book.
public class LibraryBook {

 // Instance variables
 private String author;
 private String title;
 private String borrower;

 // Construct a LibraryBook object and initialize instance variables
 public LibraryBook(String initTitle, String initAuthor) {
 title = initTitle;
 author = initAuthor;
 borrower = null; // When borrower == null, no one has the book
 }

 // Return the author.
 public String getAuthor() {
 return author;
 }

 // Return the borrower's name if the book has been checked out or null if not
 public String getBorrower() {
 return borrower;
 }

 // Records the borrower's name
 public void borrowBook(String borrowersName) {
 borrower = borrowersName;
 }

 // The book becomes available. When null, no one is borrowing it.
 public void returnBook() {
 borrower = null;
 }
}

9-2 What is the name of the type above?
9-3 What is the name of the constructor?
9-4 Except for the constructor, name all of the methods.
9-5 getBorrower returns a reference to what type?
9-6 borrowBook returns a reference to what type?
9-7 What type argument must be part of all borrowBook messages?
9-8 How many arguments are required to construct one LibraryBook object?
9-9 Write the code to construct one LibraryBook object using your favorite book and author.
9-10 Send the message that borrows your favorite book. Use your own name as the borrower.
9-11 Write the message that reveals the name of the person who borrowed your favorite book (or null if no

one has borrowed it).
9-12 Which of the following two assertions will pass, a, b, or both?

 @Test
 public void testGetters() {
 LibraryBook book1 = new LibraryBook("C++", "Michael Berman");
 assertEquals(null, book1.getBorrower()); // a.
 book1.borrowBook("Sam Mac");
 assertEquals("Sam Mac", book1.getBorrower()); // b.
 }

113

Chapter 9: Classes with Instance Variables

9-13 Write method getTitle that returns the title of any LibraryBook object.

9-14 Fill in the blanks so the assertions pass.
 @Test
 public void testGetters() {
 LibraryBook book1 = new LibraryBook("C++", "Michael Berman");
 assertEquals(, book1.getAuthor());
 assertEquals(, book1.getBorrower());
 }

9-15 Write method isAvailable as if it were inside the LibraryBook class to return false if a LibraryBook
is not borrowed or true if the borrower is null. Use == to compare null to an object reference.

9-16 Fill in the blanks in this test method to verify getTitle works so all assertions pass.

 @Test
 public void isAvailable() {
 LibraryBook book1 = new LibraryBook("C++", "Berman");
 LibraryBook book2 = new LibraryBook("C#", "Stepp");
 assert (book1.isAvailable());
 assert (book2.isAvailable());

 book1.borrowBook("Sam ");
 book2.borrowBook("Li");
 assert (book1.isAvailable());
 assert (book2.isAvailable());
 }

Overriding toString
Each class should have its own toString method so the state of the object can be visually inspected. Java is
designed such that all classes extend a class named Object (or each class extends a class that extends the Object
class). This means all Java classes inherit the eleven methods of Object, one of which is toString. Doing
nothing to a new class allows toString messages to invoke the toString method of class Object. The return
string is the name of the class followed by @ followed by a code written in hexadecimal (base 16 where 10 is A
and 15 is F).

 LibraryBook book1 = new LibraryBook("C++", "Berman");
 System.out.println(book1.toString());

Output
LibraryBook@e4457d

To get a more meaningful toString that shows the current state of any object, you can override the toString
method of class Object with the same method signature.
 public String toString() {
 return title + ", borrower: " + borrower;
 }

With the toString method of Object overridden to reflect the new type, the output better represents the state of
the object.
 @Test
 public void testToString() {
 LibraryBook book1 = new LibraryBook("C++", "Michael A. Berman");
 LibraryBook book2 = new LibraryBook("Java", "Rick Mercer");
 book2.borrowBook("Sam Mac");
 assertEquals("C++, borrower: null", book1.toString());
 assertEquals("Java, borrower: Sam Mac", book2.toString());
 }

114

 Self Check
9-17 Add a toString method for the BankAccount class to show the ID followed by a blank space and the

current balance. You will need the instance variables in BankAccount.

 public class BankAccount {
 private String ID;
 private double balance;

 public BankAccount(String initID, double initBalance) {
 ID = initID;
 balance = initBalance;
 }
 // Add toString as if it were here
 }

Naming Conventions
A method that modifies the state of an object is typically given a name that indicates its behavior. This is easily
accomplished if the designer of the class provides a descriptive name for the method. The method name should
describe—as best as possible—what the method actually does. It should also help to distinguish modifying
methods from accessing methods. Use verbs to name modifying methods: withdraw, deposit, borrowBook,
and returnBook, for example. Give accessing methods names to indicate that the messages will return some
useful information about the objects: getBorrower and getBalance, for example. Above all, always use
intention-revealing identifiers to accurately describe what the method does. For example, don’t use foo as the
name of a method that withdraws money.

public or private?
One of the considerations in the design of any class is declaring methods and instance variables with the most
appropriate access mode, either public or private. Whereas programs outside the class can access the public
methods of a class, the private instance variables are only known in the class methods. For example, the
BankAccount instance variable named balance is known only to the methods of the class. On the other hand, any
method declared public is known wherever the object was declared.
Access Mode Where the Identifier Can Be Accessed (where the identifier is visible)
public In all parts of the class and anywhere an instance of the class is declared
private Only in the same class

Although instance variables representing state could be declared as public, it is highly recommended that all
instance variables be declared as private. There are several reasons for this. The consistency helps simplify
some design decisions. More importantly, when instance variables are made private, the state can be modified
only through a method. This prevents other code from indiscriminately changing the state of objects. For
example, it is impossible to accidentally make a credit to acctOne like this:

 BankAccount acctOne = new BankAccount("Mine", 100.00);
 // A compiletime error occurs: attempting to modify private data
 acctOne.balance = acctOne.balance + 100000.00; // <- ERROR

or a debit like this:

 // A compiletime error occurs at this attempt to modify private data
 acctOne.balance = acctOne.balance - 100.00; // <- ERROR

This represents a widely held principle of software development—data should be hidden. Making instance
variables private is one characteristic of a well-designed class.

115

Chapter 9: Classes with Instance Variables

Answers to Self-Check

9-1 SampleClass sc2 = new SampleClass(3, 5);
 assertEquals(_1 , sc1.getFirst());
 assertEquals(4 , sc1.getSecond());
 assertEquals(3 , sc2.getFirst());
 assertEquals(5 , sc2.getSecond());
 sc2.change(-3);
 assertEquals(__8 , sc1.getFirst());
 assertEquals(-3 , sc1.getSecond());
 assertEquals(0 , sc2.getFirst());
 assertEquals(8 , sc2.getSecond());

9-2 type: LibraryBook
9-3 constructor: LibraryBook
9-4 LibraryBook (constructor) getAuthor getBorrower borrowBook returnBook

9-5 String

9-6 nothing, it is a void return type.
9-7 String

9-8 two (both String)

9-9 LibraryBook aBook = new LibraryBook("Computing Fundamentals", "Rick Mercer");

9-10 aBook.borrowBook("Kim");
9-11 aBook.getBorrower();

9-12 both a and b pass
9-13 public String getTitle() {
 return title;
 }

9-14 @Test
 public void testGetters() {
 LibraryBook book1 = new LibraryBook("C++", "Michael Berman");
 assertEquals("Michael Berman", book1.getAuthor());
 assertEquals(null, book1.getBorrower());
 }

9-15 public boolean isAvailable() {
 return borrower == null;
 }

9-16 Fill in the blanks in this test method to verify getTitle works so all assertions pass.
 assertTrue(book1.isAvailable());
 assertTrue (book2.isAvailable());
 book1.borrowBook("Sam Mac");
 book2.borrowBook("Sam Mac");
 assertFalse(book1.isAvailable());
 assertFalse(book2.isAvailable());
 assertEquals("_Sam _", book1.getBorrower());
 assertEquals("_Li__", book2.getBorrower());

9-17 public String toString() {
 return "" + ID + " " + balance;
 }

116

Chapter 10

An Array Instance Variable

Goal

• Implement a type that uses an array instance variable.

10.1 StringBag — A Simple Collection Class
As you continue your study of computing fundamentals, you will spend a fair amount of time using arrays and
managing collections of data. The Java array is one of several data storage structures used inside classes with the
main task of storing a collection. These are known as collection classes with some of the following
characteristics:

• The main responsibility of a collection class is to store a collection of objects
• Objects are added and removed from a collection
• A collection class allows clients to access the individual elements
• A collection class may have search-and-sort operations for locating a particular item.
• Some collections allow duplicate elements; other collections do not

The Java array uses subscript notation to access individual elements. The collection class shown next exemplifies
a higher-level approach to storing a collection of objects. It presents users with messages and hides the array
processing details inside the methods. The relatively simple collection class also provides a review of Java classes
and methods. This time, however, the class will have an array instance variable. The methods will employ array-
processing algorithms. More specifically, this collection will represent a bag. Bag is a mathematical term for an
unordered collection of values that may have duplicates. It is also know as a multi-set. This bag will be store a
collection of strings and will be named StringBag. A StringBag object will have the following
characteristics:

• A StringBag object can store a collection of String objects
• StringBag elements need not be unique, duplicates are allowed
• The order of elements is not important
• Programmers can ask how many occurrences of a String are in the bag (may be 0)
• Elements can be removed from a StringBag object
• This StringBag class is useful for learning about collections, array processing, Java classes and Test-

Driven Development.

A StringBag object can store any number of String objects. A StringBag object will understand the messages
such as add, remove and occurencesOf. The design of StringBag is provided here as three commented
method headings.
// Put stringToAdd into this StringBag (order not important)
public void add(String stringToAdd);

// Return how often element equals an element in this StringBag
public int occurencesOf(String element);

118

// Remove one occurrence of stringToRemove if found and return true.
// Return false if stringToRemove is not found in this StringBag.
public boolean remove(String stringToRemove);

Using Test Driven Development, the tests come first. Which method should be tested first? It's difficult to
implement only one and know it works. If we work on add alone, how do we know an element has actually been
added. One solution is to develop occurencesOf at the same time and verify both are working together. A test
method could add several elements and verify they are there with occurencesOf. We should also verify contains
returns false for elements in the bag. So add(String) and occurencesOf(String) will be developed first.
We'll begin with a unit test with one test method that adds one element. occurencesOf should return 0 before
add and 1 after.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringBagTest {

 @Test
 public void testAddAndOccurencesOfForOnlyOneElement () {
 StringBag friends = new StringBag();
 friends.add("Sage");
 assertEquals(1, friends.occurencesOf("Sage"));
 }

}

Of course, this unit test will not compile. The class doesn't even exist; nor do the add and occurencesOf
methods; nor does the constructor. The following start at a StringBag type at least allows the unit test to
compile. The assertions will not pass, at least not yet. All methods are written as stubsa temporary substitute for
yet-to-be-developed code.

// A class for storing a multi-set (bag) of String elements.
public class StringBag {

 // Construct an empty StringBag object (no elements stored yet)
 public StringBag() {
 // TODO Complete this method
 }

 // Add an element to this StringBag
 public void add(String stringToAdd) {
 // TODO Complete this method
 }

 // Return how often element equals an element in this StringBag
 public int occurencesOf(String element) {
 // TODO Complete this method
 return 0;
 }
}

The StringBag Constructor
The private instance variables of the StringBag class include an array named data for storing a collection of
String objects. Each StringBag object also has an integer named n to maintain the number of meaningful
elements that are in the StringBag. The add and occurencesOf methods will need both instance variables to
accomplish their responsibilities. The constructor establishes an empty StringBag object by setting n to zero.
The array capacity is set to the arbitrary initial capacity of 10. We don’t know how big the collection will grow to
when used laterwe will deal with that later.

119

Chapter 10: An Array Instance Variable

public class StringBag {

 private String[] data; // Stores the collection
 private int n; // Current number of elements

 // Construct an empty StringBag object
 public StringBag() {
 n = 0;
 data = new String[10]; // Initial capacity is 10
 }

public void add(String stringToAdd)
Both n and data must be available to the add method. This is not a problem, since any StringBag method has
access to the private instance variables of StringBag. To add an element to the StringBag, the argument
reference passed to the stringToAdd parameter can be placed at the "end" of the array, or more specifically, at
the first available array location. This two-step algorithm summarizes how a new String is added to the first
available array position:

Algorithm: Adding an element
data[n] = the-argument-passed-to-StringBag.add
increment n by +1

The argument passed to StringBag’s add method is stored into the proper array location using n as the index.
Then n gets incremented by 1 to reflect the new addition. Incrementing n by 1 maintains the number of elements
in the StringBag.
 Incrementing n also conveniently sets up a situation where the next added element is inserted into the proper
array location. The array location at data[n] is the next place to store the next element can be placed. This is
demonstrated in the following view of the state of the StringBag before and after the string "and a fourth"
after this code executes

 StringBag bag = new StringBag();
 bag.add("A string");
 bag.add("Another string");
 bag.add("and still another");

 Before
Instance Variables State of bagOfStrings
data[0] "A string"
data[1] "Another string"
data[2] "and still another"
data[3] null // next available
data[4] null

data[9] null
 n 3

After
Instance Variable State of bagOfStrings
data[0] "A string"
data[1] "Another string"
data[2] "and still another"
data[3] "and a fourth"
data[4] null // next available
... ...
data[9] null
 n 4

Here is the add method that places new elements at the first available location. It is important to keep the
elements together. Don't allow null between elements. This method ensures nulls are not in the mix.

 // Add an element to this StringBag
 public void add(String stringToAdd) {
 // Store the reference into the array
 data[n] = stringToAdd;
 // Make sure n is always increased by one
 n++;
 }

120

The unit test is run, but the single test method does not pass; occurencesOf still does nothing.

public int occurencesOf(String element)
Since there is no specified ordering for Bags in general or StringBag in particular, the element passed as an
argument may be located at any index. Also, a value that equals the argument may occur more than once. Thus
each element in indexes 0..n-1 must be compared. It makes the most sense to use the equals method, assuming
equals has been overridden to compare the state of two objects rather than the reference values. And with
String, equals does compare state.
 By setting result to 0 below, the occurencesOf method first states there are no elements equal to
element.

 // Return how often element equals an element in this StringBag
 public int occurencesOf(String element) {
 int result = 0;
 for (int subscript = 0; subscript < n; subscript++) {
 if (element.equals(data[subscript]))
 result++;
 }
 return result;
 }

The for loop then iterates over every meaningful element in the array. Each time element equals any array
element, result increments by 1. Our first assertion passes.

 @Test
 public void testAddAndOccurencesOfForOnlyOneElement() {
 StringBag friends = new StringBag();
 friends.add("Sage");
 assertEquals(1, friends.occurencesOf("Sage"));
 }

Other Test Methods
Another test method verifies that duplicate elements are can exist and are found.
 @Test
 public void testOccurencesOf() {
 StringBag names = new StringBag();
 names.add("Tyler");
 names.add("Devon");
 names.add("Tyler");
 names.add("Tyler");
 assertEquals(1, names.occurencesOf("Devon"));
 assertEquals(3, names.occurencesOf("Tyler"));
 }

Another test method verifies 0 is returned when the String argument is not in the bag.
 @Test
 public void testOccurencesOfWhenItShyouldReturnZeros() {
 StringBag names = new StringBag();
 assertEquals(0, names.occurencesOf("Devon"));
 assertEquals(0, names.occurencesOf("Tyler"));
 names.add("Sage");
 names.add("Hayden");
 assertEquals(0, names.occurencesOf("Devon"));
 assertEquals(0, names.occurencesOf("Tyler"));
 }

Another test method documents that this collection is case sensitive.

121

Chapter 10: An Array Instance Variable

 @Test
 public void testOccurencesOfForCaseSensitivity() {
 StringBag names = new StringBag();
 names.add("UPPER");
 names.add("Lower");

 // Not in the bag (case sensitive)
 assertEquals(0, names.occurencesOf("upper"));
 assertEquals(0, names.occurencesOf("lower"));

 // In the bag
 assertEquals(1, names.occurencesOf("UPPER"));
 assertEquals(1, names.occurencesOf("Lower"));
 }

Yet another test method tries to add 500 strings only to find something goes wrong.

 @Test
 public void testAdding500Elements() {
 StringBag bag = new StringBag();
 for (int count = 1; count <= 500; count++) {
 bag.add("Str#" + count);
 }
 assertEquals(1, bag.occurencesOf("Str#1"));
 assertEquals(1, bag.occurencesOf("Str#2"));
 assertEquals(1, bag.occurencesOf("Str#499"));
 assertEquals(1, bag.occurencesOf("Str#500"));
 }

 java.lang.ArrayIndexOutOfBoundsException: 10
 at StringBag.add(StringBag.java:34)
 at StringBagTest.testAdding500Elements(StringBagTest.java:39)

After 10 adds, n == 10. The attempt to store the 11th element in the StringbBag results in an
ArrayIndexOutOfBounds exception with the attempt to assign an element to data[10].
 Before any new String is added, a check should be made to ensure that there is the capacity to add another
element. If the array is filled to capacity (n == data.length) there is not enough room to add the new element.
In this case, we need to increase the array capacity.
 The code to increase the capacity of the array could be included in the add method. However this task is
complex enough that it will be placed into a "helper" method named growArray. The add method changes with
a guarded action: grow the array only when necessary.

 public void add(String stringToAdd) {
 // Make sure the array can store a new element
 if (n == data.length) {
 growArray();
 }

 // Store the reference into the array
 data[n] = stringToAdd;
 // Make sure my_size is always increased by one
 n++;
 }

The growArray method will help this add method perform its task with less code. The add method delegates a
well-defined responsibility of growing the array to another method. This makes for more readable and
maintainable code.

122

private void growArray()

Because growArray is inside class StringBag, any StringBag object can send a growArray message to itself.
The message was sent from this object in add. And because data is an instance variable, any StringBag object
can change data to reference a new array with more capacity. This is done with the following algorithm:

• Make a temporary array that is bigger (by 10) than the instance variable.
• Copy the original contents (data[0] through data[n - 1]) into this temporary array.
• Assign the reference to the temporary array to the array instance variable

 // Change data to have the same elements in indexes 0..n - 1
 // and have the same number of new array locations to store new elements.
 private void growArray() {
 String[] temp = new String[n + 10];
 // Copy all existing elements into the new and larger array
 for (int index = 0; index < n; index++) {
 temp[index] = data[index];
 }
 // Store a reference to the new bigger array as part of this object's state
 data = temp;
 }

When the array is filled to capacity (with the Strings "A" .. "J" added in this example), the instance variables
data and n look like this:

data
data.length == 10
n == 10

"A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

During the message add("Z");, the add method would send the growArray message in order to increase the
capacity by 10. The instance variables would change to this picture of memory:

data
data.length == 20
n == 11

"A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "Z" null null null null null null null null null

Note: The growArray method is declare private because it is better design to not clutter the public part of a
class with things that users of the class are not able to use or are not interested in using. It is good practice to hide
details from users of your software.

public boolean remove(String stringToRemove)
If stringToRemove is found to equal one of the strings referenced by the array, remove effectively takes one
of the occurrences of the String element. Consider the following test method that attempts to remove "Not in
the bag".

 @Test
 public void testRemoveOneThatIsThereAnotherThatIsNot() {
 StringBag bag = new StringBag();
 bag.add("A string");
 bag.add("Another string");
 bag.add("and still another");
 bag.add("and a fourth");
 assertFalse(bag.remove("Not in the bag"));
 assertTrue(bag.remove("Another string"));
 }

123

Chapter 10: An Array Instance Variable

Here are the values of the instance variables data and n and of the local objects index and
stringToRemove while trying to remove "Another string":
Instance Variable State of bag
data[0] "A string"
data[1] "Another string"
data[2] "and still another"
data[3] "and a fourth"
data[4] null

data[9] null
n 4

The algorithm used to remove an element is in these steps (other algorithms also work).

• Find the index of an element to remove, or set to -1 if stringToRemove does not exist
• If the index != -1, move the element at the end of the array to this index
• Decrement n (n--)

The remove algorithm calls the private helper method indexOf that has the purpose of returning an index of the
string to be removed. If the string does not equal an array element, the indexOf method (discussed later) returns
-1. In this case of trying to remove the string "Not in the bag" the method simply returns false. The method
terminated and the first assertion (above) passes.

 // Remove an element that equals stringToRemove if found and return true.
 // Return false if stringToRemove was not found in this StringBag.
 public boolean remove(String stringToRemove) {

 // indexOf returns the index of an element that equals stringToRemove
 // or -1 if stringToRemove is not in this bag.
 int subscript = indexOf(stringToRemove);
 if (subscript == -1)
 return false;
 else { // . . .

In the 2nd assertion assertTrue(bag.remove("Another string")); that attempts to remove an element that
does exist, the array will be changed, n will be changed, and indexOf will return true. These variables that are
local to remove indicate the string was found at index 1.

Local Variable State of remove’s Local Variable after a Sequential Search
stringToRemove "Another string"
index 1

Once found, the reference stored in data[index] must somehow be removed from the array, which is currently
data[1] or "Another string". The simple way to do this is to move the last element into the spot where
stringToRemove was found. It is okay to destroy the reference in data[1]. This is the object to be removed from the
StringBag. Also, since there is no ordering requirement, it is also okay to move data[n - 1], which is the last
meaningful element in the array. When n-- occurs, the 2nd reference to the string at data[n-1] is no longer considered to
be in the collection. Although not necessary, this code assigns null to that 2nd unneeded reference.

 // Move the last string in the array to where stringToRemove was found.
 data[subscript] = data[n - 1];
 // Mark old array element as no longer holding a reference (not required)
 data[n - 1] = null;
 // Decrease this StringBag's number of elements
 n--;

124

 // Let this method return true to where the message was sent
 return true;
 }
 } // End method remove

The state of StringBag now looks like this (three changes are highlighted):
Instance Variable State of bagOfStrings
data[0] "A string"
data[1] "And a fourth" Overwrite "another string"
data[2] "and still another"
data[3] null data[3] is no longer meaningful
data[4] null
 ...
data[9] null

n 3 n is 3 now

Although the elements are not in the same order (this was not a requirement), the same elements exist after the
requested removal. Because the last element has been relocated, n must decrement by 1. There are now only
three, not four, elements in this StringBag object.
 The same code works even when removing the last element. The assignment is done. Decreasing n by one
effectively eliminates the last element.

private int indexOf(String element)

The remove method used another method to find the index of an element to remove (or -1 if no element found).
Although this code could have gone in remove, the well-defined responsibility of finding the index of an element
in an array was placed in this private helper method to keep the remove algorithm a bit simpler. The indexOf
method will sequentially search each array element beginning at index 0 until one of two things happen.

1. element equals an array element and that index of that element is returned to method remove(String
element)

2. the loop terminates because there are no more element to examine. In this case, indexOf returns -1 to
method remove(String element)

 // Return the index of the first occurrence of stringToRemove.
 private int indexOf(String element) {
 // Look at all elements until the string
 for (int index = 0; index < n; index++) {
 if (element.equals(data[index]))
 return index;
 }
 // Otherwise result is not changed from -1.
 return -1;
 }

Again we see a helper method declared private because indexOf is currently considered a method that
programmers are not meant to use. It was not in the specification. Here is the complete StringBag class.

// A class for storing an unordered collection of Strings.
// This class was designed to provide practice and review in
// implementing methods and classes along with using arrays.
public class StringBag {

 private String[] data; // Stores the collection
 private int n; // Current number of elements

125

Chapter 10: An Array Instance Variable

 // Construct an empty StringBag object
 public StringBag() {
 n = 0;
 data = new String[10]; // Initial capacity is 10
 }

 // Return the element at the specified index.
 // Precondition: index >= 0 && index < size()
 public String get(int index) {
 return data[index];
 }

 // Add a string to the StringBag in no particular place.
 // Always add StringToAdd (unless the computer runs out of memory)
 public void add(String stringToAdd) {
 // Make sure the array can store a new element
 if (n == data.length) {
 growArray();
 }

 // Store the reference into the array
 data[n] = stringToAdd;
 // Make sure my_size is always increased by one
 n++;
 }

 // Change data to have the same elements in indexes 0..n - 1 and have
 // the same number of new array locations to store new elements.
 private void growArray() {
 String[] temp = new String[n + 10];
 // Copy all existing elements into the new and larger array
 for (int index = 0; index < n; index++) {
 temp[index] = data[index];
 }
 // Store a reference to the new bigger array as part of this
 // object's state
 data = temp;
 }

 // Return how often element equals an element in this StringBag
 public int occurencesOf(String element) {
 int result = 0;
 for (int subscript = 0; subscript < n; subscript++) {
 if (element.equals(data[subscript]))
 result++;
 }
 return result;
 }

 // Remove an element that equals stringToRemove if found and return true.
 // Return false if stringToRemove was not found in this StringBag.
 public boolean remove(String stringToRemove) {
 int subscript = indexOf(stringToRemove);
 if (subscript == -1)
 return false;
 else {
 // Move the last string in the array to where stringToRemove was found.
 data[subscript] = data[n - 1];
 // Mark old array element as no longer holding a reference (not required)
 data[n - 1] = null;
 // Decrease this StringBag's number of elements
 n--;
 return true;
 }
 }

126

 // Return the index of the first occurrence of stringToRemove.
 // Otherwise return -1 if stringToRemove is not found.
 private int indexOf(String element) {
 // Look at all elements until the string
 for (int index = 0; index < n; index++) {
 if (element.equals(data[index]))
 return index;
 }
 // Otherwise result is not changed from -1.
 return -1;
 }
} // End class StringBag

Other Test Methods
The remove method and its indexOf method are complex. Further testing is appropriate. This test verifies that
all duplicates can be removed.

 @Test
 public void testRemoveWhenDuplicatedO() {
 StringBag bag = new StringBag();
 bag.add("A");
 bag.add("B");
 bag.add("B");
 bag.add("B");
 bag.add("A");

 assertEquals(3, bag.occurencesOf("B"));
 assertTrue(bag.remove("B"));
 assertEquals(2, bag.occurencesOf("B"));

 assertTrue(bag.remove("B"));
 assertEquals(1, bag.occurencesOf("B"));

 assertTrue(bag.remove("B"));
 assertEquals(0, bag.occurencesOf("B"));

 // There should be no more Bs
 assertFalse(bag.remove("B"));
 assertEquals(0, bag.occurencesOf("lower"));
 }

Other tests should be made for these situations:

• when the bag is empty
• when there is one element, try removing an element that is not there
• when there is one element, try removing an element that is there
• remove all elements when size > 2

 @Test
 public void testRemoveWhenEmpty() {
 StringBag bag = new StringBag();
 assertEquals(0, bag.occurencesOf("B"));
 assertFalse(bag.remove("Not here"));
 assertEquals(0, bag.occurencesOf("B"));
 }

127

Chapter 10: An Array Instance Variable

 @Test
 public void testRemoveNonExistentElementWhenSizeIsOne() {
 StringBag bag = new StringBag();
 bag.add("Only one element");
 assertEquals(1, bag.occurencesOf("Only one element"));
 assertFalse(bag.remove("Not here"));
 assertEquals(1, bag.occurencesOf("Only one element"));
 }

 @Test
 public void testRemoveElementWhenSizeIsOne() {
 StringBag bag = new StringBag();
 bag.add("Only one element");
 assertEquals(1, bag.occurencesOf("Only one element"));
 assertTrue(bag.remove("Only one element"));
 assertEquals(0, bag.occurencesOf("Only one element"));
 }

 @Test
 public void testRemoveAllElementsWhenSizeGreaterThanTwo() {
 StringBag bag = new StringBag();
 bag.add("A");
 bag.add("B");
 bag.add("C");
 assertTrue(bag.remove("A"));
 assertTrue(bag.remove("B"));
 assertTrue(bag.remove("C"));
 assertEquals(0, bag.occurencesOf("A"));
 assertEquals(0, bag.occurencesOf("B"));
 assertEquals(0, bag.occurencesOf("C"));
 }

Self-Check
10-1 What happens when an attempt is made to remove an element that is not in the bag.
10-2 Using the implementation of remove just given, what happens when an attempt is made to remove an

element from an empty StringBag (n == 0)?
10-3 Must remove always maintain the StringBag elements in the same order as that in which they were

originally added?
10-4 What happens when an attempt is made to remove an element that has two of the same values in the

StringBag?
10-5 Write the output of the following code:

StringBag aBag = new StringBag();
aBag.add("First");
aBag.add("Second");
aBag.add("Third");
System.out.println(aBag.occurencesOf("first"));
System.out.println(aBag.occurencesOf("Second"));
System.out.println(aBag.remove("First"));
System.out.println(aBag.remove("Third"));
System.out.println(aBag.remove("Third"));
System.out.println(aBag.occurencesOf("first"));
System.out.println(aBag.occurencesOf("Second"));

128

Answers to Self-Checks

10-1 remove returns false, the StringBag object does not change.

10-2 Nothing noticeable to the user happens. The loop test (index < my_size) is
false immediately, so index remains 0. Then the expression if(index == my_size) is true and
false is returned.

10-3 No. The last element may be moved to the first vector position, or the second, or anywhere else.
There are other collections used to store elements in order.

10-4 StringBag remove removes the first occurrence. All other occurrences of the same value
remain in the bag.

10-5 0
 1
 true
 true
 false
 0
 1

Chapter 11

Two-Dimensional Arrays

This chapter introduces Java arrays with two subscripts for managing data logically stored in a table-like
formatin rows and columns. This structure proves useful for storing and managing data in many applications,
such as electronic spreadsheets, games, topographical maps, and student record books.

11.1 2-D Arrays
Data that conveniently presents itself in tabular format can be represented using an array with two subscripts,
known as a two-dimensional array. Two-dimensional arrays are constructed with two pairs of square brackets to
indicate two subscripts representing the row and column of the element.

General Form: A two-dimensional array consruction (all elements set to default values)
type[][] array-name = new type [row-capacity][column-capacity];
type[][] array-name = { { element[0][0], element[0][1], element[0][2], … } ,
 { element[1][0], element[1][1], element[1][2], … } ,
 { element[2][0], element[2][1], element[2][2], … } };

• type may be one of the primitive types or the name of any Java class or interface
• identifier is the name of the two-dimensional array
• rows specifies the total number of rows
• columns specifies the total number of columns

Examples:

double[][] matrix = new double[4][8];

// Construct with integer expressions
int rows = 5;
int columns = 10;
String[][] name = new String[rows][columns];

// You can use athis shortcut that initializes all elements
int[][] t = { { 1, 2, 3 }, // First row of 3 integers
 { 4, 5, 6 }, // Row index 1 with 3 columns
 { 7, 8, 9 } }; // Row index 2 with 3 columns

Referencing Individual Items with Two Subscripts
A reference to an individual element of a two-dimensional array requires two subscripts. By convention,
programmers use the first subscript for the rows, and the second for the columns. Each subscript must be
bracketed individually.

130

General Form: Accessing individual two-dimensional array elements
two-dimensional-array-name[rows][columns]

• rows is an integer value in the range of 0 through the number of rows - 1
• columns is an integer value in the range of 0 through the number of columns - 1

Examples:
 String[][] name = new String[5][10];
 name[0][0] = "Upper Left";
 name[4][9] = "Lower Right";
 assertEquals("Upper Left", name[0][0]);

 // name.length is the number of rows,
 // name[0].length is the number of columns
 assertEquals("Lower Right", name[name.length-1][name[0].length-1]);

Nested Looping with Two-Dimensional Arrays
Nested looping is commonly used to process the elements of two-dimensional arrays. This initialization allocates
enough memory to store 40 floating-point numbers—a two-dimensional array with five rows and eight columns.
Java initializes all values to 0.0 when constructed.

 int ROWS = 5;
 int COLUMNS = 8;
 double[][] table = new double[ROWS][COLUMNS]; // 40 elements set to 0.0

These nested for loops initialize all 40 elements to -1.0.
 // Initialize all elements to -1.0
 for (int row = 0; row < ROWS; row++) {
 for (int col = 0; col < COLUMNS; col++) {
 table[row][col] = -1.0;
 }
 }

 Self-Check
Use this construction of a 2-D array object to answer questions 1 through 8:

 int[][] a = new int[3][4];

11-1 What is the value of a[1][2]?
11-2 Does Java check the range of the subscripts when referencing the elements of a?
11-3 How many ints are properly stored by a?
11-4 What is the row (first) subscript range for a?
11-5 What is the column (second) subscript range for a?
11-6 Write code to initialize all of the elements of a to 999.
11-7 Declare a two-dimensional array sales such that stores 120 doubles in 10 rows.
11-8 Declare a two-dimensional array named sales2 such that 120 floating-point numbers can be stored in 10

columns.

A two-dimensional array manages tabular data that is typically processed by row, by column, or in totality. These
forms of processing are examined in an example class that manages a grade book. The data could look like this
with six quizzes for each of the nine students.

131

Chapter 11: Two-Dimensional Arrays

 Quiz #0 1 2 3 4 5
 0 67.8 56.4 88.4 79.1 90.0 66.0
 1 76.4 81.1 72.2 76.0 85.6 85.0
 2 87.8 76.4 88.7 83.0 76.3 87.0
 3 86.4 54.0 40.0 3.0 2.0 1.0
 4 72.8 89.0 55.0 62.0 68.0 77.7
 5 94.4 63.0 92.9 45.0 75.6 99.5
 6 85.8 95.0 88.1 100.0 60.0 85.8
 7 76.4 84.4 100.0 94.3 75.6 74.0
 8 57.9 49.5 58.8 67.4 80.0 56.0

This data will be stored in a tabular form as a 2D array. The 2D array will be processed in three ways:

1. Find the average quiz score for any of the 9 students
2. Find the range of quiz scores for any of the 5 quizzes
3. Find the overall average of all quiz scores

Here are the methods that will be tested and implemented on the next few pages:

 // Return the number of students in the data (#rows)
 public int getNumberOfStudents()

 // Return the number of quizzes in the data (#columns)
 public int getNumberOfQuizzes()

 // Return the average quiz score for any student
 public double studentAverage(int row)

 // Return the range of any quiz
 public double quizRange(int column)

 // Return the average of all quizzes
 public double overallAverage()

Reading Input from a Text File
In programs that require little data, interactive input suffices. However, initialization of arrays quite often involves
large amounts of data. The input would have to be typed in from the keyboard many times during implementation
and testing. That much interactive input would be tedious and error-prone. So here we will be read the data from
an external file instead.
 The first line in a valid input file specifies the number of rows and columns of the input file. Each remaining
line represents the quiz scores of one student.

 9 6
 67.8 56.4 88.4 79.1 90.0 66.0
 76.4 81.1 72.2 76.0 85.6 85.0
 87.8 76.4 88.7 83.0 76.3 87.0
 86.4 54.0 40.0 3.0 2.0 1.0
 72.8 89.0 55.0 62.0 68.0 77.7
 94.4 63.0 92.9 45.0 75.6 99.5
 85.8 95.0 88.1 100.0 60.0 85.8
 76.4 84.4 100.0 94.3 75.6 74.0
 57.9 49.5 58.8 67.4 80.0 56.0

The first two methods to test will be the two getters that determine the dimensions of the data. The actual file
used in the test has 3 students and 4 quizzes. The name of the file will be passed to the QuizData constructor.

132

 @Test
 public void testGetters() {
 /* Process this small file that has 3 students and 4 quizzes.
 3 4
 0.0 10.0 20.0 30.0
 40.0 50.0 60.0 70.0
 80.0 90.0 95.5 50.5
 */
 QuizData quizzes = new QuizData("quiz3by4");
 assertEquals(3, quizzes.getNumberOfStudents());
 assertEquals(4, quizzes.getNumberOfQuizzes());
 }

The name of the file will be passed to the QuizData constructor that then reads this text data using the familiar
Scanner class. However, this time a new File object will be needed. And this requires some understanding of
exception handling.

Exception Handling when a File is Not Found
When programs run, errors occur. Perhaps an arithmetic expression results in division by zero, or an array
subscript is out of bounds, or there is an attempt to read a file from a disk using a specific file name that does not
exist. Or perhaps, the expression in an array subscript is negative or 1 greater than the capacity of that array.
Programmers have at least two options for dealing with these types of exception:

• Ignore the exception and let the program terminate
• Handle the exception

However, in order to read from an input file, you cannot ignore the exception. Java forces you to try to handle the
exceptional event. Here is the code the tries to have a Scanner object read from an input file named quiz.data.
Notice the argument is now a new File object.

 Scanner inFile = new Scanner(new File("quiz.data));

This will not compile. Since the file "quiz.data" may not be found at runtime, the code may throw a
FileNotFoundException. In this type of exception (called a checked exception), Java requires that you put the
construction in a try block—the keyword try followed by the code wrapped in a block, { }.

try {
 code that may throw an exception when an exception is thrown
}
catch (Exception anException) {
 code that executes only if an exception is thrown from code in the above try block.
}

Every try block must be followed by a at least one catch block—the keyword catch followed by the
anticipated exception as a parameter and code wrapped in a block. The catch block contains the code that
executes when the code in the try block causes an exception to be thrown (or called a method that throws an
exception). So to get a Scanner object to try to read from an input file, you need this code.

 Scanner inFile = null;
 try {
 inFile = new Scanner(new File(fileName));
 }
 catch (FileNotFoundException fnfe) {
 System.out.println("The file '" + fileName + " was not found");
 }

This will go into the QuizData constructor that reads the first two integers as the number of rows followed by the

133

Chapter 11: Two-Dimensional Arrays

number of columns as integers. The file it reads from is passed as a string to the constructor. This allows the
programmer to process data stored in a file (assuming the data is properly formatted and has the correct amount of
input.

// A QuizData object will read data from an input file an allow access to
// any students quiz average, the range of any quiz, and the average quiz
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class QuizData {
 // Instance variables
 private double[][] quiz;
 private int numberOfStudents;
 private int numberOfQuizzes;

 public QuizData(String fileName) {
 Scanner inFile = null;
 try {
 inFile = new Scanner(new File(fileName));
 }
 catch (FileNotFoundException e) {
 System.out.println("The file '" + fileName + " was not found");
 }
 // More to come ...
}

Because the private instance variables members are known throughout the QuizData class, the two-dimensional
array named quiz can, from this point forward, communicate its subscript ranges for both rows and columns at
any time and in any method. These values are stored

 // Get the dimensions of the array from the input file
 numberOfStudents = inFile.nextInt();
 numberOfQuizzes = inFile.nextInt();

The next step is to allocate memory for the two-dimensional array:
 quiz = new double[numberOfStudents][numberOfQuizzes];

Now with a two-dimensional array precisely large enough to store numberOfStudents rows of data with
numberOfQuizzes quiz scores in each row, the two-dimensional array gets initialized with the file data using
nested for loops.

 // Initialize a numberOfStudents-by-numberOfQuizzes array
 for (int row = 0; row < getNumberOfStudents(); row++) {
 for (int col = 0; col < getNumberOfQuizzes(); col++) {
 quiz[row][col] = inFile.nextDouble();
 }
 }
 } // End QuizData(String) constructor

QuizData also has these getters now s the first test method has both assertions passing

 public int getNumberOfStudents() {
 return numberOfStudents;
 }

 public int getNumberOfQuizzes() {
 return numberOfQuizzes;
 }

134

However, more tests are required to verify the 2D array is being initialized properly. One way to do this is to
have a toString method so the array can be printed.

Self-Check
11-9 Write method toString that will print the elements in any QuizData object to look like this:

 0.0 10.0 20.0 30.0
 40.0 50.0 60.0 70.0
 80.0 90.0 95.5 50.5

Student Statistics: Row by Row Processing
To further verify the array was initialized, we can write a test to make sure all three students have the correct quiz
average.

 @Test
 public void testStudentAverage() {
 /* Assume the text file "quiz3by4" has these four lines of input data:
 3 4
 0.0 10.0 20.0 30.0
 40.0 50.0 60.0 70.0
 80.0 90.0 95.5 50.5
 */
 QuizData quizzes = new QuizData("quiz3by4");
 assertEquals(15.0, quizzes.studentAverage(0), 0.1);
 assertEquals(220.0 / 4, quizzes.studentAverage(1), 0.1);
 assertEquals((80.0+90.0+95.5+50.5) / 4, quizzes.studentAverage(2), 0.1);
 }

The average for one student is found by adding all of the elements of one row and dividing by the number of
quizzes. The solution uses the same row as col changes from 0 through 3.

 // Return the average quiz score for any student
 public double studentAverage(int row) {
 double sum = 0.0;
 for (int col = 0; col < getNumberOfQuizzes(); col++) {
 sum = sum + quiz[row][col];
 }
 return sum / getNumberOfQuizzes();
 }

Quiz Statistics: Column by Column Processing
To even further verify the array was initialized, we can write a test to ensure correct quiz ranges.

 @Test
 public void testQuizAverage() { // Assume the text file "quiz3by4" has these 4 lines
 // 3 4
 // 0.0 10.0 20.0 30.0
 // 40.0 50.0 60.0 70.0
 // 80.0 90.0 95.5 50.5
 QuizData quizzes = new QuizData("quiz3by4");
 assertEquals(80.0, quizzes.quizRange(0), 0.1);
 assertEquals(80.0, quizzes.quizRange(1), 0.1);
 assertEquals(75.5, quizzes.quizRange(2), 0.1);
 assertEquals(40.0, quizzes.quizRange(3), 0.1);
 }

135

Chapter 11: Two-Dimensional Arrays

The range for each quiz is found by first initializing the min and the max by the quiz score in the given column.
The loop uses the same column as row changes from 1 through 3 (already checked row 0). Inside the loop, the
current value is compared to both the min and the max to ensure the max – min is the correct range.

 // Find the range for any given quiz
 public double quizRange(int column) {
 // Initialize min and max to the first quiz in the first row
 double min = quiz[0][column];
 double max = quiz[0][column];
 for (int row = 1; row < getNumberOfStudents(); row++) {
 double current = quiz[row][column];
 if (current < min)
 min = current;
 if (current > max)
 max = current;
 }
 return max - min;
 }

Overall Quiz Average: Processing All Rows and Columns
The test for overall average shows that an expected value of 49.67.

 @Test
 public void testOverallAverage() {
 QuizData quizzes = new QuizData("quiz3by4");
 assertEquals(49.7, quizzes.overallAverage(), 0.1);
 }

Finding the overall average is a simple matter of summing every single element in the two-dimensional array and
dividing by the total number of quizzes.

 public double overallAverage() {
 double sum = 0.0;
 for (int studentNum = 0; studentNum < getNumberOfStudents(); studentNum++) {
 for (int quizNum = 0; quizNum < getNumberOfQuizzes(); quizNum++) {
 sum += quiz[studentNum][quizNum];
 }
 }
 return sum / (getNumberOfQuizzes() * getNumberOfStudents());
 }

136

Answers to Self-Checks

11-1 0.0
11-2 Yes
11-3 12
11-4 0 through 2 inclusive
11-5 0 through 3 inclusive
11-6 for (int row = 0; row < 3; row++) {
 for (int col = 0; col < 4; col++) {
 a [row][col] = 999;
 }

 }

11-7 double[][]sales = new double[10][12];

11-8 double[][]sales2 = new double[12][10];

11-9 public String toString() {
 String result = "";
 for (int studentNum = 0; studentNum < getNumberOfStudents(); studentNum++){
 for (int quizNum = 0; quizNum < getNumberOfQuizzes(); quizNum++) {
 result += " " + quiz[studentNum][quizNum];
 }
 result += "\n";
 }
 return result;
 }

