

Chapter 1

Program Development

First, there is a need for a computer-based solution to a problem. The need may be expressed in a few

sentences like the first examples in this book. The progression from understanding a problem

specification to achieving a working computer-based solution is known as “program development.”

 There are many approaches to program development. This chapter begins by examining a strategy

with these three steps: analysis, design, and implementation.

Phase of Program Development Activity

Analysis Understand the problem.

Design Develop a solution

Implementation Make the solution run on a computer

Our study of computing fundamentals begins with an example of this particular approach to program

development. Each of these three phases will be exemplified with a simple case study—one particular

problem. Emphasis is placed on the deliverables—the tangible results—of each phase. Here is a preview

of the deliverables for each of the three stages:

Phase Deliverable

Analysis A document that lists the data that store relevant information

Design An algorithm that outlines a solution

Implementation An executable program ready to be used by the customer

Analysis

Program development may begin with a study, or analysis, of a problem. Obviously, to determine what a

program is to do, you must first understand the problem. If the problem is written down, you can begin

the analysis phase by simply reading the problem.

 While analyzing the problem, it proves helpful to name the data that represent information. For

example, you might be asked to compute the maximum weight allowed for a successful liftoff of a

particular airplane from a given runway under certain thrust-affecting weather conditions such as

temperature and wind direction. While analyzing the problem specification, you might name the desired

information maximumWeight. The data required to compute that information could have names such as

temperature and windDirection.

 Although such data do not represent the entire solution, they do represent an important piece of the

puzzle. The data names are symbols for what the program will need and what the program will compute.

One value needed to compute maximumWeight might be 19.0 for temperature. Such data values must

often be manipulated—or processed—in a variety of ways to produce the desired result. Some values

must be obtained from the user, other values must be multiplied or added, and still other values must be

displayed on the computer screen.

 At some point, these data values will be stored in computer memory. The values in the same memory

2

Chapter 1: Program Development

location can change while the program is running. The values also have a type, such as integers or

numbers with decimal points (these two different types of values are stored differently in computer

memory). These named pieces of memory that store a specific type of value that can change while a

program is running are known as variables.

 You will see that there also are operations for manipulating those values in meaningful ways. It helps

to distinguish the data that must be displayed—output—from the data required to compute that result—

input. These named pieces of memory that store values are the variables that summarize what the

program must do.

Input and Output

Output: Information the computer must display.

Input: Information a user must supply to solve a problem.

A problem can be better understood by answering this question: What is the output given certain input?

Therefore, it is a good idea to provide an example of the problem with pencil and paper. Here are two

problems with variable names selected to accurately describe the stored values.

Analysis Deliverable

Problem Data Name Input or Output Sample Problem

Compute a monthly amount Input 12500.00

loan payment rate Input 0.08

 months Input 48

 payment Output 303.14

Analysis Deliverable

Problem Data Name Input or Output Sample Problem

Count how often aBardsWork Input Much Ado About Nothing

Shakespeare wrote theWord Input the

a particular word howOften Output 220

in a particular play

In summary, problems are analyzed by doing these things:

 1. Reading and understanding the problem specification.

 2. Deciding what data represent the answer—the output.

 3. Deciding what data the user must enter to get the answer—the input.

 4. Creating a document (like those above) that summarizes the analysis. This document is input for

the next phase of program development—design.

In textbook problems, the variable names and type of values (such as integers or numbers with a decimal

point) that must be input and output are sometimes provided. If not, they are relatively easy to recognize.

In real-world problems of significant scale, a great deal of effort is expended during the analysis phase.

The next subsection provides an analysis of a small problem.

Self-Check

1-1 Given the problem of converting British pounds to U.S. dollars, provide a meaningful

name for the value that must be input by the user. Give a meaningful name for a value

that must be output.

3

1-2 Given the problem of selecting one CD from a 200-compact-disc player, what name

would represent all of the CDs? What name would be appropriate to represent one

particular CD selected by the user?

An Example of Analysis

Problem: Using the grade assessment scale to the

right, compute a course grade as a weighted

average of two tests and one final exam.

Item Percentage

 of Final Grade

Test 1 25%

Test 2 25%

Final Exam 50%

Analysis begins by reading the problem specification and establishing the desired output and the required

input to solve the problem. Determining and naming the output is a good place to start. The output stores

the answer to the problem. It provides insight into what the program must do. Once the need for a data

value is discovered and given a meaningful name, the focus can shift to what must be accomplished. For

this particular problem, the desired output is the actual course grade. The name courseGrade represents

the requested information to be output to the user.

 This problem becomes more generalized when the user enters values to produce the result. If the

program asks the user for data, the program can be used later to compute course grades for many students

with any set of grades. So let’s decide on and create names for the values that must be input. To determine

courseGrade, three values are required: test1, test2, and finalExam. The first three analysis activities

are now complete:

 Problem understood.

 Information to be output: courseGrade.

 Data to be input: test1, test2, and finalExam.

However, a sample problem is still missing. Consider these three values

 test1 74.0

 test2 79.0

 finalExam 84.0

 courseGrade ?

Sample inputs along with the expected output provide an important benefit we have an expected result

for one set of inputs. In this problem, to create this courseGrade problem, we must understand the

difference between a simple average and a weighted average. Because the three input items comprise

different portions of the final grade (either 25% or 50%), the problem involves computing a weighted

average. The simple average of the set 74.0, 79.0, and 84.0 is 79.0; each test is measured equally.

However, the weighted average computes differently. Recall that test1 and test2 are each worth 25%,

and finalExam weighs in at 50% of the final grade. When test1 is 74.0, test2 is 79.0, and finalExam is

84.0, the weighted average computes to 80.25.

(0.25 x test1) + (0.25 x test2) + (0.50 x finalExam)

 (0.25 x 74.0) + (0.25 x 79.0) + (0.50 x 84.0)

 18.50 + 19.75 + 42.00

 80.25

With the same exact grades, the weighted average of 80.25 is different from the simple average (79.0).

4

Chapter 1: Program Development

Failure to follow the problem specification could result in students who receive grades lower, or higher,

than they actually deserve.

 The problem has now been analyzed, the input and output have been named, it is understood what the

computer-based solution is to do, and one sample problem has been given. The following deliverable

from the analysis phase summarizes these activities:

Analysis Deliverable

Problem Data Name Input or Output Sample Problem

Compute a course grade test1 Input 74.0

 test2 Input 79.0

 finalExam Input 84.0

 courseGrade Output 80.25

This is the first deliverable. The next section presents a method for designing a solution. The emphasis

during design is on placing the appropriate activities in the proper order to solve the problem.

Self-Check

1-3 Complete an analysis deliverable for the following problem. You will need a calculator

to determine the output.

Problem: Show the future value of an investment given its present value, the number of periods (years,

perhaps), and the interest rate. Be consistent with the interest rate and the number of periods; if the

periods are in years, then the annual interest rate must be supplied (0.085 for 8.5%, for example). If

the period is in months, the monthly interest rate must be supplied (0.0075 per month for 9% per year,

for example). The formula to compute the future value of money is future value = present value * (1 +

rate)periods.

1.3 Design
Design refers to the set of activities that includes (1) defining an architecture for the program that satisfies

the requirements and (2) specifying an algorithm for each program component in the architecture.
1
 In later

chapters, you will see functions used as the basic building blocks of programs. Then you will see classes

used as the basic building blocks of programs. A class is a collection of functions, typically called

“methods.” In this chapter, the architecture is intentionally constrained to a component known as a

program. Therefore, the design activity that follows is limited to specifying an algorithm for this

program.

 An algorithm is a step-by-step procedure for solving a problem or accomplishing some end,

especially by a computer.
2
 A good algorithm must

 list the activities that need to be carried out

 list those activities in the proper order

Consider an algorithm to bake a cake:

 1. Preheat the oven

 2. Grease the pan

 3. Mix the ingredients

 4. Pour the ingredients into the pan

 5. Place the cake pan in the oven

 6. Remove the cake pan from the oven after 35 minutes

5

If the order of the steps is changed, the cook might get a very hot cake pan with raw cake batter in it. If

one of these steps is omitted, the cook probably won’t get a baked cake—or there might be a fire. An

experienced cook may not need such an algorithm. However, cake-mix marketers cannot and do not

presume that their customers have this experience. Good algorithms list the proper steps in the proper

order and are detailed enough to accomplish the task.

Self-Check

1-4 Cake recipes typically omit a very important activity. Describe an activity that is

missing from the algorithm above.

An algorithm often contains a step without much detail. For example, step 3, “Mix the ingredients,” isn’t

very specific. What are the ingredients? If the problem is to write a recipe algorithm that humans can

understand, step 3 should be refined a bit to instruct the cook on how to mix the ingredients. The

refinement to step 3 could be something like this:

3. Empty the cake mix into the bowl and mix in the milk until smooth.

or for scratch bakers:

 3a. Sift the dry ingredients.

 3b. Place the liquid ingredients in the bowl.

 3c. Add the dry ingredients a quarter-cup at a time, whipping until smooth.

Algorithms may be expressed in pseudocode—instructions expressed in a language that even

nonprogrammers could understand. Pseudocode is written for humans, not for computers. Pseudocode

algorithms are an aid to program design.

 Pseudocode is very expressive. One pseudocode instruction may represent many computer

instructions. Pseudocode algorithms are not concerned about issues such as misplaced punctuation marks

or the details of a particular computer system. Pseudocode solutions make design easier by allowing

details to be deferred. Writing an algorithm can be viewed as planning. A program developer can design

with pencil and paper and sometimes in her or his head.

Algorithmic Patterns

Computer programs often require input from the user in order to compute and display the desired

information. This particular flow of three activities—input/process/output—occurs so often, in fact, that it

can be viewed as a pattern. It is one of several algorithmic patterns acknowledged in this textbook. These

patterns will help you design programs.

 A pattern is anything shaped or designed to serve as a model or a guide in making something else

[Funk/Wagnalls 1968]. An algorithmic pattern serves as a guide to help develop programs. For instance,

the following Input/Process/Output (IPO) pattern can be used to help design your first programs. In fact,

this pattern will provide a guideline for many programs.

Algorithmic Pattern: Input Process Output (IPO)

Pattern: Input/Process/Output (IPO)

Problem: The program requires input from the user in order to compute and display the desired

information.

Outline: 1. Obtain the input data.

 2. Process the data in some meaningful way.

 3. Output the results.

6

Chapter 1: Program Development

This algorithmic pattern is the first of several. In subsequent chapters, you’ll see other algorithmic

patterns, such as Guarded Action and Indeterminate Loop. To use an algorithmic pattern effectively, you

should first become familiar with it. Look for the Input/Process/Output algorithmic pattern while

developing programs. This could allow you to design your first programs more easily. For example, if

you discover you have no meaningful values for the input data, it may be because you have placed the

process step before the input step. Alternately, you may have skipped the input step altogether.

 Consider this quote

Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such a

way that you can use this solution a million times over, without ever doing it the

same way twice.

Alexander is describing patterns in the design of furniture, gardens, buildings, and towns, but his

description of a pattern can also be applied to program development. The IPO pattern frequently pops up

during program design.

An Example of Algorithm Design

The deliverable from the design phase is an algorithm that solves the problem. The Input/Process/Output

pattern guides the design of the algorithm that relates to our courseGrade problem.

Three-Step Pattern Pattern Applied to a Specific Algorithm

1. Input 1. Obtain test1, test2, and finalExam

2. Process 2. Compute courseGrade

3. Output 3. Display courseGrade

Although algorithm development is usually an iterative process, a pattern helps to quickly provide an

outline of the activities necessary to solve the courseGrade problem.

Self-Check

1-5 Read the three activities of the algorithm above. Do you detect a missing activity?

1-6 Read the three activities of the algorithm above. Do you detect any activity out of order?

1-7 Would this previous algorithm work if the first two activities were switched?

1-8 Is there enough detail in this algorithm to correctly compute courseGrade?

There currently is not enough detail in the process step of the courseGrade problem. The algorithm needs

further refinement. Specifically, exactly how should the input data be processed to compute the course

grade? The algorithm omits the weighted scale specified in the problem specification. The process step

should be refined a bit more. Currently, this pseudocode algorithm does not describe how courseGrade

must be computed.

 The refinement of this algorithm (below) shows a more detailed process step. The step “Compute

courseGrade” is now replaced with a refinement—a more detailed and specific activity. The input and

output steps have also been refined. This is the design phase deliverable—an algorithm with enough detail

to pass on as the input into the next phase, implementation.

Refinement of a Specific Input/Process/Output (IPO) Algorithm

1. Obtain test1, test2, and finalExam from the user

2. Compute courseGrade = (25% of test1) + (25% of test2) + (50% of finalExam)

3. Display the value of courseGrade

7

Try to think of program development in terms of the deliverables. This provides a checklist. What

deliverables exist so far?

1. From analysis, there is a document with a list of data (variables) and a sample problem.

2. From the design phase there is an algorithm.

Programs can be developed more quickly and with fewer errors by reviewing algorithms before moving

on to the implementation phase. Are the activities in the proper order? Are all the necessary activities

present?

 A computer is a programmable electronic device that can store, retrieve, and process data.

Programmers can simulate an electronic version of the algorithm by following the algorithm and

manually performing the activities of storing, retrieving, and processing data using pencil and paper. The

following algorithm walkthrough is a human (non-electronic) execution of the algorithm:

 1. Retrieve some example values from the user and store them as shown:

 test1: 80

 test2: 90

 finalExam: 100

 2. Retrieve the values and compute courseGrade as follows:

 courseGrade = (0.25 x test1) + (0.25 x test2) + (0.50 x finalExam)

 (0.25 x 80.0) + (0.25 x 90.0) + (0.50 x 100.0)

 20.0 + 22.5 + 50.0

 courseGrade = 92.5

 3. Show the course grade to the user by retrieving the data stored in courseGrade to show 92.5%.

It has been said that good artists know when to put down the brushes. Deciding when a painting is done is

critical for its success. By analogy, a designer must decide when to stop designing. This is a good time to

move on to the third phase of program development. In summary, here is what has been accomplished so

far:

 The problem is understood.

 Data have been identified and named.

 Output for two sample problems is known (80.25% and now 92.5%).

 An algorithm has been developed.

 Walking through the algorithm simulated computer activities.

Implementation (accomplishment, fulfilling, making good, execution)

The analysis and design of simple problems could be done with pencil and paper. The implementation

phase of program development requires both software and hardware to obtain the deliverable. The

deliverable of the implementation phase is a program that runs correctly on a computer. Implementation

is the collection of activities required to complete the program so someone else can use it. Here are some

implementation phase activities and associated deliverables:

Activity Deliverable

Translate an algorithm into a programming language. Source code

Compile source code into byte code. Byte code

Run the program. A running program

Verify that the program does what it is supposed to do. A grade

8

Chapter 1: Program Development

Whereas the design phase provided a solution in the form of a pseudocode algorithm, the implementation

phase requires nitty-gritty details. The programming language translation must be written in a precise

manner according to the syntax rules of that programming language. Attention must be paid to the

placement of semicolons, commas, and periods. For example, an algorithmic statement such as this:

 Display the value of courseGrade

could be translated into Java source code that might look like this:

 System.out.println("Course Grade: " + courseGrade + "%");

This output step generates output to the computer screen that might look like this (assuming the state of

courseGrade is 92.5):

 Course Grade: 92.5%

Once a programmer has translated the user’s needs into pseudocode and then into a programming

language, software is utilized to translate your instructions into the lower levels of the computer.

Fortunately, there is a tool for performing these translations. Programmers use a compiler to translate the

high-level programming language source code (such as Java) into its byte code equivalent. This byte code

can then be sent to any machine with a Java virtual machine (JVM). The Java virtual machine then

converts the byte code into the machine language of that particular machine. In this way, the same Java

program can run on a variety of platforms such as Unix, Mac OS, Linux, and Windows. Finally, to verify

that the program works, the behavior of the executable program must be observed. Input data may be

entered, and the corresponding output is observed. The output is

compared to what was expected. If the two match, the program

works for at least one particular set of input data. Other sets of

input data can be entered while the program is running to build

confidence that the program works as defined by the problem

specification. Program development is summarized as shown to the

right (at least this is one opinion/summary).

Although you will likely use the same compiler as in industry, the

roles of people will differ. In large software organizations, many

people—usually in teams—perform analysis, design,

implementation, and testing. In many of these simple textbook

problems, the user needs are what your instructor requires, usually

for grade assessment. You will often play the role of analyst,

designer, programmer, and tester—perhaps as part of a team, but

for the most part by yourself.

Self-Check

1-9 Review the above figure and list the phases that are -a primarily performed by humans and -b

primarily performed by software. Select your answers from the set of I, II, III, IV, V, and VI.

A Preview of a Java Implementation

The following program—a complete Java translation of the algorithm—previews many programming

language details. You are not expected to understand this Java code. The details are presented in Chapter

9

2. For now, just peruse the Java code as an implementation of the pseudocode algorithm. The three

variables test1, test2, and finalExam represent user input. The output variable is named

courseGrade. User input is made possible through a Scanner (discussed in Chapter 2).

// This program computes and displays a final course grade as a
// weighted average after the user enters the appropriate input.
import java.util.Scanner;

public class TestCourseGrade {

 public static void main(String[] args) {
 System.out.println("This program computes a course grade when");
 System.out.println("you have entered three requested values.");

 // I)nput test1, test2, and finalExam.
 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter first test: ");
 double test1 = keyboard.nextDouble();
 System.out.print("Enter second test: ");
 double test2 = keyboard.nextDouble();
 System.out.print("Enter final exam: ");
 double finalExam = keyboard.nextDouble();

 // P)rocess
 double courseGrade = (0.25 * test1) + (0.25 * test2) + (0.50 * finalExam);

 // O)utput the results
 System.out.println("Course Grade: " + courseGrade + "%");
 }
}

Dialogue

This program computes a course grade when

you have entered three requested values.

Enter first test: 80.0

Enter second test: 90.0

Enter final exam: 100.0

Course Grade: 92.5%

Testing

Although this “Testing” section appears at the end of our first example of program development, don’t

presume that testing is deferred until implementation. The important process of testing may, can, and

should occur at any phase of program development. The actual work can be minimal, and it’s worth the

effort. However, you may not agree until you have experienced the problems incurred by not testing.

Testing During All Phases of Program Development

 During analysis, establish sample problems to confirm your understanding of the problem.

 During design, walk through the algorithm to ensure that it has the proper steps in the proper order.

 During testing, run the program (or method) several times with different sets of input data. Confirm

that the results are correct.

 Review the problem specification. Does the running program do what was requested?

 In a short time you will see how a newer form of unit testing will help you develop software.

You should have a sample problem before the program is coded—not after. Determine the input values

and what you expect for output.

 When the Java implementation finally does generate output, the predicted results can then be

compared to the output of the running program. Adjustments must be made any time the predicted output

does not match the program output. Such a conflict indicates that the problem example, the program

10

Chapter 1: Program Development

output, or perhaps both are incorrect. Using problem examples helps avoid the misconception that a

program is correct just because the program runs successfully and generates output. The output could be

wrong! Simply executing doesn’t make a program right.

 Even exhaustive testing does not prove a program is correct. E. W. Dijkstra has argued that testing

only reveals the presence of errors, not the absence of errors. Even with correct program output, the

program is not proven correct. Testing reduces errors and increases confidence that the program works

correctly.

 In Chapter 3, you will be introduced to an industry level testing tool that does not require user input.

You will be able to build reusable automated tests. In Chapter 2, the program examples will have user

input and output that must be compared manually (not automatically).

Self-Check

1-10 If the programmer predicts courseGrade should be 100.0 when all three inputs are

100.0 and the program displays courseGrade as 75.0, what is wrong: the

prediction, the program, or both?

1-11 If the programmer predicts courseGrade should be 90.0 when test1 is 80, test2 is

90.0, and finalExam is 100.0 and the program outputs courseGrade as 92.5,

what is wrong: the prediction, the program, or both?

1-12 If the programmer predicts courseGrade should be 92.5 when test1 is 80, test2 is

90.0, and finalExam is 100.0 and the program outputs courseGrade as 90.0, what

is wrong: the prediction, the program, or both?

Answers to Self-Check Questions

1-1 Input: pounds and perhaps todaysConversionRate, Output: USDollars

1-2 CDCollection, currentSelection

1-3 Problem Data Name Input or Output Sample Problem

 Compute the presentValue Input 1000.00

 future value of periods Input 360 (30 years)

 an investment monthlyInterestRate Input 0.0075 (9%/year)

 futureValue Output 14730.58

1-4 Turn the oven off (or you might recognize some other activity or detail that was omitted).

1-5 No (at least the author thinks it’s okay)

1-6 No (at least the author thinks it’s okay)

1-7 No. The courseGrade would be computed using undefined values for test1, test2, and finalExam.

1-8 No. The details of the process step are not present. The formula is missing.

1-9 -a I, II, III, and VI

 -b IV and V

1-10 The program is wrong.

1-11 The prediction is wrong. The problem asked for a weighted average, not a simple average.

1-12 The program is wrong.

