

Chapter 18

Stacks and Queues

18.1 Stacks
The stack abstract data type allows access to only one element—the one most recently added. This location is referred to as the top of the

stack.

 Consider how a stack of books might be placed into and removed from a cardboard box, assuming you can only move one book at a

time. The most readily available book is at the top of the stack. For example, if you add two books—Book 1 and then Book 2—into the box,

the most recently added book (Book 2) will be at the top of the stack. If you continue to stack books on top of one another until there are

five, Book 5 will be at the top of the stack. To get to the least recently added book (Book 1), you first remove the topmost four books (Book

5, Book 4, Book 3, Book 2) — one at a time. Then the top of the stack would be Book 1 again.

Book 1
Book 1

Book 2

Book 3

Book 4

Book 2

Book 5

Stack elements are added and removed in a last in first out (LIFO) manner. The most recent element added to the collection will be the first

element to be removed from the collection. Sometimes, the only data that is readily needed is the most recently accessed one. The other

elements, if needed later, will be in the reverse order of when they were pushed. Many real world examples of a stack exist. In a physical

sense, there are stacks of books, stacks of cafeteria trays, and stacks of paper in a printer’s paper tray. The sheet of paper on the top is the

one that will get used next by the printer.

For example, a stack maintains the order of method calls in a program. If main calls function1, that method calls function2, which in

turn calls function3. Where does the program control go to when function3 is finished? After function3 completes, it is removed

from the stack as the most recently added method. Control then returns to the method that is at the new top of the stack function2.

 Here is a view of the stack of function calls shown in a thread named main. This environment (Eclipse) shows the first method (main)

at the bottom of the stack. main will also be the last method popped as the program finishes — the first method called is the last one to

execute. At all other times, the method on the top of the stack is executing. When a method finishes, it can be removed and the method that

called it will be the next one to be removed form the stack of method calls.

The program output indicates the last in first out (or first in last out) nature of stacks:

Four method calls are on the stack
Two about to end
One about to end
main about to end

Another computer-based example of a stack occurs when a compiler checks the syntax of a program. For example, some compilers first

check to make sure that [], { }, and () are balanced properly. Thus, in a Java class, the final } should match the opening {. Some

compilers do this type of symbol balance checking first (before other syntax is checked) because incorrect matching could otherwise lead to

numerous error messages that are not really errors. A stack is a natural data structure that allows the compiler to match up such opening and

closing symbols (an algorithm will be discussed in detail later).

A Stack Interface to capture the ADT

Here are the operations usually associated with a stack. (As shown later, others may exist):

 push place a new element at the "top" of the stack

 pop remove the top element and return a reference to the top element

 isEmpty return true if there are no elements on the stack

 peek return a reference to the element at the top of the stack

Programmers will sometimes add operations and/or use different names. For example, in the past, Sun programmers working on Java

collection classes have used the name empty rather than isEmpty. Also, some programmers write their stack class with a pop method that

does not return a reference to the element at the top of the stack. Our pop method will modify and access the state of stack during the same

message.

 Again, a Java interface helps specify Stack as an abstract data type. For the discussion of how a stack behaves, consider that

LinkedStack (a collection class) implements the OurStack interface, which is an ADT specification in Java.

import java.util.EmptyStackException;

public interface OurStack<E> {
/** Check if the stack is empty to help avoid popping an empty stack.
 * @returns true if there are zero elements in this stack.
 */
 public boolean isEmpty();

/** Put element on "top" of this Stack object.
 * @param The new element to be placed at the top of this stack.
 */
 public void push(E element);

/** Return reference to the element at the top of this stack.
 * @returns A reference to the top element.

 * @throws EmptyStackException if the stack is empty.
 */
 public E peek() throws EmptyStackException;

/** Remove element at top of stack and return a reference to it.
 * @returns A reference to the most recently pushed element.
 * @throws EmptyStackException if the stack is empty.
 */
 public E pop() throws EmptyStackException;
}

You might need a stack of integers, or a stack of string values, or a stack of some new class of Token objects (pieces of source code). One

solution would be to write and test a different stack class for each new class of object or primitive value that you want to store. This is a

good reason for developing an alternate solution— a generic stack.

 The interface to be implemented specifies the operations for a stack class. It represents the abstract specification. There is no particular

data storage mentioned and there is no code in the methods. The type parameter <E> and return types E indicate that the objects of the

implementing class will store any type of element. For example, push takes an E parameter while peek and pop return an E reference.

 The following code demonstrates the behavior of the stack class assuming it is implemented by a class named LinkedStack.

// Construct an empty stack that can store any type of element
OurStack stackOfStrings<String> = new LinkedStack<String>();

// Add three string values to the stack
stackOfStrings.push("A");
stackOfStrings.push("B");
stackOfStrings.push("C");

// Show each element before each element is removed in a LIFO order

while (! stackOfStrings.isEmpty()) {
 // Print the value of the element at the top as it is removed
 System.out.print(stackOfStrings.pop() + " ");
}

Output

C B A

Self-Check
18-1 Write the output generated by the following code:

OurStack<String> aStack = new LinkedStack<String> ();

 The top of the stack

"A"

"B"

"C"

aStack.push("x");
aStack.push("y");
aStack.push("z");
while (! aStack.isEmpty()) {
 out.println(aStack.pop());
}

18-2 Write the output generated by the following code:

OurStack<Character> opStack = new OurLinkedStack<Character>();

out.println(opStack.isEmpty());
opStack.push('>');
opStack.push('+');
opStack.push('<');
out.print(opStack.peek());
out.print(opStack.peek()); // careful
out.print(opStack.peek());

18-3 Write the output generated by the following code:
OurStack<Integer> aStack = new OurLinkedStack<Integer>();

aStack.push(3);
aStack.push(2);
aStack.push(1);
out.println(aStack.isEmpty());
out.println(aStack.peek());
aStack.pop();
out.println(aStack.peek());
aStack.pop();
out.println(aStack.peek());
aStack.pop();
out.println(aStack.isEmpty());

18.2 Stack Application: Balanced Symbols
Some compilers perform symbol balance checking before checking for other syntax errors. For example, consider the following code and the

compile time error message generated by a particular Java compiler (your compiler may vary).

public class BalancingErrors
 public static void main(String[] args) {

 int x = p;
BalancingErrors.java:1: '{' expected
public class BalancingErrors
 ^

 int y = 4;
 in z = x + y;
 System.out.println("Value of z = " + z);
 }
}

Notice that the compiler did not report other errors, one of which is on line 3. There should have been an error message indicating p is an

unknown symbol. Another compile time error is on line 5 where z is incorrectly declared as an in not int. If you fix the first error by

adding the left curly brace on a new line 1 you will see these other two errors.

public class BalancingErrors { // <- add an opening curly brace
 public static void main(String[] args) {
 int x = p;
 int y = 4;
 in z = x + y;
 System.out.println("Value of z = " + z);
 }
}

BalancingErrors.java:3: cannot resolve symbol

symbol : variable p
location: class BalancingErrors
 int x = p;
 ^
BalancingErrors.java:5: cannot resolve symbol
symbol : class in
location: class BalancingErrors
 in z = x + y;
 ^
2 errors

This behavior could be due to a compiler that first checks for balanced { and } symbols before looking for other syntax errors.

 Now consider how a compiler might use a stack to check for balanced symbols such as () , { }, and []. As it reads the Java source

code, it will only consider opening symbols: ({ [, and closing symbols:) }]. If an opening symbol is found in the input file, it is pushed

onto a stack. When a closing symbol is read, it is compared to the opener on the top of the stack. If the symbols match, the stack gets

popped. If they do not match, the compiler reports an error to the programmer. Now imagine processing these tokens, which represent only

the openers and closers in a short Java program: {{([])}}. As the first four symbols are read — all openers — they get pushed onto the

stack.

Java source code starts as: {{([])}}

 [
 (
 {
 {

The next symbol read is a closer: "]". The "[" would be popped from the top of the stack and compared to "]". Since the closer matches

the opening symbol, no error would be reported. The stack would now look like this with no error reported:

 (
 {
 {

The closing parenthesis ")" is read next. The stack gets popped again. Since the symbol at the top of the stack "(" matches the closer ")",

no error needs to be reported. The stack would now have the two opening curly braces.

 {
 {

The two remaining closing curly braces would cause the two matching openers to be popped with no errors. It is the last-in-first-out nature

of stacks that allows the first pushed opener "{" to be associated with the last closing symbol "}" that is read.

 Now consider Java source code with only the symbols (]. The opener "(" is pushed. But when the closer "]" is encountered, the

popped symbol "(" does not match "]" and an error could be reported. Here are some other times when the use of a stack could be used to

help detect unbalanced symbols:

1. If a closer is found and the stack is empty. For example, when the symbols are {}}. The opening { is pushed and the closer "}" is found

to be correct. However when the second } is encountered, the stack is empty. There is an error when } is discovered to be an extra closer

(or perhaps { is missing).

2. If all source code is read and the stack is not empty, an error should be reported. This would happen with Java source code of {{([])}.

In this case, there is a missing right curly brace. Most symbols are processed without error. At the end, the stack should be empty. Since

the stack is not empty, an error should be reported to indicate a missing closer.

This algorithm summarzies the previous actions.

 push the first four opening symbols with [at the top. Still need to read])}}

 pop [which matches]. There is no error. Still need to read) }}

 pop (which matches). There is no error. Still need to read }}

1. Make an empty stack named s
2. Read symbols until end of file
 if it's an opening symbol, push it
 if it is a closing symbol && s.empty
 report error
 otherwise
 pop the stack
 if symbol is not a closer for pop's value, report error
 3. At end of file, if !s.empty, report error

Self-Check
18-4 Write the errors generated when the algorithm above processes the following input file:

public class Test2 {
 public static void main(String[) args) {
 System.out.println();
)) {

18.3 FIFO Queues
A first-in, first-out (FIFO) queue pronounced “Q” models a waiting line. Whereas stacks add and remove elements at one location —

the top — queues add and remove elements at different locations. New elements are added at the back of the queue. Elements are

removed from the front of the queue.

 front back

 1st 2nd 3rd 4th

 Queue

4th

3rd

2nd

1st

top

Stack

Whereas stacks mimic LIFO behavior, queues mimic a first in first out (FIFO) behavior. So, for example, the queue data structure models a

waiting line such as people waiting for a ride at an amusement park. The person at the front of the line will be the first person to ride. The

most recently added person must wait for all the people in front of them to get on the ride. With a FIFO queue, the person waiting longest in

line is served before all the others who have waited less time
1
.

 Another example of queue behavior can be found when several documents need to be printed at a shared printer. Consider three

students, on the same network, trying to print one document each. Who gets their document printed first? If a FIFO queue is being used to

store incoming print requests, the student whose request reached the print queue first will get printed ahead of the others. Now assume that

the printer is busy and the print queue gets a print request from student #3 while a ducument is printing. The print queue would look

something like this:

 front & back

 #3

In this case the queue’s front element is also at the back end of the queue. The queue contains one element. Now add another request from

student #1, followed by another request from student #2 for printing, and the print queue would look like this:

 front back

 #3 #1 #2

Student #1 and student #2 requests were added to the back of queue. The print requests are stored in the order in which they arrived. As the

printer prints documents, the document will be removed from the front. Once the printer has printed the current document, the document for

student #3 will then be removed. Then the state of the queue will now look like this:

 front back

 #1 #2

A Queue Interface Specifying the methods

There is no universally agreed upon set of operations; however the following is a reasonable set of operations for a FIFO Queue ADT.

1
 Note: A priority queue has different behavior where elements with a higher priority would be removed first. For example, the emergency room patient

with the most need is attended to next, not the patient who has been there the longest.

 isEmpty Return true only when there are zero elements in the queue

 add Add an element at the back of the queue

 peek Return a reference to the element at the front of the queue

 remove Return a reference to the element at the front and remove the element

This leads to the following interface for a queue that can store any class of object.
public interface OurQueue<E> {

 /**
 * Find out if the queue is empty.
 * @returns true if there are zero elements in this queue.
 */
 public boolean isEmpty();

 /**
 * Add element to the "end" of this queue.
 * @param newEl element to be placed at the end of this queue.
 */
 public void add(E newEl);

 /**
 * Return a reference to the element at the front of this queue.
 * @returns A reference to the element at the front.
 * @throws NoSuchElementException if this queue is empty.
 */
 public E peek();

 /**

 * Return a reference to front element and remove it.
 * @returns A reference to the element at the front.
 * @throws NoSuchElementException if this queue is empty.
 */
 public E remove();
}

The following code demonstrates the behavior of the methods assuming OurLinkedQueue implements interface OurQueue:

OurQueue<Integer> q = new OurLinkedQueue<Integer>();
q.add(6);
q.add(2);

q.add(4);
while (!q.isEmpty()) {
 System.out.println(q.peek());
 q.remove();
}

Output

6 2 4

Self-Check
18-5 Write the output generated by the following code.

OurQueue<String> strinqQueue = new OurLinkedQueue<String>();
strinqQueue.add("J");
strinqQueue.add("a");
strinqQueue.add("v");
strinqQueue.add("a");

while (!strinqQueue.isEmpty()) {
 System.out.print(strinqQueue.remove());
}

18-6 Write the output generated by the following code until you understand what is going on.

OurQueue<String> strinqQueue = new OurLinkedQueue<String>();
strinqQueue.add("first");
strinqQueue.add("second");
while (! strinqQueue.isEmpty()) {
 System.out.println(strinqQueue.peek());
}

18-7 Write code that displays a message to indicate if each integer in a queue named intQueue is even or odd. The queue must remain intact

after you are done. The queue is initialized with random integers in the range of 0 through 99.

OurQueue<Integer> intQueue = new OurLinkedQueue<Integer>();
Random generator = new Random();
for(int j = 1; j <= 7; j++) {
 intQueue.add(generator.nextInt(100));

}
// Your solution goes here

Sample Output (output varies since random integers are added)

28 is even
72 is even
4 is even
37 is odd
94 is even
98 is even

33 is odd

18.4 Queue with a Linked Structure
We will implement interface OurQueue with a class that uses a singly linked structure. There are several reasons to choose a linked structure

over an array:

 It is easier to implement. (A programming project explains the trickier array-based implementation).

 The Big-O runtime of all algorithms is as efficient as if an array were used to store the elements. All algorithms can be O(1).

 An array-based queue would have add and remove methods, which will occasionally run O(n) rather than O(1). This occurs whenever

the array capacity needs to be increased or decreased.

 It provides another good example of implementing a data structure using the linked structure introduced in the previous chapter.

Elements are removed from the "front" of a queue. New elements are added at the back of the queue. Both "ends" of the queue are frequently

accessed. Therefore, this implementation of OurQueue will use two external references. Only one external reference to the front is required.

However, this would make for O(n) behavior during add messages, since a loop would need to sequence through all elements before

reaching the end. With only a reference to the front, all elements must be visited to find the end of the list before one could be added.

Therefore, an external reference named back will be maintained in addition to front. This will allow add to be O(1). An empty

OurLinkedQueue will look like this:

 front back size: 0

After q.add("First"), a queue of size 1 will look like this:

 front back size: 1

First

After q.add("Second"), the queue of size 2 will look like this:

 front back size: 2

First Second

This test method shows the changing state of a queue that follows the above pictures of memory.

 @Test
 public void testAddAndPeek() {
 OurQueue<String> q = new OurLinkedQueue<String>();
 assertTrue(q.isEmpty()); // front == null
 q.add("first");
 assertEquals("first", q.peek()); // front.data is "first"
 assertFalse(q.isEmpty());

 q.add("second"); // Change back, not front
 // Front element should still be the same
 assertEquals("first", q.peek());
 }

The first element is accessible as front.data. A new element is added by storing a reference to the new node into back.next and

adjusting back to reference the new node at the end.

 Here is the beginning of class OurLinkedQueue that once again uses a private inner Node class to store the data along with a link to the

next element in the collection. There are two instance variables to maintain both ends of the queue.

public class OurLinkedQueue<E> implements OurQueue<E> {

 private class Node {
 private E data;
 private Node next;

 public Node() {
 data = null;
 next = null;
 }

 public Node(E elementReference, Node nextReference) {
 data = elementReference;
 next = nextReference;
 }

 } // end class Node

 // External references to maintain both ends of a Queue
 private Node front;
 private Node back;

 /**
 * Construct an empty queue (no elements) of size 0.
 */
 public OurLinkedQueue() {
 front = null;
 back = null;
 }

 /** Find out if the queue is empty.
 * @returns true if there are zero elements in this queue.
 */
 public boolean isEmpty() {
 return front == null;
 }

 // More methods to be added . . .

}

This implementation recognizes an empty queue when front is null.

add

The add operation will first check for the special case of adding to an empty queue. The code to add to a non-empty queue is slightly

different. If the queue is empty, the external references front and back are both null.

 front back

In the case of an empty queue, the single element added will be at front of the queue and also at the back of the queue. So, after building the

new node, front and back should both refer to the same node. Here is a before and after picture made possible with the code shown.

 // Build a node to be added at the end. A queue can
 // grow as long as the computer has enough memory.

 // With a linked structure, resizing is not necessary.
 if (this.isEmpty()) {
 front = new Node(element, null);
 back = front;
 }

When an add messages is sent to a queue that is not empty, the last node in the queue must be made to refer to the node with the new

element. Although front must remain the same during add messages, back must be changed to refer the new element at the end.

 else {
 back.next = new Node(element);
 back = back.next;
 }

There are several viable variations of how algorithms could be implemented when a linked structure is used to store the collection of

elements. The linked structure used here always maintains two external references for the front and back of the linked structure. This was

done so add is O(1) rather than O(n). In summary, the following code will generate the linked structure shown below.

OurQueue<String> q = new OurLinkedQueue<String>();
q.add("first");
q.add("second");
q.add("third");

 front back

first second third

Self-Check

18-8 Draw a picture of what the memory would look like after this code has executed

 OurQueue<Double> q1 = new OurLinkedQueue<Double>();
 q1.add(5.6));
 q1.add(7.8));

18-9 Implement a toString method for OurLinkedQueue so this assertion would pass after the code in the previous self-check question:

 assertEquals("[a, b]", q2.toString());

peek

The peek method throws a NoSuchElementException if the queue is empty. Otherwise, peek returns a reference to the element stored

in front.data.

 /**
 * Return a reference to the element at the front of this queue.

 * @returns A reference to the element at the front.
 * @throws NoSuchElementException if this queue is empty.
 */
 public E peek() {
 if (this.isEmpty())
 throw new java.util.NoSuchElementException();
 else
 return front.data;
 }

The next two test methods verify that peek returns the expected value and that it does not modify the queue.

 @Test
 public void testPeek() {
 OurQueue<String> q = new OurLinkedQueue<String>();
 q.add(new String("first"));
 assertEquals("first", q.peek());
 assertEquals("first", q.peek());

 OurQueue<Double> numbers = new OurLinkedQueue<Double>();
 numbers.add(1.2);

 assertEquals(1.2, numbers.peek(), 1e-14);
 assertEquals(1.2, numbers.peek(), 1e-14);
 }

 public void testIsEmptyAfterPeek() {
 OurQueue<String> q = new OurLinkedQueue<String>();
 q.add("first");
 assertFalse(q.isEmpty());
 assertEquals("first", q.peek());

 }

An attempt to peek at the element at the front of an empty queue results in a java.util.NoSuchElementException, as verified by this

test:

 @Test(expected = NoSuchElementException.class)
 public void testPeekOnEmptyList() {
 OurQueue<String> q = new OurLinkedQueue<String>();
 q.peek();
 }

remove

The remove method will throw an exception if the queue is empty. Otherwise, remove returns a reference to the object at the front of the

queue (the same element as peek() would). The remove method also removes the front element from the collection.

 @Test
 public void testRemove() {
 OurQueue<String> q = new OurLinkedQueue<String>();
 q.add("c");

 q.add("a");
 q.add("b");
 assertEquals("c", q.remove());
 assertEquals("a", q.remove());
 assertEquals("b", q.remove());
 }

 @Test(expected = NoSuchElementException.class)
 public void testRemoveThrowsAnException() {
 OurQueue<Integer> q = new OurLinkedQueue<Integer>();
 q.remove();

 }

Before the front node element is removed, a reference to the front element must be stored so it can be returned after removing it.

E frontElement = front.data;

front's next field can be sent around the first element to eliminate it from the linked structure.

front = front.next;

 front back

first second third

Now the method can return a reference to firstElement. The linked structure would now look like this.

 front back

second third

Another remove makes the list look like this.

 front back

third

Another remove message will return "third". The remove method should set front to null so isEmpty() will still work. This will leave the

linked structure like this with back referring to a node that is no longer considered to be part of the queue. In this case, back will also be set

to null.

 front back

Self-Check

18-10 Complete method remove so it return a reference to the element at the front of this queue while removing the front element. If the queue is

empty, throw new NoSuchElementException().

 public E remove() {

Answers to Self-Checks
 18-1 z

 y
 x

 18-2 true

 <<<

 18-3 false

 1

 2
 3
 true

 18-4 Check symbols in Test2.java

 Abc.java:2 expecting]

 Abc.java:4 expecting }

 Abc.java:4 expecting }
 missing }
 4 errors

 18-5 Java

 18-6 first
 first

 first

 ...

 first until someone terminates the program or the power goes out

 18-7 int size = intQueue.size();
 for (int j = 1; j <= size; j++) {
 int nextInt = intQueue.peek();
 if (nextInt % 2 != 0)
 System.out.println(nextInt + " is odd");
 else
 System.out.println(nextInt + " is even");
 intQueue.remove();

 intQueue.add(nextInt);
 }

18-8

 front back

15.6 7.8

18-9 public String toString() {
 String result = "[";

 // Concatenate all but the last one (if size > 0)
 Node ref = front;

 while (ref != back) {
 result += ref.data + ", ";
 ref = ref.next;
 }

 // Last element does not have ", " after it
 if (ref != null)
 result += ref.data;

 result += "]";

 return result;
 }

18-10 public E remove() throws NoSuchElementException {
 if (this.isEmpty())
 throw new NoSuchElementException();

 E frontElement = front.data;
 front = front.next;

 if (front == null)
 front = back = null;

 return frontElement;
 }

