

Chapter 9

A Few Exceptions, a Little Input/Output,

and Some Persistent Objects

From Computing Fundamentals with Java,

Rick Mercer

Franklin, Beedle and Associates

Summing Up

So far, programs have obtained their input from the keyboard. All output has been to the console or

a graphical component. All objects have been kept alive only while the program was running. Any

changes made to objects were not recorded for later use. In addition, when exceptional events such

as NullPointerException and IndexOutOfBoundsException occurred, they were not

handled. Instead, the program terminated.

Coming Up

This chapter introduces a few details about handling exceptions, along with a few of Java's input

and output classes. This is a short treatment of both topics. Instead of attempting to explain all

exception handling and Java's 60 input and output classes, this chapter will present just enough to

show how objects can be made to persist between program runs. The topics are introduced because

they are interesting unto themselves. These topics also allow the bank teller system to be completed

according to the specifications of Chapter 3.

 Using exception handling and the java.io package, objects will be written to a file on a disk.

The next time the program runs, the objects can be read from that same file. In this way, objects

can be saved between program runs. Such objects are said to be persistent. The first section of this

chapter introduces Java's exception handling capabilities. This is necessary since using objects

from java.io requires you to think about what to do when a file is not found or the input was not

the expected type. After studying this chapter, you will be able to

 handle a few exceptional events

 use some of Java's 60+ input/output classes

 save the current state of any Java object to a file for later use

 read in objects from files

 see how objects persist in the final phase of the bank teller case study

Chapter 9 380

9.1 A Few Exceptions and How to Handle Them

When programs run, errors occur. Perhaps the user enters a string that is supposed to be a number.

When it gets parsed with parseInt or parseDouble, the method discovers it's a bad number. Or

perhaps an arithmetic expression results in division by zero. Or an array subscript is out of bounds.

Or there is attempt to read a file from a floppy disk, but there is no disk in the floppy disk drive. Or

perhaps a file with a specific name simply does not exist. Exceptional events that occur while a

program is running are known as exceptions. Programmers have at least two options for dealing

with these types of errors.

1. Ignore the exceptional event and let the program terminate

2. Handle the exceptional event

Java specifies a large number of exceptions that may occur while programs run. When Java's

runtime system recognizes that some exceptional event has occurred, it constructs an Exception

object containing information about the type of exception. The runtime system then throws an

exception. Java's runtime system then searches for code that can handle the exception. If no

exception handling code is found, the program terminates.

 Consider the example of when a user enters a String that does not represent a valid number.

During the parseDouble message, the code recognizes this exceptional event and throws a

NumberFormatException.

public class HandleException {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter a number: ");

 String numberAsString = keyboard.next ();

 double number = Double.parseDouble(numberAsString);

 System.out.println(numberAsString + " stored in number as " + number);

 }

}

Dialogue (when the number is valid)

Enter a number: 123

123 stored in number as 123.0

Dialogue (when the number is NOT valid)

Enter a number: 1o1

Exception in thread "main" java.lang.NumberFormatException: 1o1

 at java.lang.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1176)

 at java.lang.Double.parseDouble(Double.java:184)

 at HandleException.main(HandleException.java:10)

The second dialog shows that an exception was thrown when main called the parseDouble

method, which in turn called the readJavaFormatString method. These three methods are a

stack of methods, with main at the bottom of the stack of method calls. The

readJavaFormatString method is at the top of the stack where the exception occurred (main

called parseDouble called readJavaFormatString). The second dialogue also shows that the

program terminated prematurely. The println statement at the end of the main method never

Persistent Objects 381

executed.

 It is impossible to predict when a user will enter an invalid number. But the chances are very

good that it will happen. One choice is to let the program terminate. The other choice is to handle

the exception is some appropriate manner and let the program continue. Exceptions can be handled

by writing code that "catches" the exception.

 Java allows you to try to execute methods that may throw an exception. The code exists in a

try block the keyword try followed by the code wrapped in a block, { }.

try {

 code that may throw an exception when an exceptional events occurs
}

catch (Exception anException) {

 code that executes when an exception is thrown
}

A try block must be followed by a catch block the keyword catch followed by the

anticipated exception as a parameter and code wrapped in a block. The catch block contains the

code that executes when the code in the try block results in an exception. Because all exception

classes extend the Exception class, the type of exception could always be Exception. In this

case, the catch block catches any type of exception that can be thrown. However, it is

recommended that you use a specific exception that is likely to be thrown by the code in the try

block, such as NumberFormatException, IndexOutOfBoundsException, or IOException.

 The following main method provides an example of handling a NumberFormatException.

This exception handling code (in the catch block) executes only when the code in the try block

throws an exception. This avoids premature program termination when the input string contains an

invalid number.

public class HandleException {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter a number: ");

 String numberAsString = keyboard.next();

 double number;

 try {

 // The parseDouble method states that it may throw a NumberFormatException

number = Double.parseDouble(numberAsString);

 }

 catch(NumberFormatException nfe){

 // Execute this code whenever parseDouble throws an exception

System.out.println(numberAsString + " is not a valid number");

System.out.println("Setting number to -1.0");

number = -1.0;

 }

 System.out.println(numberAsString + " stored in number as " + number);

 }

}

Dialogue (when the exception is handled)

Enter a number: 1o1

1o1 is not a valid number

Setting number to -1.0

1o1 stored in number as -1.0

Chapter 9 382

Instead of ignoring the possibility of exceptional events at runtime, this program now handles

potential exceptions by setting the number to an arbitrary value of –1.0.

 To successfully handle exceptions, a programmer must know if a method might throw an

exception, and if so, the type of exception. This is done through documentation. For example, here

is the parseDouble method which states that the method may throw a

NumberFormatException and the reason why.

/** From the Double class

 *

 * Return a floating-point number represented by the String argument.

 * If numberAsString does not represent a valid number, this method

 * will throw a number format exception.

 */

 public static double parseDouble(String numberAsString)
 throws NumberFormatException

The parseDouble method does not catch the exception. Instead, parseDouble specifies that it

will throw the exception if the exceptional event occurs. A programmer may put a call to this

particular method into a try block that in turn requires a catch block. Then again, the

programmer may call this method without placing it in a try block. The option comes from the

fact that NumberFormatException extends RuntimeException. A RuntimeException

need not be handled. Exceptions that don’t need to be handled are called unchecked exceptions,

(NumberFormatException is an unchecked exception). The unchecked exception classes are

those that extend RuntimeException, plus any Exception that you write that also extends

RuntimeException. The unchecked exceptions include the following types (this is not a

complete list):

1. ArithmeticException

2. ClassCastException

3. IllegalArgumentException

4. IndexOutOfBoundsException

5. NullPointerException

 Other types of exceptions require that the programmer handle them. These are called checked

exceptions. Examples of these will be shown later in this chapter with objects from the java.io

package.

Runtime Exceptions

Java has many different types of exceptions. They are organized into a hierarchy of Exception

classes. Here are just a few. (Note: Those that extend RuntimeException need not be handled,

but may be handled.)

Persistent Objects 383

Exception

IOException ClassNotFoundException RuntimeException

FileNotFoundException EOFException ArithmeticException NumberFormatException

RuntimeExceptions can be ignored at your own risk. Code that may cause a

RuntimeException need not be placed in a try block, but it can be. Here are some situations

that may result in a RuntimeException (some code examples are given below).

1. A call to parseDouble (or parseInt) when the String argument does not represent a valid

number (see the example above).

2. An integer expression that results in division by zero.

3. Sending a message to an object when the reference variable has the value of null.

4. An indexing exception, such as attempting to access an ArrayList element with an index that

is out of range.

The compiler does not check RuntimeExceptions. This means that you do not have to use the

try and catch blocks. If an exceptional event occurs in the following program examples, each

program will terminate.

1. Example of integer division by 0 (Note: 7.0/ 0.0 returns the value Infinity)
int numerator = 5;

int denominator = 0;

int quotient = numerator / denominator;

Output when an ArithmeticException is thrown by Java's runtime system

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at OtherRunTimeExceptions.main(OtherRunTimeExceptions.java:7)

2. Example of a null pointer exception sending a message to a reference variable that is null
String str = null;

String strAsUpperCase = str.toUpperCase();

Output when a NullPointerException is thrown by Java's runtime system

Exception in thread "main" java.lang.NullPointerException

 at OtherRunTimeExceptions.main(OtherRunTimeExceptions.java:6)

3. Example of an indexing exception
List<String> stringList = new ArrayList<String>();

stringList.add("first");

stringList.add("second");

String third = stringList.get(2); // 0 and 1 are okay

Chapter 9 384

Output when an IndexOutOfBoundsException is thrown by ArrayList's get method

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 2, Size: 2

 at java.util.ArrayList.RangeCheck(ArrayList.java:491)

 at java.util.ArrayList.get(ArrayList.java:307)

 at OtherRunTimeExceptions.main(OtherRunTimeExceptions.java:10)

 Runtime exceptions can occur in many places. Even though the compiler does not require that

you catch (handle) RuntimeExceptions, as shown above, you can catch them if you want.

// Create a list of size 2 (only 0 and 1 can be used as indexes here)

ArrayList<String> stringList = new ArrayList<String>();

stringList.add("first");

stringList.add("second");

Scanner keyboard = new Scanner(System.in);

String choiceFromList;

try {

 // There is no element at index 2. The following message causes an exception.

 System.out.print("Which element [range is 0.." + stringList.size() + "]? ");

 int index = keyboard.nextInt();

 choiceFromList = stringList.get(index);

}

catch(IndexOutOfBoundsException iobe)

{

 System.out.println("index was not in the range of 0.." +

 (stringList.size() - 1));

 System.out.println("Setting choiceFromList to '??'");

 choiceFromList = "??";

}

System.out.println("choiceFromList was set to " + choiceFromList);

Output when an IndexOutOfBoundsException is thrown and handled in the catch block

Which element [range is 0..2]? 2

index was not in the range of 0..1

Setting choiceFromList to '??'

choiceFromList was set to ??

Self-Check
9-1 Which of the following statements throws an exception?

 a. int j = 7 / 0;

 b. double x = 7.0 / 0.0;

 c. String[] names = new String[5];

 names[0] = "Austen";

 System.out.println(names[1].toUpperCase());

9-2 The ArrayList get message throws an IndexOutOfBounds exception when there is no

element at the index passed as an argument. (The index 0 is used here on an empty list.)

import java.util.ArrayList;

public class HandleIt {

 public static void main(String[] args) {

 java.util.ArrayList<String> list = new java.util.ArrayList<String>();

 System.out.println(list.get(0));

 }

}

Persistent Objects 385

Output

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index:0, Size:0

 at java.util.ArrayList.RangeCheck(ArrayList.java:491)

 at java.util.ArrayList.get(ArrayList.java:307)

 at HandleIt.main(HandleIt.java:7)

Rewrite the code in main so that when get finds that the index is out of bounds, the

IndexOutOfBounds exception is caught and "Index out of range" is output. Here is the

documentation for the get method from Java API:

/** From the ArrayList class

 *

 * Returns the element located at position specified by index. This method

 * will throw an exception if index < 0 or index >= this.size().

 */

 public E get(int index) throws IndexOutOfBoundsException

Other Methods That Throw Exceptions

Many Java methods are declared to throw an exception. Any method you write can also throw an

exception. Consider a method that attempts to enforce this precondition: "The BankAccount

deposit method requires a deposit amount greater than 0.0." If the amount is less than or equal to

0.0, the method may throw an IllegalArgumentException. A message is used as the argument

to IllegalArgumentException to help further explain the exceptional behavior. (Note: The

throws clause is not required, but it provides good documentation.)

// Precondition: depositAmount > 0.0

public void deposit(double depositAmount) throws IllegalArgumentException {

 if(depositAmount <= 0.0) {

 // Create additional help for the programmer to determine the cause of the error

 String errorMessage

 = "\nDeposit amount for '" + this + "' was <= 0.0: " + depositAmount;

 // Construct a new exception that may be caught

 RuntimeException anException

 = new IllegalArgumentException(errorMessage);

 // Throw an exception that could be ignored (the compiler will not check this)

 throw anException;

 }

 // This won't execute with a deposit amount <= 0.0

 my_balance = my_balance + depositAmount;

}

Now a message with an argument that violates the precondition results in an exception.

BankAccount anAccount = new BankAccount("Jo", 500.00);

anAccount.deposit(-1.00);

Output (when program terminates)

Exception in thread "main" java.lang.IllegalArgumentException:

Deposit amount for 'Jo $500.00' was <= 0.0: -1.0

 at BankAccount.deposit(BankAccount.java:35)

 at BankAccount.main(BankAccount.java:116)

 The Java keyword throw must be followed by an instance of a class that extends Throwable.

Chapter 9 386

Because Exception extends Throwable, an instance of any Exception class in Java can be

thrown. In addition, all Exception classes in Java have two constructors:

1. a constructor that takes one String argument (as shown above), and

2. a default constructor with no arguments (as shown below).

 Here is another version of deposit that uses the default Exception constructor and

combines the code into one statement. (Note: Since the IllegalArgumentException class is in

java.lang, no import is necessary.)

public void deposit(double depositAmount) throws IllegalArgumentException {

 if(depositAmount <= 0.0)

 throw new IllegalArgumentException();

 my_balance = my_balance + depositAmount;

}

Now when an "illegal" argument is passed to deposit, the output is simpler.

Output

Exception in thread "main" java.lang.IllegalArgumentException

 at BankAccount.deposit(BankAccount.java:35)

 at BankAccount.main(BankAccount.java:116)

In general, throwing an IllegalArgumentException object is a reasonable way to handle

situations when an argument cannot be used correctly by the method. This can help you and other

programmers while debugging.

Self-Check
9-3 Write the tryIt method to throw an IllegalArgumentException whenever its Object

parameter is null. When the Object argument is not null, print the toString version of the

argument. The following code should generate output similar to that shown (assume that you are

writing tryIt as a method in the TryAnException class).

TryAnException tae = new TryAnException();

tae.tryIt(new Object());

tae.tryIt(null);

Output

java.lang.Object@111f71

Exception in thread "main" java.lang.IllegalArgumentException

 at TryAnException.tryIt(TryAnException.java:7)

9.2 Input/Output Streams

Most applications require the movement of information from one place to another. In Java, input is

read through input stream objects. Output is written through output stream objects. A stream is a

sequence of items read from some input source or written to some output destination. The input

source could be the keyboard, a network connection, or a file on a disk in your computer. The

output destination could be the computer screen, the speakers, or a disk file.

 These stream objects come from classes in the java.io package. This standard library of

Persistent Objects 387

many classes allows programmers to define streams that suit a variety of purposes. Some streams

allow "raw" bytes to be read or written so pictures and sound can be moved from a source to a

destination. Other classes provide functionality such as reading an entire line of input as a String

(BufferedReader) and writing any of Java's objects (ObjectOutputStream and

PrintStream). Typically, two existing Java classes are required to perform input and output.

With some knowledge of the Java's stream classes and some work up front, programmers can

derive virtually any input and output stream with the desired functionality. Let's first consider how

Java handles standard input from the keyboard and standard output to the screen.

Standard Input and Output

Java provides three stream objects for handling keyboard input and screen output. Here are two,

the second of which you have already been using:

1. System.in The "standard" input stream object (an instance of InputStream)

2. System.out The "standard" output stream object (an instance of PrintStream)

By default, System.out writes output to the window where the program is running. The object

named out is part of the System class, which has utilities such as returning the computer

system's time (currentTimeMillis) and providing standard input and output capabilities. The

reference variable out is an instance of the PrintStream class.

/** An object in the System class

 *

 * out is an object already constructed to provide print and println

 * messages of any Java object or primitive. This output stream

 * will commonly display output to the computer's console (screen).

 */

 public static final PrintStream out

The PrintStream object named out has methods to display all of Java's primitive types with

print and println messages. It also has a print and println method for displaying any

Java object. Here are a few of the method headings required to be part the PrintStream class.

public void print(double d) // Print a floating-point number

public void print(int i) // Print an integer

public void print(Object obj) // Print an object

public void println(boolean x) // Print a boolean and then terminate the line

public void println(char x) // Print a character and then terminate the line

public void println(char[] x) // Print an array of characters

public void println(double x) // Print a double and then terminate the line

public void println(Object x) // Print an object and then terminate the line

The message System.out.println(1.2) prints a double, while System.out.println(5)

prints an integer. System.out makes generating output convenient. However, there are no

equivalent methods for reading numbers. The input object named System.in only reads bytes.

 The code to input a number or String from the keyboard requires knowledge of Java

exception handling. Obtaining input with standard Java classes requires more work and more

details. That is the reason why the author-supplied TextReader class is included with this

textbook.

 Although the InputStream object only has methods for reading bytes and arrays of bytes, it

plays a role in reading numbers and Strings from the keyboard. The bytes read by System.in

Chapter 9 388

must be translated into the appropriate type of data. To get closer to reading doubles and strings,

System.in is used as an argument to construct an InputStreamReader object.

InputStreamReader bytesToChar = new InputStreamReader(System.in);

The bytesToChar object can now read characters from the keyboard with

InputStreamReader's read method. When an InputStreamReader object is constructed with

the argument System.in, keyboard input can stream into the program at the rate of one character

per read message.

/** From the InputStreamReader class

 *

 * Read one character from the input source. A read message that

 * encounters the end of file will return –1. This method returns

 * the integer equivalent of the character. This means you must store

 * the character into an int, and then perhaps cast the int to a char.

 */

 public int read() throws IOException

Notice that this read method declares that it may throw an IOException. This IOException is

checked (it does not extend RuntimeException). The following attempt to read a character from

the keyboard results in a compiletime error:

InputStreamReader bytesToChar = new InputStreamReader(System.in);

int anInt = bytesToChar.read();

Compiletime Error

unreported exception java.io.IOException; must be caught or declared to be thrown

 int anInt = bytesToChar.read();

 ^

There are two ways to handle this checked exception. The simple way is to circumvent Java's

exception handling. The method with the read message can be declared to throw an

IOException.

// A method declaring that it might throw an IOException gets past the compiler.

import java.io.InputStreamReader;

import java.io.IOException;

public class DeclareExceptionToBeThrown {

 // Circumvent exception handling

 public static void main(String[] args) throws IOException {

 InputStreamReader bytesToChar = new InputStreamReader(System.in);

 System.out.print("Enter a character: ");

 int anInt = bytesToChar.read();

 // To see the character rather than its integer equivalent, cast int to char

 System.out.println((char)anInt);

 }

}

Dialogue

Enter a character: G

G

 The second option is to read the message inside of a try block. The associated catch block

will catch the IOException should it occur (which is very unlikely when reading from the

Persistent Objects 389

keyboard).

 The following program reads three characters from the keyboard and prints them. Since read

returns an int instead of a char, the return values must be cast from int to char.

// Read three characters using an InputStreamReader.

// This time, the read messages are inside a try block since

// the possible IOException is a checked exception.

import java.io.InputStreamReader;

import java.io.IOException;

public class ReadThreeCharacters {

 public static void main(String[] args) {

 InputStreamReader bytesToChar = new InputStreamReader(System.in);

 int intOne = 0;

 int intTwo = 0;

 int intThree = 0;

 System.out.println("Enter three characters");

 try {

 intOne = bytesToChar.read();

 intTwo = bytesToChar.read();

 intThree = bytesToChar.read();

 }

 catch(IOException ioe) {

 System.out.println("Could not read keyboard input: " + ioe);

 }

 System.out.print((char)intOne);

 System.out.print((char)intTwo);

 System.out.println((char)intThree);

 }

}

Output (Note: read treats blank spaces as valid chars, so the ends of lines may be treated as two

characters)

Enter three characters

a_b

a_b

 The code shown so far only reads single characters. However, programs are usually more

interested in reading strings and numbers. To accomplish this, the InputStreamReader object

now becomes an argument in the construction of a BufferedReader object. The

BufferedReader class has a method named readLine that gets us closer to reading the desired

data (with the help of parseDouble and parseInt).

/** From the BufferedReader class

 *

 * Read an entire line of text, which is all character up to

 * but not including the new line char ('\n'). A readLine message

 * that encounters the end of file will return null.

 */

 public String readLine() throws IOException

With the following construction, the object keyboard an instance of BufferedReader will

understand the readLine message.

BufferedReader keyboard = new BufferedReader(bytesToChar);

Chapter 9 390

The following program can read entire lines of input returned as a String (as long as readLine

is in a try block or the main method is declared with throws IOException).

// Read an entire line from the keyboard with BufferedReader's readLine method.

import java.io.InputStreamReader;

import java.io.BufferedReader;

import java.io.IOException;

public class ReadOneLineAsAString {

 public static void main(String[] args) {

 InputStreamReader bytesToChar = new InputStreamReader(System.in);

 BufferedReader keyboard = new BufferedReader(bytesToChar);

 String line = "";

 System.out.println("Enter a line of text");

 try {

 line = keyboard.nextLine();

 }

 catch(IOException ioe) {

 System.out.println("Could not read keyboard input: " + ioe);

 }

 System.out.println("You entered this line: ");

 System.out.print(line);

 }

}

Dialog

Enter a line of text

The 3-year-old fox jumped over the 12-year-old dog.

You entered this line:

The 3-year-old fox jumped over the 12-year-old dog.

 This is as close as Java stream objects get to directly reading integers and doubles. Assuming

the line of input contains no blank spaces, the String returned by readLine can now be passed

to Double's parseDouble or Integer's parseInt method to translate the String into a

number. If the String does not represent a valid number, parseInt or parseDouble may throw

a NumberFormatException. Since this is not handled by try/catch, this program may still

terminate prematurely.

// Read an integer and a double with the help of several classes and methods

import java.io.InputStreamReader;

import java.io.BufferedReader;

import java.io.IOException;

public class ReadTwoNumbers {

 public static void main(String[] args) {

 InputStreamReader bytesToChar = new InputStreamReader(System.in);

 BufferedReader keyboard = new BufferedReader(bytesToChar);

 String intAsString = "";

 String doubleAsString = "";

 try {

 System.out.print("Enter an int: ");

 intAsString = keyboard.nextLine();

 System.out.print("Enter a double: ");

 doubleAsString = keyboard.nextLine();

 }

Persistent Objects 391

 catch(IOException ioe) {

 System.out.println("Could not read keyboard input: " + ioe);

 }

 int theInt = Integer.parseInt(intAsString);

 double theDouble = Double.parseDouble(doubleAsString);

 System.out.println("int: " + theInt);

 System.out.println("double: " + theDouble);

 }

}

Dialog

Enter an int: 123

Enter a double: 4.56

int: 123

double: 4.56

 The approach just shown for reading numbers and strings from the keyboard is much more

complex for the programmer than using a class like TextReader. However, the Java stream

classes will work on any platform that has Java installed. You can do input without having to copy

TextReader to your machine. In addition, this approach for numeric input represents the

consistent manner in which Java I/O streams read and write data from files, even over the Internet.

 In summary, you first construct an object to read bytes from the keyboard, a file, or the

Internet. This object is then used to construct another object with easier-to-use methods. The two

objects work together to convert raw bytes into something more useable a String.

 Although it may be unnecessary to use try to read from the keyboard, a stable source of

input, most input streams are not nearly as reliable. A server may be down, a network connection

may fail, the supplied uniform resource locater (URL) may not exist, or the file name may be

misspelled.

 Now consider how Java uses the same approach to read input from a file. It is about the same

as reading from the keyboard. Input was read from a file earlier with the TextReader class. Now

you will see how Java handles this with classes that come with Java.

Self-Check
9-4 Complete the following main method so it reads one number and prints that number squared.

If the user enters an invalid number, display a message indicating so. This means you will need to

handle the NumberFormatException also.

// Read an integer and a double with the help of several classes and methods

import java.io.*;

public class ReadOneInteger {

 public static void main(String[] args) {

 InputStreamReader bytesToChar = new InputStreamReader(System.in);

 BufferedReader keyboard = new BufferedReader(bytesToChar);

 String doubleAsString = "";

 // Write the exception handling code here

 }

}

Dialogue 1

Enter a number: 4.2

4.2 squared = 17.64

Chapter 9 392

Dialogue 2

Enter a number: NG

NG was an invalid number

File Input of a Textual Nature

The previous section showed how to read numeric data from the keyboard. It used

BufferedReader for its handy readLine method and InputStreamReader to converts bytes

typed at the keyboard into characters. This section shows how to get input data from a file. An

instance of BufferedReader will still be used for its readLine method. But this time, an

instance of FileReader will be used to convert the raw bytes of a file into characters.

 To read from the keyboard, the BufferedReader object is constructed with an instance of

InputStreamReader. To read from a file, a BufferedReader object can be constructed with

an instance of FileReader. Both types of arguments are valid because the constructor for

BufferedReader has a parameter of type Reader. In Java, both FileReader and

InputStreamReader are classes that extend the Reader class. Both can be passed as

arguments to this constructor for BufferedReader:

/** A method from the Buffereader class

 *

 * Construct an object that uses in to read characters so the

 * BufferedReader object can provide the easy to use readLine method.

 */

 public BufferedReader(Reader in)

Both an InputStreamReader object, such as System.in, and a FileReader object can be used

to construct a BufferedReader object with its readLine method. To illustrate, here is a small

part of Java's io class hierarchy that shows that an instance of InputStreamReader can be

assigned up the inheritance hierarchy to Reader.

Reader

InputStreamReader

FileReader

Since FileReader extends InputStreamReader, an instance of FileReader can also be

assigned up to the Reader parameter in the BufferedReader constructor. Remember,

assignment up the inheritance hierarchy is valid.

FileReader

To read from a file, you first construct a FileReader object with a String argument. The

String represents the name of the file containing the desired information. If the file is in the

working folder (directory), only the file name needs to be supplied. The path is not always

necessary.

Persistent Objects 393

 Java forces us to consider the possibility that a file may not exist with that name. A

FileReader is a checked exception (it does not extend RuntimeException). In this case, the

Exception that could be thrown is FileNotFoundException. The following code constructs

an object that can read characters from the file named 2numbers.data (the very small input

file is shown below).

String fileName = "2numbers.data";

try {

 bytesToChar = new FileReader(fileName);

}

catch(FileNotFoundException fnfe) {

 System.out.println("Could not find file: " + fnfe);

}

File 2numbers.data

123

4.56

 Now that there is the FileReader object bytesToChar, a BufferedReader object can be

constructed that has a readLine method that is easier to use.

BufferedReader inputFile = new BufferedReader(bytesToChar);

Multiple catch Blocks

The code needed to read from a file could end up throwing three different types of exceptions:

1. file not found

2. input error when attempting to read a line from a file

3. parse errors when converting a String to an integer or a double

To make it easier to handle all three, the code for the first two types is placed in one try block that

is followed by two catch blocks. The first catch block is for when the file is not found. The

second catch block is necessary for the exception that may be thrown in readLine. The third

catch block will handle number-format exceptions.

// Input numbers from a file on a disk

import java.io.FileReader; // Reading from a file this time

import java.io.BufferedReader;

import java.io.IOException;

import java.io.FileNotFoundException; // File may not be found

public class ReadTwoNumbersFromADiskFile {

 public static void main(String[] args) {

 // These variables are needed in more than one block. Therefore they must

 // be declared here so they are accessible to all blocks in this main method.

 String fileName = "2numbers.data";

 String intAsString = "";

 String doubleAsString = "";

 int theInt = 0;

 double theDouble = 0.0;

 try {

 // Constructing a new FileReader needs to be tried.

 // It may throw FileNotFoundException.

 FileReader bytesToChar = new FileReader(fileName);

Chapter 9 394

 // If the FileReader is okay, this should work.

 BufferedReader inputFile = new BufferedReader(bytesToChar);

 // Read an integer from the first line and a double from line two.

 // Both of these readLine messages need to be tried.

 // They may throw an IOException.

 intAsString = inputFile.readLine();

 doubleAsString = inputFile.readLine();

 // Now done with the input file.

 inputFile.close();

 // Now try to parse the input strings (could still get an exception here).

 theInt = Integer.parseInt(intAsString);

 theDouble = Double.parseDouble(doubleAsString);

 }

 catch(FileNotFoundException fnfe) {

 System.out.println("Could not find file: " + fnfe);

 }

 catch(IOException ioe) {

 System.out.println("Could not read from file named: " + fileName);

 }

 catch(NumberFormatException nfe) {

 System.out.println("One of the numbers was bad: " + fileName);

 }

 // This output always occurs

 System.out.println("int: " + theInt);

 System.out.println("double: " + theDouble);

 }

}

Output (to console window when input is from a file and everything goes okay)

int: 123

double: 4.56

 This is what happens when the file is not found.

Output (when the file does not exist)

Could not find file: java.io.FileNotFoundException: 2numbers.data

(The system can not find the file specified)

Terminating program

Although the program terminates prematurely here, the exception handling code needs to be

changed. For example, the catch block could to do something more useful, such as ask the user

for another file name (it could use a loop).

 Even if the file is found and the two lines of input exist in the file, exceptions can still occur.

Here is another exception that is thrown by parseInt when just one seemingly innocent blank

space trails the text 123. The parseInt method tries to convert the string "123 ".

Output (when there is a trailing blank after 123—the string is "123 ")

Exception in thread "main" java.lang.NumberFormatException: 123

 at java.lang.Integer.parseInt(Integer.java:414)

 at java.lang.Integer.parseInt(Integer.java:454)

 at ReadTwoNumbersFromADiskFile.main(ReadTwoNumbersFromADiskFile.java:45)

This particular error could be fixed with String's trim method that strips leading and trailing

blanks from the String.

Persistent Objects 395

int theInt = Integer.parseInt(intAsString.trim());

 Text file input requires a program to be aware of exactly how the input data exists in the file. It

is all too easy to have an unexpected value, such as a double instead of an int, a trailing space, or

a blank line at the end of the file.

FileWriter

Java's FileWriter class provides the ability to write characters to a file. Like FileReader,

FileWriter provides low-level disk access capabilities. A FileWriter object is constructed

with a String argument representing the name of the file being written to. However, the attempt

to construct one could throw an IOException. The file name could be malformed, for example.

So constructing a FileWriter object must be handled with try/catch.

String outputFileName = "output.data";

FileWriter charToBytesWriter = null;

try {

 charToBytesWriter = new FileWriter(outputFileName);

}

catch(IOException ioe) {

 System.out.println("Could not create the new file: " + ioe);

}

At this point, charToBytesWriter can write characters and Strings to a file. To obtain the

familiar print and println methods that write all objects and primitive types, construct a

PrintWriter object (PrintWriter is very similar to System.out). The following code

constructs a PrintWriter object so any Java value can be print(ed) or println(ed).

// PrintWriter's constructors do not throw any exceptions

PrintWriter diskFile = new PrintWriter(charToBytesWriter);

// Now diskFile can understand print and println

diskFile.print("First line has one number: ");

diskFile.println(123);

diskFile.println(4.56);

diskFile.println('c');

diskFile.println(3 < 4);

diskFile.print(diskFile);

Ensuring that the Data Is Actually Written

Writing data to a disk is slow. To make programs run faster, Java places the output data first into a

buffer (perhaps an array of bytes). Then at some point, a large number of bytes are written to the

disk at once. Writing a large number of bytes a few times is much faster than writing one byte a

large number of times. The consequence of implementing this more efficient way of writing to a

disk is that the program may terminate before the data is actually written to the disk! To ensure that

all data is written to the disk, close the output stream with a close message. Without the following

close message, the output file would be empty nothing would actually be written.

// Must explicitly close the file or risk losing data that

// is buffered--waiting to actually be written.

diskFile.close();

Chapter 9 396

The close message to an output stream ensures that the output buffer has actually been written to

the disk. This newly created file has six different Java values written to it and stored on a computer

disk.

Output (written to the file named output.data)

First line has one number: 123

4.56

c

true

java.io.PrintWriter@720eeb

Destroying Files

If a new FileWriter object is constructed with a file name that already exists, the old file is

destroyed. While this may often be precisely what you want, there are times when this is not

desirable. Java has a class named File that allows you to manage files and directories. For

example, you could construct a File object and ask it to search for an existing file. For now, just

be aware that constructing a FileWriter object deletes any existing file with the same name.

 The java.io package has a large set of classes for performing input and output of characters,

strings, pictures, and sound from a variety of sources and to a variety of destinations. Complete

coverage of these 60+ classes in java.io is beyond the scope of this book. However, a few more

are presented next. In particular, the next section will use objects from java.io that can make

objects persist from one program run to the next.

Self-Check
9-5 FileWriter has a method for writing a String to a disk. Using this Java documentation:

public void write(String str) In class FileWriter

 throws IOException

 Write a string.

 Parameters: str - String to be written

 Throws: IOException - If an I/O error occurs

complete this main method so that it writes your name to a file named myname.txt.

import java.io.*;

public class WriteNameToDisk {

 public static void main(String[] args) {

 String outputFileName = "myname.txt";

 FileWriter charToBytesWriter = null;

 // Complete the code to write your name here

 }

}

9.3 Object Streams for Persistent Objects

If data is not stored on a disk or some other media, it will disappear when the program terminates.

The program must do something extra to save data that is needed later. Using the few streams just

Persistent Objects 397

described, objects could be saved to a disk by taking them apart, instance variable by instance

variable, and writing the pieces to the disk. Objects could be restored by reading in the pieces

from the disk and constructing them again. But this is a lot of unnecessary work. The code gets

even more complex when the objects have arrays and other complex structures. Java brings a

much more elegant solution for making objects live between program runs. The Java tools for

doing this are Java's object streams and object serialization.

 A persistent object is one that can be saved for later use. To make objects persist, the class

and all instance variables must be Serializable. Java arrays, many Java classes, and all

primitives are Serializable. However, to make any new object Serializable, the class

must state that it implements the Serializable interface.

public class BankAccount implements Serializable {

 private String my_ID;

 private double my_balance;

 // ...

}

There are no methods in the Serializable interface. The Serializable tag only identifies

the class as being Serializable. In addition to tagging the class as Serializable, you

must ensure that all instance variables are Serializable. Since double and String are

already Serializable, no further action would be required for the BankAccount class shown

above.

 Assuming that a class and its instance variables are serializable, the next step is to write

serialized objects to a destination such as a file. To make persistent objects, you can use Java's

ObjectOutputStream class with its writeObject method for this. The constructor for

ObjectOutputStream needs a FileOutputStream object for writing the bytes to a disk.

Once again, two streams work together to get the desired outcome a stream that saves any

serialized object to a file.

FileOutputStream bytesToDisk = new FileOutputStream("fileName");

ObjectOutputStream objectToBytes = new ObjectOutputStream(bytesToDisk);

 The following program declares that the main method may throw an IOException. This

allows the code in the method to get past the compiler that is watching for checked exceptions.

// Make one object persist for another program to read later.

import java.io.*;

public class WriteAnObjectToDisk {

 // This method does not have any exception handling code.

 // The program will terminate if something goes wrong.

 public static void main(String[] args) {

 // Construct one object from a class not supplied by Java.

 // To write this BankAccount object to a disk, the class and all of

 // its instance variables must implement Serializable (this is the case).

 BankAccount singleAccount = new BankAccount("ID123", 100.00);

 singleAccount.withdraw(50.00);

 singleAccount.deposit(12.75);

 try {

 // Build the stream that can write objects (not text) to a disk

 FileOutputStream bytesToDisk

 = new FileOutputStream("BankAccount.object");

 ObjectOutputStream objectToBytes

 = new ObjectOutputStream(bytesToDisk);

Chapter 9 398

 // Show the state of the account before saving it

 System.out.println("About to write this object to disk: ");

 System.out.println(singleAccount);

 // Now objectToBytes will understand the writeObject message.

 // Make the object persist on disk, so it can be read later.

 objectToBytes.writeObject(singleAccount);

 // Do NOT forget to close the output stream

 objectToBytes.close();

 }

 catch(IOException ioe) {

 System.out.println (ioe.toString());

 }

 }

}

Output

About to write this object to disk:

ID123 $62.75

 Now that this BankAccount object has been saved in a file, another program may read this

object. The program must know the name of the file where the object has been written. It must

also know the class of object that is stored in that file.

// Read an object stored in a file

import java.io.*;

public class ReadAnObjectFromDisk {

 // This method may throw an IOException when the file is not found.

 public static void main(String[] args) throws IOException {

 // First create an object input stream with the readObject method

 FileInputStream diskToStreamOfBytes

 = new FileInputStream("BankAccount.object");

 // Construct an objectNow with the readObject method

 ObjectInputStream objectToBytes

 = new ObjectInputStream(diskToStreamOfBytes);

 // Read the entire object with the ObjectInputStream. The checked exception

 // must be caught (even though Object is a known class).

 Object anyObject = null;

 try {

 anyObject = objectToBytes.readObject();

 }

 catch(ClassNotFoundException cnfe) {

 System.out.println(cnfe);

 }

 // Now cast from Object to the class that it is known to be: BankAccount.

 BankAccount singleAccount = (BankAccount)anyObject;

 // Close input files also.

 objectToBytes.close();

 // And show that the state is the same as the other program that wrote it.

 System.out.println("The object just after reading it from disk");

 System.out.println(singleAccount);

 }

}

Persistent Objects 399

Output (this BankAccount has the same state as that shown above)

The object just after reading it from disk

ID123 $62.75

Other Persistent Objects

Many existing Java classes implement Serializable. This means a large number of objects can

be made to persist this way. Programs can read objects from a disk in the same manner as was

shown with the BankAccount. The objects can be quite complex. Java provides the mechanisms

for storing any object and then later retrieving it in the same state that it was written.

 Consider the following program that shows seven different persistent objects. This program

simplifies the try/catch blocks by placing all checked exceptions into one try block. If any

exception is thrown and there are several classes of exceptions that could be thrown the correct

catch block prints the exception information.

 To save lists of different objects, the following classes must implement Serializable (the

Java classes already do and BankAccount has already been made Serializable).

1. ArrayList

2. BankAccount

3. Integer

4. Double

5. String

6. Character

7. Date

// Write seven classes of objects to a disk, including ArrayList

import java.io.*; // FileOutputStream and ObjectOutputStream

import java.util.*; // ArrayList and Date

public class WriteManyObjectsToDisk {

 public static void main(String[] args) {

 ArrayList<Object> polyList = new ArrayList<Object>();

 polyList.add(new BankAccount("ID123", 100.00)) ;

 polyList.add(new Integer (123));

 polyList.add(new Double (4.56));

 polyList.add(new String("A String"));

 polyList.add(new Character('G'));

 polyList.add(new Date()); // Today's date

 try {

 FileOutputStream bytesToDisk

 = new FileOutputStream("ArrayList.object");

 ObjectOutputStream objectToBytes

 = new ObjectOutputStream(bytesToDisk);

 // Show the state before saving it

 System.out.println("About to write this object to disk: ");

 System.out.println(polyList);

 // Now objectToBytes will understand the writeObject message.

 // Make the object persist on a disk, so it can be read later.

 objectToBytes.writeObject(polyList);

 // Do NOT forget to close the output stream

 objectToBytes.close();

 }

Chapter 9 400

 catch(FileNotFoundException e) {

 System.out.println("File not found " + e);

 }

 catch(IOException e) {

 System.out.println("Error during ObjectOutputStream construction,\n" +

 "or writing object, or file close. " + e);

 }

 }

}

Output

About to write this object to disk:

[ID123 $100.00, 123, 4.56, A String, G, Mon Oct 08 17:31:02 MST 2002]

If any one of these objects were not Serializable, an exception would be thrown during the

writeObject message. Consider adding a new AnotherClass object that is implemented like

this:

public class AnotherClass extends Object {

}

 An instance of AnotherClass could always be added to the ArrayList.

polyList.add(new AnotherClass());

Once this message adds the AnotherClass object at the end of the ArrayList, the program

results in the following output.

Output (when a new AnotherClass is added at the end of the ArrayList)

About to write this object to disk:

[ID123 $100.00, 123, 4.56, A String, G, Sat Jun 23 20:13:53 MST 2001, AnotherClass@1a698a]

However, the writeObject message would then throw a NotSerializableException, as

evidenced by this output where the exception was caught.

Output (an error is reported while trying to write an object that is not serialized)

java.io.NotSerializableException: AnotherClass

The write will fail. It will not save the other objects either. To save all different objects in this

ArrayList, change the AnotherClass class so it is serializable:

class AnotherClass implements Serializable {

}

 There is not much state to store for AnotherClass, but if instance variables were added to

AnotherClass, then those objects must also be Serializable. The next section shows other

examples of objects that are written to and read from a disk. The bank teller system will be

completed.

Persistent Objects 401

Key Terms

catch

exception

FileNotFoundException

FileReader

FileWriter

IOException

java.io

NumberFormatException

ObjectInputStream

ObjectOutputStream

persistent object

readObject

RuntimeException

showConfirmDialog

stream

throw

try

windowClosing

WindowListener

writeObject

Chapter Summary

 When programs run, errors occur.

 Java has unchecked exceptions that extend RuntimeException. Examples include integer

division by 0 and array and string indexes that are out of range. Code that may throw these

exceptions may be placed in a try block.

 Java has checked exceptions that force programmers to consider that some exceptional event

may occur. Examples include trying to read data from a file and trying open a file that does not

exist. Code that may throw these exceptions must be in a try block.

 Exceptions can be handled with try and catch to avoid programs terminating on their own.

 Java has a large number of classes that allow programmers to create input and output streams

in a large variety of ways, including input from the keyboard.

 Most Java streams use two classes, one for low-level reading or writing of bytes, such as

InputStream and FileReader. Another class supplies higher-level methods, such as

readLine in BufferedReader and readObject in ObjectInputStream.

 Persistent objects are those that live after a program terminates.

 Complex objects can be read in and stored in their entirety. The class and its instance variables

must be Serializable.

 The WindowListener interface requires seven methods for listening to window events such

as windowClosing. JFrame objects generate window events.

Programming Tips

1. You have not seen all there is to exception handling.

Exception handling was only introduced in this chapter. You may want to refer to advanced

books to see some related topics that are beyond the scope of this textbook, including

 other exception classes in Java

 nested try/catch blocks

 the finally block

2. You have not seen all the input and output streams.

Java streams were only introduced in this chapter. You may want to refer to advanced books to

see some related topics that are beyond the scope of this textbook, such as the File class,

random access files, and reading numbers from compressed files. However, one more example of

reading input (over the Internet) is described as a programming project at the end of this chapter.

Chapter 9 402

3. You can circumvent exception handling in Java.

When you are dealing with marked exceptions, the code that throws them must be enclosed in a

try block, which in turn requires a catch block. You are forced to handle the exception, even if

you do nothing in the catch block. In this way your program continues to run even if the

exception is thrown. You can also simply claim that your method throws the exception. Then,

when the exception is thrown, it is handled by some other method. You have no control over what

happens.

4. You usually need two streams for input or output.

It is common to have two or more input streams to read input. It is common to have two or more

output streams to write output. The Java I/O classes were designed to work together to build a

wide variety of input streams and output streams. This provides great flexibility. For example, an

input stream could come in over the Internet. The downside is that you need to write some extra

code.

5. Always close output streams.

If you are writing to an output stream, the output may be buffered. This means the writing

physically transfers data after a buffer an array perhaps is filled. You may have some data that

is written to the buffer, but not physically transferred to its final destination. The close message

ensures that all data is copied from the buffer to the destination. If you don’t close the stream, you

will most assuredly lose some data.

6. All instance variables must be serialized to write and read objects.

An object you want to write to a disk must be serialized. Also, you must make sure all of the

instance variables in each object are serialized. For example, it is not enough to serialize

BankAccountCollection. The BankAccount class and anything it contains must also be

Serializable. Tagging the classes with implements Serializable does this.

Exercises

1. Given the following data, for each of the following, which exception will be thrown?

int number = 5;

String oneName = "Harry";

String[] names = new String[number];

a. System.out.println(8 / (number - 5));

b. names[number] = oneName;

c. System.out.println(oneName.substring(3, number + 1));

2. What exceptions are unchecked? What does it mean when you need to write code that may

throw an unchecked exception?

3. The get message in the following code throws an IndexOutOfBounds exception when the

user enters a negative index or index >= list.size(). Two dialogues show the different

behavior.

ArrayList<String> list = new ArrayList<String>();

list.add("first");

list.add("second");

Persistent Objects 403

Scanner keyboard = new Scanner(System.in);

if(list.isEmpty())

 System.out.print("The list is empty");

else {

 // Get index in range to find the value of the element in the list

 System.out.print("Enter an index from 0.." + (list.size() - 1) + ": ");

 int index = keyboard.nextInt();

 System.out.println("The String at " + index + ": " + list.get(index));

}

System.out.println("That's all folks");

Dialogues (the second execution throws an IndexOutOfBoundsException)

Enter an index from 0..1: 1

The String at 1: second

That's all folks

Enter an index from 0..1: 2

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 2, Size: 2

 at java.util.ArrayList.RangeCheck(ArrayList.java:491)

 at java.util.ArrayList.get(ArrayList.java:307)

 at A.main(A.java:18)

 Rewrite the code in the else block so it prints "Index out of range, try again" until the user

enters an index that is in the range.

Enter an index from 0..1: -2

Index out of range, try again

Enter an index from 0..1: 2

Index out of range, try again

Enter an index from 0..1: 1

The String at 1: second

That's all folks

4. Write a minimal program that reads keyboard input and saves it in the file selected by the user.

Use stream classes from the java.io package. Assume all imports have been included and you

are writing the code in a method that throws IOException. One dialogue should look like this:

Save keyboard input into which file? exercise.txt

Enter lines or 'SENTINEL' as the last line:

This is keyboard input

using standard java classes.

As each line is entered, it is saved to a disk file

until there is one line with SENTINEL

SENTINEL

5. Write the minimal code to add to the previous exercise that prints all of the lines from the file

that was saved to disk (including SENTINEL).

6. Write the minimal code to construct one BankAccount object with user input and then save it

as a serialized object. Use stream classes from the java.io package. Assume all imports have

been included and you are writing the code in a method that throws IOException. One

dialogue should look like this:

Enter account name: Kay

Enter initial balance: 105

About to write this object to disk:

Kay $105.00

Chapter 9 404

7. Write the minimal code to add to the previous exercise that reads the serialized BankAccount

object and prints it.

The object after reading the persistent object:

Kay S $105.00

Answers to Self-Check Questions

9-1

a. Throws DivisionByZeroException

b. Does not throw an exception

c. Throws NullPointerException

9-2
try {

 System.out.println("Object at index 0: " + list.get(0));

}

catch(IndexOutOfBoundsException iobe) {

 System.out.println("Index out of bounds");

}

9-3
// precondition: obj is not null

public void tryIt(Object obj) throws IllegalArgumentException {

 if(obj == null)

 throw new IllegalArgumentException();

 else

 System.out.println(obj.toString());

}

9-4
try {

 System.out.print("Enter a number: ");

 doubleAsString = keyboard.nextLine();

}

catch(IOException ioe) {

 System.out.println("Could not read keyboard input: " + ioe);

}

try {

 double theDouble = Double.parseDouble(doubleAsString);

 System.out.println(theDouble + " squared = " + theDouble * theDouble);

}

catch (NumberFormatException nfe) {

 System.out.println(doubleAsString + " was an invalid number");

}

9-5
try {

 charToBytesWriter = new FileWriter(outputFileName);

 charToBytesWriter.write("Your Name"); // <-- Must be in a try block

 charToBytesWriter.close();

}

catch(IOException ioe)

{

 System.out.println("Could not create the new file: " + ioe);

}

