
Events and GUIs 250

Appendix A

Event Driven Programming with a
Graphical User Interface (GUI)

This appendix is meant to help you build event-driven programs with a graphical user interface

(GUI). These programs are characterized by graphical components, such as windows, buttons,

and menus that react to events generated by a user interacting with the graphical components

through the mouse and keyboard. When building event-driven applications with a GUI, there are

two things you have to do:

1. Make the graphical components visible to the user.

2. Make sure the correct things happen when an event occurs, such as the user clicking on

something, moving a slider bar, selecting from a pull-down list, or pressing a key.

A graphical component is an object with a graphical appearance that can generate event objects

when they are touched by users. Java has graphical components, such as buttons, labels, text

fields, lists, slider bars, and a window to hold all of these graphical components. This section

shows how to get a few graphical components into a window and make them visible to the user.

In the next chapter, you will learn how to have the correct code respond to events generated by

user interaction with the application.

 This section uses a few of the many components in the javax.swing package. These classes

help programmers build graphical user interfaces (GUIs). The first example will show graphical

components constructed from the following javax.swing classes (or Swing classes):

 JFrame: A window with a title, border, submenu, and some buttons to the upper right.

 JButton: A graphical component that can "pushed" by clicking on the button.

 JLabel: A display area for a small amount of text.

 JTextField: A component that allows input and editing of a single line of text.

Appendix A 251

The program could import all four classes individually like this:

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JTextField;

However, since all of these classes are in the javax.swing package, you could simply use the

following shortcut to gain access to the 90 or so classes in the package:

import javax.swing.*; // Use any Swing component without qualifying the classes

The first object that will be constructed here is a window that holds other components. Java's

JFrame class provides the means to contain other components. Some graphical components can

contain other components, such as JFrame and JPanel. The JFrame is the base of the desktop

application. will be constructed with a string that is the title of the window. To see the JFrame,

you must send the JFrame object a setVisible(true) message. But before you do this, it is

recommended that you send a message to the JFrame so the program will terminate when the user

closes the window later on. To get these and more methods of JFrame simply extend it.

import javax.swing.*; // Use any Swing component without qualifying the classes

// FirstGUI inherits all the methods of JFrame (setSize, add, setLayout...)

public class FirstGUI extends JFrame {

 public static void main (String[] args) {

 // Construct a window with its title and show it (it will be very small)

 JFrame theWindow = new FirstGUI();

 }

 public FirstGUI() {

 // Set the title of the window

 this.setTitle("Graffiti");

 // When the user closes the window, the program will terminate

 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Make the window visible

 this.setVisible(true);

 }

}

Output

The window will be shown in the upper-left corner with a very small height and width. To make

the window appear bigger, send a setSize message to the JFrame object. The first argument is

the width—an integer representing the number of pixels. The second argument is the height,

which is also measured in pixels the smallest dots on your computer screen.

// Make the window 220 pixels wide and 100 pixels high

this.setSize(220, 100);

Events and GUIs 252

The following setLocation message will position the left side of the JFrame object 80 pixels

to the right of the upper-left corner of the screen. The upper part of the JFrame will be shown 50

pixels below the top of the computer screen.

// Set the window's location from the upper-left corner of the screen

this.setLocation(80, 50); // 80 pixels right, 50 pixels down

The coordinate system used to locate windows on a screen and to draw onto a surface uses the

upper-left corner as position 0,0. Therefore, when this window is shown, the upper-left corner

will be in position (80,50), 80 pixels to the right and 50 pixels down.

// Make the window visible

theWindow.setVisible(true);

Java's Coordinate System

(0,0)

 (80,50)

Other graphical components can be added to a JFrame with the following two-step process:

1. Construct the components.

2. Add components to the JFrame (optionally referenced with this)

This example shows a button, a label, and a text field. All three objects are constructed with

String arguments:

// Construct some components that will be added to the container

JButton clickMeButton = new JButton("Nobody is listening to me");

JLabel aLabel = new JLabel("Button above, text field below");

JTextField textEditor = new JTextField("You can edit this text");

At this point, theWindow.setVisible(true) would not show these three objects. You have

to add them to theWindow. that can

// Add three components to the content pane part of the JFrame

// If this code is in the constructor, this. can be optionally used

this.add(clickMeButton, BorderLayout.NORTH);

add(aLabel, BorderLayout.CENTER);

add(textEditor, BorderLayout.SOUTH);

The first argument is the component you want to add to the window. The second argument

describes the area to which you want to add the component. Now, a show message will show the

JFrame with three other graphical components added.

 When adding to a JFrame object, you can specify where on the JFrame the components will

be added. There are five choices: BorderLayout.NORTH, BorderLayout.SOUTH,

Appendix A 253

BorderLayout.WEST, BorderLayout.EAST, and BorderLayout.CENTER. This is illustrated

in the following JFrame that has five JButton objects, constructed with strings such as

"North" and "South", added to the content pane of the JFrame:

This JFrame illustrates Java's BorderLayout layout manager. It is one of several of Java's

layout managers. A layout manager makes the decision on how to arrange graphical components

in a JFrame. BorderLayout is the default for JFrame, but this can be changed with a

setLayout message. Now here is the code discussed above, in one complete program.

// Construct a window and add some other graphical components to it

import java.awt.BorderLayout;

import javax.swing.*; // Use any Swing component without qualifying the classes

public class FirstGUI extends JFrame {

 public static void main(String[] args) {

 // Construct a window with its title and show it (it will be very small)

 JFrame theWindow = new FirstGUI();

 }

 public FirstGUI() {

 // Set the title of the window

 this.setTitle("Graffiti");

 // When the user closes the window, the program will terminate

 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Make the window 220 pixels wide and 100 pixels high

 this.setSize(220, 100);

 this.setLocation(80, 50); // 80 pixels right, 50 pixels down

 JButton clickMeButton = new JButton("Nobody is listening to me");

 JLabel aLabel = new JLabel("Button above, text field below");

 JTextField textEditor = new JTextField("You can edit this text");

 // Add three components to the content pane part of the JFrame

 // If this code is in the constructor, this. can be optionally used

 this.add(clickMeButton, BorderLayout.NORTH);

 add(aLabel, BorderLayout.CENTER);

 add(textEditor, BorderLayout.SOUTH);

 // Make the window visible

 this.setVisible(true);

 }

}

Events and GUIs 254

At this point, nothing will happen when the button is clicked. This appendix later shows how to

make it so you can specify what happens when the user interacts with the graphical user interface.

Layout Managers—BorderLayout and GridLayout
The way that graphical components are laid out as they get added to the JFrame is controlled by

the container's layout manager. By default, a JFrame uses the BorderLayout layout manager to

add graphical components. If the programmer fails to specify one of five locations where

graphical components can be added, those components will be added to the center of the JFrame,

one on top of another. Therefore, it is wise to specify one of the five areas as a second argument

to add. The default layout manager is an instance of BorderLayout, which is defined in the

java.awt package. The Bank Teller window shown above was built with a layout manager that

is an instance of GridLayout, which is also defined in the java.awt package.

 The layout manager for a Container was changed by means of the Container setLayout

message. The setLayout message requires an instance of a layout manager, such as

GridLayout. (There are several other such layout managers implemented in Java, and you can

even define your own.) A GridLayout object can be constructed for maximum programmer

control by using these int arguments:

1. The number of rows (5, below)

2. The number of columns (2, below)

3. The horizontal gap specified as the number of pixels between columns (8, here)

4. The vertical gap specified as the number of pixels between rows (16, here)

GridLayout fiveByTwo = new GridLayout(5, 2, 8, 16);

The layout manager object named fiveByTwo will control how graphical components are laid

out in the JFrame with this setLayout message to this:

this.setLayout(fiveByTwo);

Now graphical components will be added in a row-wise fashion, beginning in the upper-left

corner of the JFrame. The numbers shown in Figure 3.6 represent the ordering of how 10

graphical components will be added with a 5-row by 2-column GridLayout layout manager in

charge. The shaded areas represent where the components will go. The unshaded areas represent

the horizontal and vertical gaps between those graphical components.

GridLayout’s order of added graphical components

1 2

3 4

5 6

7 8

9 10

Appendix A 255

Self-Check

A.1 Fill in the code to make buttonWindow look as shown (assume the correct imports exist).

Let there be four pixels between the JButton objects.

setTitle("6 Buttons");

setSize(150, 110);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// -------------Begin Answer

 Need several messages here

// --------------End of Answer

add(new JButton("1"));

add(new JButton("2"));

add(new JButton("3"));

add(new JButton("4"));

add(new JButton("5"));

add(new JButton("6"));

setVisible(true);

Chapter 1 introduced the Input/Process/Output pattern in the context of keyboard input and

console output. Most programming assignments so far follow this mode: The user is prompted to

enter input, the program does some processing, and the results are shown as output. For example,

here is the problem specification along with one sample dialogue from Programming Project 1D:

Seconds

1D Seconds
Write a program that reads a value in seconds and displays the number of hours, minutes,

and seconds represented by the input. Your dialogue must look exactly like this:

Enter seconds: 32123

8:55:23

When prompted from a text-based console window, the user enters 32123 at the keyboard. Some

actions occur behind the scenes. Then the result is displayed to the text-based console window.

Input/Process/Output with a Graphical Interface
The same Input/Process/Output pattern can be done in a graphical fashion. The prompt can be a

JLabel object (Seconds in the example below). The keyboard is still used to enter input, but

now the input goes into a JTextField object (with 32123 below). The output still goes to the

screen, but this time in the form of a JLabel object (08:55:23 below).

Events and GUIs 256

The user still enters input (32123), processing still occurs, and the result of the processing is still

shown (08:55:23). It is the Input/Process/Output pattern with a different face, a graphical face, a

graphical user interface. A graphical user interface (GUI) allows users to interact with programs

through graphical components such as buttons, text fields, pull down lists, and menu selections.

 Instead of users entering text in response to a prompt, this event-driven program will update

the hr:min:sec fields whenever the user presses enter into a text field. Instead of a program that

runs once with one user input, the user can enter many values to see many results. The program

will not terminate until the user closes the window. This allows multiple Input/Process/Outputs.

Java's Event-Driven Programming Model
With Java, when a user enters text into a text field, that text field sends a message to another

object. The text field does not perform the processing. Instead, the graphical component informs

another object what has happened at the user interface: "Hey object, someone just entered input

into my text field, do whatever it is you want to do perform your actions."

 The object that waits to be informed that a user has interacted with a particular graphical

component is called a listener. The listener object does the processing and typically shows the

result in the window. When a program has listener objects waiting for messages from graphical

components in a interface, the program is called an event-driven program with a GUI.

 An event-driven program needs classes built in a specific way. There is substantial overhead

that requires some getting used to. However, after you have written a few event-driven programs

with a graphical user interface, you can use the same approach for button clicks, menu selections,

hyperlink events, mouse clicks, and any of the other events generated by Java graphical

components, the mouse, and the keyboard.

 Before looking at all of these details, first consider the complete event-driven GUI solution to

Programming Project 1D Seconds. The numbers indicate the major differences from previous

programs. The new concepts will be presented immediately after this complete example:

 A new import is needed for classes and interfaces related to events

 The class extends JFrame. This allows you to treat any new class as a JFrame

 An instance of the inner class that implements ActionListener is registered to listen to

 user input

 There is an inner class. This allows access to the needed graphical components

 The inner class implements the ActionListener interface so it can be registered as a

 listener

Appendix A 257

// Build a window with four components, two of which are needed by the listener

import javax.swing.*; // JFrame, JTextField, JButton

import java.awt.GridLayout; // GridLayout

import java.text.DecimalFormat; // To make "7" into "07"

import java.awt.event.*; // ActionListener, ActionEvent

public class TimeFrame extends JFrame {

 public static void main(String[] args) {

 JFrame window = new TimeFrame();

 }

 // The inner class methods can also reference these instance variables

 private JTextField secondsField;

 private JLabel hmsLabel;

 public TimeFrame() {

 // These three messages are sent to the TimeFrame object being constructed

 setTitle("Seconds");

 setSize(160, 80);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Ask for the container of the TimeFrame object being constructed

 Container contentPane = getContentPane();

 contentPane.setLayout(new GridLayout(2, 2, 4, 4));

 // a) Construct the graphical component that will be listened to

 // This will be needed by the inner class

 secondsField = new JTextField();

 // b) Add the component to the GUI with a prompt added first

 contentPane.add(new JLabel(" Seconds"));

 contentPane.add(secondsField);

 // c) Construct an instance of a class that has the actionPerformed method

 SecondsFieldListener inputListener = new SecondsFieldListener();

 // d) Register the listener object to listen to the graphical component

 secondsField.addActionListener(inputListener);

 // Add the bottom row for output

 contentPane.add(new JLabel(" hr:min:sec"));

 hmsLabel = new JLabel("??:??:??"); // need this hmsLabel in inner class

 contentPane.add(hmsLabel);

 setVisible(true);

 }

 /////////////////////// BEGIN INNER CLASS //////////////////////////////

 // An instance of this ActionListener will listen to a JTextField.

 // This inner class can reference secondsField and hmsLabel.

 // It also has its own DecimalFormat object to put in leading zeros.

 private class SecondsFieldListener implements ActionListener {

 private DecimalFormat formatter;

 public SecondsFieldListener() {

 formatter = new DecimalFormat("00");

 }

Events and GUIs 258

 public void actionPerformed(ActionEvent ae) { // Parameter not used

 // Get the seconds

 String intAsString = secondsField.getText();

 int total = Integer.parseInt(intAsString);

 // If an exception is thrown on bad input, this method terminates

 // Compute the hours, minutes, and seconds

 int hours = total / 3600;

 int minutes = total % 3600 / 60 ;

 int seconds = total % 60;

 // Format the output with leading zeros and colons

 String answer = formatter.format(hours) + ":" +

 formatter.format(minutes) + ":" +

 formatter.format(seconds);

 // Update the output label

 hmsLabel.setText(answer);

 }

 }

 /////////////////////// END INNER CLASS ////////////////////////////////

} // End class TimeFrame

Appendix A 259

Listeners
To get things done in an event driven GUI, an object must be enabled to execute the desired code

whenever users of a GUI interact with those graphical components. In Java, when a user interacts

with a graphical component, that object sends a message to the object that is "listening." The

"listener" object then performs the actions that represent the appropriate response to the event.

 In the case of a user clicking a button or entering text into a text field, the message is

actionPerformed. Objects that have this actionPerformed method can be made to listen to

buttons and text fields. Here is the method heading that is required by Java:

/** From the ActionListener interface

 *

 * The method that you must implement to get code to respond to button clicks

 * and user inp0ut into text fields.

 */

 public void actionPerformed(ActionEvent e);

Once everything is correct, actionPerformed messages will be sent to any object that was

made to listen to a user interacting with a graphical component. To accomplish this, Java requires

that you register objects to listen to graphical components. The method to do this for JButton

and JTextField objects is named addActionListener. Here is documentation for the

message that must be sent to the graphical component so it knows which objects are listening.

/** From the JButton and JTextField classes

 *

 * This JButton method registers an object to listen. aListener must be an

 * instance of a class that implements the ActionListener interface. After this

 * message registers the listener, actionPerformed messages can be sent so

 * there is a response to the user interaction.

 */

 public void addActionListener(ActionListener aListener)

The argument passed to the parameter aListener is the object that will receive an

actionPerformed message. Therefore, this argument must be an ActionListener object.

However, there is no ActionListener class. You must write one that is appropriate for your

own application. Java's event model requires that listener objects implement the

ActionListener interface.

 Java does this to ensure that later on, when the graphical component sends an

actionPerformed message to the listener, the ActionListener object will understand the

actionPerformed message. This avoids runtime errors later on that are more difficult to detect.

With this design the ActionListener parameter required you will get a compiletime error,

which is easier to deal with. This is part of the overhead to get event-driven programming to work

in Java. The objects that listen to buttons and text fields must be instances of a class that

implements Java's ActionListener interface.

 When implementing an interface, you need to add implements SomeInterfaceName to the

class heading, retype the method heading(s) of the interface, and implement the method(s) in an

appropriate manner. Before looking at the class that implements ActionListener, consider the

steps required in the Seconds example so that one object can listen to a graphical component.

Here is the code of the objects and messages required to register a listener object for the current

example. The graphical component can later send actionPerformed messages to the correct

object.

Events and GUIs 260

// a) Construct the graphical component that will be listened to

secondsField = new JTextField(); // this will be needed by the inner class

// b) Add the component to the GUI with a prompt added first

add(new JLabel(" Seconds"));

add(secondsField);

// c) Construct an instance of a class that has an actionPerformed method

SecondsFieldListener inputListener = new SecondsFieldListener();

// d) Register the listener object to listen to the text field

secondsField.addActionListener(inputListener);

With this code, when the user enters text into secondsField, the secondsField object will

send an actionPerformed message to inputListener. This actionPerformed method

must be in a class that implements ActionListener.

Have a Class Implement ActionListener
The one thing still missing in the inner class named SecondsFieldListener. An instance of

SecondsFieldListener must be assigned to the ActionListener parameter of the

addActionListener method. This means that the listener class must implement the

ActionListener interface. This demand in turn demands that the class have the

actionPerformed method. It is in this actionPerformed method where you must write the

code you want to be executed whenever the button is clicked. The class begins like this:

class SecondsFieldListener implements ActionListener {

 // ...

}

 With the Java keyword implements and the interface name ActionListener, this class

will not compile until you implement the actionPerformed method. The actionPerformed

method must have the same method heading as specified in Java's ActionListener interface.

The next steps are to add the method specified in the interface and replace the semicolon (;) at

the end with a pair of curly braces (an additional import is also needed for the ActionListener

interface and the ActionEvent class).

import java.awt.event.*; // For interface ActionListener and class ActionEvent

class SecondsFieldListener implements ActionListener {

 public void actionPerformed(ActionEvent anActionEvent) {

 // Write the code that should execute when the user interacts with the text field

 }

}

The code that is written between the curly braces in actionPerformed is the code that will

execute each time the user enters text into the text field labeled with Seconds.
1
 The GUI is

repeated here for your convenience:

1
Although the method heading requires an ActionEvent parameter, you are not required to use this

parameter anywhere in your code.

Appendix A 261

Use an Inner Classes (it is convenient)
Because the code in actionPerformed will need access to the text field for input and the JLabel

for output, the ActionListener class just started will be implemented as an inner class. An

inner class is an entire class that is implemented inside of another class. An inner class has access

to the private instance variables of the enclosing class. For example, with

SecondsFieldListener implemented inside of the TimeFrame class, the actionPerformed

method will have access to the JTextField to get the user input. This technique is typical of

Java programs when a listener object needs access to several objects in a JFrame.
2
 This inner

class is private since no one else needs it.

 private class SecondsFieldListener implements ActionListener {

 private DecimalFormat formatter;

 public SecondsFieldListener() {

 formatter = new DecimalFormat("00");

 }

 public void actionPerformed(ActionEvent e) {

 // TBA

 }

 }

In this particular example, integer output will be formatted with leading zeros if necessary, so this

inner class will have an instance of DecimalFormat to help it do its job. The constructor

specifies that format messages will always show two digits.

 The next step is to write the code that will execute each time the user enters input into the text

field. However, before completing the required actionPerformed method, first consider three

useful methods that will be needed for actionPerformed to accomplish its tasks.

2
 Java has anonymous inner classes (no class heading necessary) for this purpose, but they require more

syntax. Anonymous inner classes are not covered in this textbook. Private inner classes are used instead.

