
Chapter 2

Java Fundamentals

Goals

 Introduce the Java syntax necessary to write programs

 Be able to write a program with user input and console output

 Evaluate and write arithmetic expressions

 Use a few of Java's types such as int and double

2.1 Elements of Java Programming
The essential building block of Java programs is the class. In essence, a Java class is a sequence of

characters (text) stored as a file, whose name always ends with .java. Each class is comprised of several

elements, such as a class heading (public class class-name) and methods—a collection of statements

grouped together to provide a service. Below is the general form for a Java class that has one method:

main. Any class with a main method, including those with only a main method, can be run as a

program.

General Form: A simple Java program (only one class)

// Comments: any text that follows // on the same line

import package-name.class-name;

public class class-name {

 public static void main(String[] args) {

 variable declarations and initializations

 messages and operations such as assignments
 }

}

General forms describe the syntax necessary to write code that compiles. The general forms in this

textbook use the following conventions:

 Boldface elements must be written exactly as shown. This includes words such as public

static void main and symbols such as [,], (, and).

 Italicized items are defined somewhere else or must be supplied by the programmer.

12

A Java Class with One Method Named main

// Read a number and display that input value squared
import java.util.Scanner;

public class ReadItAndSquareIt {

 public static void main(String[] args) {
 // Allow user input from the keyboard
 Scanner keyboard = new Scanner(System.in);

 // I)nput Prompt user for a number and get it from the keyboard
 System.out.print("Enter an integer: ");
 int number = keyboard.nextInt();

 // P)rocess
 int result = number * number;

 // O)utput
 System.out.println(number + " squared = " + result);

 }

}

Dialog

Enter an integer: -12

-12 squared = 144

The first line in the program shown above is a comment indicating what the program will do. Comments

in Java are always preceded by the // symbol, and are “ignored” by the program. The next line contains

the word import, which allows a program to use classes stored in other files. This program above has

access to a class named Scanner for reading user input. If you omit the import statement, you will get

this error:

Scanner keyboard = new Scanner(System.in);

Scanner cannot be resolved to a type

Java classes, also known as types, are organized into over seventy packages. Each package contains a set

of related classes. For example, java.net has classes related to networking, and java.io has a

collection of classes for performing input and output. To use these classes, you could simply use the

import statement. Otherwise you would have to precede the class name with the correct package name,

like this:

java.util.Scanner keyboard = new java.util.Scanner(System.in);

The next line in the sample program is a class heading. A class is a collection of methods and variables

(both discussed later) enclosed within a set of matching curly braces. You may use any valid class name

after public class; however, the class name must match the file name. Therefore, the preceding

program must be stored in a file named ReadItAndSquareIt.java.

The file-naming convention

class-name.java

The next line in the program is a method heading that, for now, is best retyped exactly as shown (an

explanation intentionally skipped here is required to have a program):

public static void main(String[] args) // Method heading

The opening curly brace begins the body of the main method, which is a collection of executable

statements and variables. This main method body above contains a variable declaration, variable

initializations, and four messages, all of which are described later in this chapter. When run as a program,

13

Chapter 2: Java Fundamentals

the first statement in main will be the first statement executed. The body of the method ends with a

closing curly brace.

This Java source code represents input to the Java compiler. A compiler is a program that translates

source code into a language that is closer to what the computer hardware understands. Along the way, the

compiler generates error messages if it detects a violation of any Java syntax rules in your source code.

Unless you are perfect, you will see the compiler generate errors as the program scans your source code.

Tokens — The Smallest Pieces of a Program

As the Java compiler reads the source code, it identifies individual tokens, which are the smallest

recognizable components of a program. Tokens fall into four categories:

Token Examples

Special symbols ; () , . { }

Identifiers main args credits courseGrade String List

Reserved identifiers public static void class double int

Literals (constant values) "Hello World!" 0 -2.1 'C' true

Tokens make up more complex pieces of a program. Knowing the types of tokens in Java should help you

to:

 More easily write syntactically correct code.

 Better understand how to fix syntax errors detected by the compiler.

 Understand general forms.

 Complete programs more quickly and easily.

Special Symbols

A special symbol is a sequence of one or two characters, with one or possibly many specific meanings.

Some special symbols separate other tokens, for example: {, ;, and ,. Other special symbols represent

operators in expressions, such as: +, -, and /. Here is a partial list of single-character and double-

character special symbols frequently seen in Java programs:

 () . + - / * <= >= // { } == ;

Identifiers

Java identifiers are words that represent a variety of things. String, for example is the name of a class

for storing a string of characters. Here are some other identifiers that Java has already given meaning to:

 sqrt String get println readLine System equals Double

Programmers must often create their own identifiers. For example, test1, finalExam, main, and

courseGrade are identifiers defined by programmers. All identifiers follow these rules.

 Identifiers begin with upper- or lowercase letters a through z (or A through Z), the dollar sign $,

or the underscore character _.

 The first character may be followed by a number of upper- and lowercase letters, digits (0

through 9), dollar signs, and underscore characters.

 Identifiers are case sensitive; Ident, ident, and iDENT are three different identifiers.

Valid Identifiers

main ArrayList incomeTax MAX_SIZE $Money$

Maine URL employeeName all_4_one _balance
miSpel String A1 world_in_motion balance

14

Invalid Identifiers

1A // Begins with a digit
miles/Hour // The / is not allowed
first Name // The blank space not allowed
pre-shrunk // The operator - means subtraction

Java is case sensitive. For example, to run a class as a program, you must have the identifier main. MAIN

or Main won’t do. The convention employed by Java programmers is to use the “camelBack” style for

variables. The first letter is always lowercase, and each subsequent new word begins with an uppercase

letter. For example, you will see letterGrade rather than lettergrade, LetterGrade, or

letter_grade. Class names use the same convention, except the first letter is also in uppercase. You

will see String rather than string.

Reserved Identifiers

Reserved identifiers in Java are identifiers that have been set aside for a specific purpose. Their

meanings are fixed by the standard language definition, such as double and int. They follow the same

rules as regular identifiers, but they cannot be used for any other purpose. Here is a partial list of Java

reserved identifiers, which are also known as keywords.

Java Keywords

boolean default for new

break do if private

case double import public

catch else instanceof return

char extends int void

class float long while

The case sensitivity of Java applies to keywords. For example, there is a difference between double (a

keyword) and Double (an identifier, not a keyword). All Java keywords are written in lowercase letters.

Literals

A literal value such as 123 or -94.02 is one that cannot be changed. Java recognizes these numeric literals

and several others, including String literals that have zero or more characters enclosed within a pair of

double quotation marks.

"Double quotes are used to delimit String literals."
"Hello, World!"

Integer literals are written as numbers without decimal points. Floating-point literals are written as

numbers with decimal points (or in exponential notation: 5e3 = 5 * 10
3 = 5000.0 and 1.23e-4 = 1.23 x 10

-

4 = 0.0001234). Here are a few examples of integer, floating-point, string, and character literals in Java,

along with both Boolean literals (true and false) and the null literal value.

The Six Types of Java Literals

 Integer Floating Point String Character Boolean Null
-2147483648 -1.0 "A" 'a' true null
 -1 0.0 "Hello World" '0' false
 0 39.95 "\n new line" '?'
 1 1.23e09 "1.23" ' '
2147483647 -1e6 "The answer is: " '7'

Note: Other literals are possible such as 12345678901L for integers > 2,147,483,647.

15

Chapter 2: Java Fundamentals

Comments

Comments are portions of text that annotate a program, and fulfill any or all of the following

expectations:

 Provide internal documentation to help one programmer read and understand another’s program.

 Explain the purpose of a method.

 Describe what a method expects of the input arguments (n must be > 0, for example).

 Describe a wide variety of program elements.

Comments may be added anywhere within a program. They may begin with the two-character special

symbol /* when closed with the corresponding symbol */.

/*
 A comment may extend over many lines
 when using slash start at the beginning

 and ending the comment with a star slash.
*/

An alternate form for comments is to use // before a line of text. Such a comment may appear at the

beginning of a line, in which case the entire line is “ignored” by the program, or at the end of a line, in

which case all code prior to the special symbol will be executed.

// This Java program displays "hello, world to the console.
public class ShowHello {

 public static void main(String[] args) {
 System.out.println("hello, world");
 }
}

Comments can help clarify and document the purpose of code. Using intention-revealing identifiers and

writing code that is easy to understand, however, can also do this.

Self-Check

2-1 List each of the following as a valid identifier or explain why it is not valid.

 -a abc -i H.P.

 -b 123 -j double

 -c ABC -k 55_mph

 -d _.$ -l sales Tax

 -e my Age -m $$$$

 -f identifier -n ______

 -g (identifier) -o Mile/Hour

 -h mispellted -p Scanner

2-2 Which of the following are valid Java comments?

 -a // Is this a comment?

 -b / / Is this a comment?

 -c /* Is this a comment?

 -d /* Is this a comment? */

16

2.2 Java Types
Java has two types of variables: primitive types and reference types. Reference variables store

information necessary to locate complex values such as strings and arrays. On the other hand, Primitive

variables store a single value in a fixed amount of computer memory. The eight “primitive” (simple)

types are closely related to computer hardware. For example, an int value is stored in 32 bits (4 bytes) of

memory. Those 32 bits represent a simple positive or negative integer value. Here is summary of all

types in Java along with the range of values for the primitive types:

The Java Primitive Types

integers:
byte (8 bits) -128 .. 128

short (16 bits) -32,768 .. 32,767

int (32 bits) -2,147,483,648 .. 2,147,483,647

long (64 bits) -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807

real numbers:

float (32 bits), ±1.40129846432481707e-45 .. ±3.40282346638528860e+38

double (64 bits), ±4.94065645841246544e-324 .. ±1.79769313486231570e+308

other primitive types:

char 'A', '@', or 'z' for example

boolean has only two literal values false and true

The Java Reference Types

classes Chapter 5

arrays Chapters 8-11

interfaces Chapter 12

Declaring a primitive variable provides the program with a named data value that can change while the

program is running. An initialization allows the programmer to set the original value of a variable. This

value can be accessed or changed later in the program by using the variable name.

General Form: Initializing (declaring a primitive variable and giving it a value)

type identifier; // Declare one variable

type identifier = initial-value; // For primitive types like int and double

Example: The following code declares one int and two double primitive variables while it initializes

grade.

int credits;
double grade = 4.0;

double GPA;

The following table summarizes the initial value of these variables:

Variable Name Value

credits ? // Unknown

grade 4.0 // This was initialized above

GPA ? // Unknown

If you do not initialize a variable, it cannot be used unless it is changed with an assignment statement. The

Java compiler would report this as an error.

17

Chapter 2: Java Fundamentals

Assignment

An assignment gives a value to a variable. The value of the expression to the right of the assignment

operator (=) replaces the value of the variable to the left of =.

General Form: Assignment

variable-name = expression;

The expression must be a value that can be stored by the type of variable to the left of the assignment

operator (=). For example, an expression that results in a floating-point value can be stored in a double

variable, and likewise an integer value can be stored in an int variable.

int credits = 4;

double grade = 3.0;

double GPA = (credits * grade) / credits; // * and / evaluate before =

The assignment operator = has a very low priority, it assigns after all other operators evaluate. For

example, (credits * grade) / credits evaluates to 3.0 before 3.0 is assigned to GPA. These three

assignments change the value of all three variables. The values can now be shown like this:

Variable Value

credits 4

grade 3.0

GPA 3.0

In an assignment, the Java compiler will check to make sure you are assigning the correct type of value to

the variable. For example, a string literal cannot be assigned to a numeric variable. A floating-point

number cannot be stored in an int.

grade = "Noooooo, you can't do that"; // Cannot store string in a double
credits = 16.5; // Cannot store a floating-point number in an int

Self-Check
2-3 Which of the following are valid attempts at assignment, given these two declarations?

 double aDouble = 0.0;
 int anInt = 0;

-a anInt = 1; -e aDouble = 1;

-b anInt = 1.5; -f aDouble = 1.5;

-c anInt = "1.5"; -g aDouble = "1.5";

-d anInt = anInt + 1; -h aDouble = aDouble + 1.5;

Input and Output (I/O)

Programs communicate with users. Such communication is provided through—but is not limited

to—keyboard input and screen output. In Java, this two-way communication is made possible

by sending messages, which provide a way to transfer control to another method that performs

some well-defined responsibility. You may have written that method, or it may very likely be a

method you cannot see in one of the existing Java classes. Some messages perform particular

actions. Two such methods are the print and println messages sent to System.out:

18

General Form: Output with print and println

System.out.print(expression);

System.out.println(expression);

System.out is an existing reference variable that represents the console—the place on the computer

screen where text is displayed (not actually printed). The expression between the parentheses is known as

the argument. In a print or println message, the value of the expression will be displayed on the computer

screen. With print and println, the arguments can be any of the types mentioned so far (int,

double, char, boolean), plus others. The semicolon (;) terminates messages. The only difference

between print and println is that println generates a new line. Subsequent output begins at the

beginning of a new line. Here are some valid output messages:

System.out.print("Enter credits: "); // Use print to prompt the user
System.out.println(); // Print a blank line

Input

To make programs more applicable to general groups of data—for example, to compute the GPA for any

student—variables are often assigned values through keyboard input. This allows the program to accept

data which is specific to the user. There are several options for obtaining user input from the keyboard.

Perhaps the simplest option is to use the Scanner class from the java.util package. This class has

methods that allow for easy input of numbers and other types of data, such as strings.

 Before you can use Scanner messages such as nextDouble or nextInt, your code must create a

reference variable to which messages can be sent. The following code initializes a reference variable

named keyboard that will allow the keyboard to be a source of input. (System.in is an existing

reference variable that allows characters to be read from the keyboard.)

Creating an Instance of Scanner to Read Numeric Input

// Store a reference variable named keyboard to read input from the user.
// System.in is a reference variable already associated with the keyboard
Scanner keyboard = new Scanner(System.in);

In general, a reference variable is initialized with the keyword new followed by class-name and (initial-

values).

General Form: Initializing reference variables with new

class-name reference-variable-name = new class-name();

class-name reference-variable-name = new class-name(initial-value(s));

The expression to the right of = evaluates to a reference value, which is then stored in the reference

variable to the left of =. That reference value is used later for sending messages. Messages sent to

keyboard can obtain textual input from the keyboard and can convert that text (for example, 3.45 and 99)

into numbers. Here are two messages that allow users to input numbers into a program:

Numeric Input

keyboard.nextInt(); // Pause until user enters an integer

keyboard.nextDouble(); // Pause until user enters a floating-point number

In general, use this form to send a message to a reference variable that will, in turn, cause some operation

to execute:

General Form: Sending messages

reference-variable-name.message-name(argument-list)

19

Chapter 2: Java Fundamentals

When a nextInt or nextDouble message is sent to keyboard, the method waits until the user enters

some type of input and then presses the Enter key. If the user enters the number correctly, the text will be

converted into the proper machine representation of the number. If the user enters a letter when keyboard

is expecting a number, the program may terminate with an error message.

 These two methods are examples of expressions that evaluate to some value. Whereas a nextInt

message evaluates to a primitive int value, a nextDouble message evaluates to a primitive floating-

point value. Because nextInt and nextDouble return numeric values, they are often seen on the right-

hand side of assignment statements. These messages will be seen in text-based input and output programs

(ones that have no graphical user interface).

 For example, the following code prompts the user to enter two numbers using print, nextInt, and

nextDouble messages.

System.out.print("Enter credits: "); // Prompt the user
credits = keyboard.nextInt(); // Read and assign an integer
System.out.print("Enter grade: "); // Prompt the user

qualityPoints = keyboard.nextDouble(); // Read and assign a double

Dialog

Enter credits: 4

Enter grade: 3.0

In the last line of code above—the fourth message—the nextDouble message causes a pause in program

execution until the user enters a number. When the user types a number and presses the enter key, the

nextDouble method converts the text user into a floating-point number. That value is then assigned to

the variable qualityPoints. All of this happens in one line of code.

Prompt and Input

The output and input operations are often used together to obtain values from the user of the program.

The program informs the user what must be entered with an output message and then sends an input

message to get values for the variables. This happens so often that this activity can be considered to be a

pattern. The Prompt and Input pattern has two activities:

1. Request the user to enter a value (prompt).

2. Obtain the value for the variable (input).

Algorithmic Pattern: Prompt and Input

Pattern: Prompt and Input

Problem: The user must enter something.

Outline: 1. Prompt the user for input.

 2. Input the data

Code Example: System.out.println("Enter credits: ");

 int credits = keyboard.nextInt();

Strange things may happen if the prompt is left out. The user will not know what must be entered.

Whenever you require user input, make sure you prompt for it first. Write the code that tells the user

precisely what you want. First output the prompt and then obtain the user input. Here is another instance

of the Prompt and Input pattern:

 System.out.println("Enter test #1: ");
 double test1 = keyboard.nextDouble(); // Initialize test1 with input
 System.out.println("You entered " + test1);

20

Dialogue

Enter test #1: 97.5

You entered 97.5

In general, tell the user what value is needed, then input a value into that variable with an input message

such as keyboard.nextDouble();.

General Form: Prompt and Input

System.out.println("prompt user for input : ");

input = keyboard.nextDouble(); // or keyboard.nextInt();

Arithmetic Expressions

Arithmetic expressions are made up of two components: operators and operands. An arithmetic operator

is one of the Java special symbols +, -, /, or *. The operands of an arithmetic expression may be numeric

variable names, such as credits, and numeric literals, such as 5 and 0.25.

An Arithmetic Expression may be Example

numeric variable double aDouble

numeric literal 100 or 99.5

expression + expression aDouble + 100

expression - expression aDouble - 100

expression * expression aDouble * 100

expression / expression aDouble / 99.5

(expression) (aDouble + 2.0)

The last definition of “expression” suggests that we can write more complex expressions.

 1.5 * ((aDouble - 99.5) * 1.0 / aDouble)

Since arithmetic expressions may be written with many literals, numeric variable names, and operators,

rules are put into force to allow a consistent evaluation of expressions. The following table lists four Java

arithmetic operators and the order in which they are applied to numeric variables.

Most Arithmetic Operators

* / % In the absence of parentheses, multiplication and division evaluate before addition

and subtraction. In other words, *, /, and % have precedence over + and -. If

more than one of these operators appears in an expression, the leftmost operator

evaluates first.

+ - In the absence of parentheses, + and - evaluate after all of the *, /, and %

operators, with the leftmost evaluating first. Parentheses may override these

precedence rules.

The operators of the following expression are applied to operands in this order: /, +, -.

 2.0 + 5.0 - 8.0 / 4.0 // Evaluates to 5.0

Parentheses may alter the order in which arithmetic operators are applied to their operands.

 (2.0 + 5.0 - 8.0) / 4.0 // Evaluates to -0.25

With parentheses, the / operator evaluates last, rather than first. The same set of oper-ators and operands,

with parentheses added, has a different result (-0.25 rather than 5.0).

21

Chapter 2: Java Fundamentals

 These precedence rules apply to binary operators only. A binary operator is one that requires one

operand to the left and one operand to the right. A unary operator requires one operand on the right.

Consider this expression, which has the binary multiplication operator * and the unary minus operator -.

 3.5 * -2.0 // Evaluates to -7.0

The unary operator evaluates before the binary * operator: 3.5 times negative 2.0 results in negative 7.0.

Two examples of arithmetic expressions are shown in the following complete program that computes the

GPA for two courses.

// This program calculates the grade point average (GPA) for two courses.
import java.util.Scanner;

public class TwoCourseGPA {

 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);

 // Prompt and Input the credits and grades for two courses

 System.out.print("Enter credits for first course: ");
 double credits1 = keyboard.nextDouble();
 System.out.print("Enter grade for first course: ");
 double grade1 = keyboard.nextDouble ();
 System.out.print("Enter credits for second course: ");
 double credits2 = keyboard.nextDouble ();
 System.out.print("Enter grade for second course: ");
 double grade2 = keyboard.nextDouble();

 // Compute the GPA
 double qualityPoints = (credits1 * grade1) + (credits2 * grade2);
 double GPA = qualityPoints / (credits1 + credits2);

 // Show the result
 System.out.println();
 System.out.println("GPA for these two courses: ");
 System.out.println(GPA);
 }
}

Output
Enter credits for first course: 3.0

Enter grade for first course: 4.0

Enter credits for second course: 2.0

Enter grade for second course: 3.0

GPA for these two courses
3.6

Self-Check

 2-4. Write a complete Java program that prompts for a number from 0.0 to 1.0 and echos (prints) the

user's input. The dialog generated by your program should look like this:

Enter relativeError [0.0 through 1.0]: 0.341

You entered: 0.341

2-5. Write the output generated by the following program:

public class Arithmetic {
 public static void main(String[] args) {
 double x = 1.2;
 double y = 3.4;
 System.out.println(x + y);
 System.out.println(x - y);
 System.out.println(x * y);
 }
}

22

2-6. Write the complete dialog (program output and user input) generated by the following program

when the user enters each of these input values for sale:

 a. 10.00 b. 12.34 c. 100.00

import java.util.Scanner;

public class InputProcessOutput {

 public static void main(String[] args) {
 double sale = 0.0;
 double tax = 0.0;
 double total = 0.0;
 double TAX_RATE = 0.07;
 Scanner keyboard = new Scanner(System.in);
 // I)nput
 System.out.print("Enter sale: ");
 sale = keyboard.nextDouble(); // User enters 10.00, 12.34, or 100.00
 // P)rocess
 tax = sale * TAX_RATE;
 total = sale + tax;

 // O)utput
 System.out.println("Sale: " + sale);
 System.out.println("Tax: " + tax);
 System.out.println("Total: " + total);
 }
}

2-7 Evaluate the following arithmetic expressions:

 double x = 2.5;
 double y = 3.0;

-a x * y + 3.0 -d 1.5 * (x - y)

-b 0.5 + x / 2.0 -e y + -x

-c 1.0 + x * 3.0 / y -f (x - 2.0) * (y - 1.0)

int Arithmetic

A variable declared as int can store a limited range of whole numbers (numbers without fractions). Java

int variables store integers in the range of -2,147,483,648 through 2,147,483,647 inclusive. All int

variables have operations similar to double (+, *, -, =), but some differences do exist, and there are times

when int is the correct choice over double. For example, a fractional remainder cannot be stored in an

int. In fact, you cannot assign a floating-point literal or double variable to an int variable. If you do,

the compiler complains with an error.

int anInt = 1.999; // ERROR
int anotherInt = 0.0; // ERROR

The / operator has different meanings for int and double operands. Whereas the result of 3 / 4 is 0, the

result of 3.0 / 4.0 is 0.75. Two integer operands with the / operator have an integer result—not a floating-

point result, as in the latter example. When writing programs, remember to choose an int or double

data type correctly, in order to appropriately reflect the type of value you would like to store.

 The remainder operation—symbolized with the % (modulus) operator—is also available for both int

and double operands. For example, the result of 18 % 4 is the integer remainder after dividing 18 by 4,

which is 2. Integer arithmetic is illustrated in the following code, which shows % and / operating on

integer expressions, and / operating on floating-point operands. In this example, the integer results

describe whole hours and whole minutes rather than the fractional equivalent.

23

Chapter 2: Java Fundamentals

public class DivMod {
 public static void main(String[] args) {

int totalMinutes = 254;

int hours = totalMinutes / 60;

int minutes = totalMinutes % 60;

System.out.println(totalMinutes + " minutes can be rewritten as ");

System.out.println(hours + " hours and " + minutes + " minutes");

 }

}

Output

254 minutes can be rewritten as

4 hours and 14 minutes

The preceding program indicates that even though ints and doubles are similar, there are times

when double is the more appropriate type than int, and vice versa. The double type should be

specified when you need a numeric variable with a fractional component. If you need a whole

number, select int.

Mixing Integer and Floating-Point Operands

Whenever integer and floating-point values are on opposite sides of an arithmetic operator, the integer

operand is promoted to its floating-point equivalent. The integer 6, for example, becomes 6.0, in the case

of 6 / 3.0. The resulting expression is then a floating-point number, 2.0. The same rule applies when one

operand is an int variable and the other a double variable. Here are a few examples of expression with

the operands are a mix of int and double.

public class MixedOperands {

 public static void main(String[] args) {
 int number = 9;
 double sum = 567.9;
 System.out.println(sum / number); // Divide a double by an int

 System.out.println(number / 2); // Divide an int by an int
 System.out.println(number / 2.0); // Divide an int by a double
 System.out.println(2.0 * number); // Result is a double: 18.0 not 18
 }
}

Output

63.099999999999994
4
4.5
18.0

Expressions with more than two operands will also evaluate to floating-point values if one of the operands

is floating-point—for example, (8.8/4+3) = (2.2 + 3) = 5.2. Operator precedence rules also come into

play—for example, (3 / 4 + 8.8) = (0 + 8.8) = 8.8.

Self-Check
2-8 Evaluate the following expressions.

-a 5 / 9 -f 5 / 2

-b 5.0 / 9 -g 7 / 2.5 * 3 / 4

-c 5 / 9.0 -h 1 / 2.0 * 3
-d 2 + 4 * 6 / 3 -i 5 / 9 * (50.0 - 32.0)

-e (2 + 4) * 6 / 3 -j 5 / 9.0 * (50 - 32)

24

The boolean Type

Java has a primitive boolean data type to store one of two boolean literals: true and false. Whereas

arithmetic expressions evaluate to a number, boolean expressions, such as credits > 60.0, evaluate to

one of these boolean values. A boolean expression often contains one of these relational operators:

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

When a relational operator is applied to two operands that can be compared to one another, the result is

one of two possible values: true or false. The next table shows some examples of simple boolean

expressions and their resulting values.

Boolean Expression Result

double x = 4.0;

x < 5.0 true

x > 5.0 false

x <= 5.0 true

5.0 == x false

x != 5.0 true

Like primitive numeric variables, boolean variables can be declared, initialized, and assigned a value.

The assigned expression must be a boolean expression—thus, the result of the expression must also

evaluate to true or false. This is shown in the initializations, assignments, and output of three boolean

variables in the following code:

 // Initialize three boolean variables to false

 boolean ready = false;
 boolean willing = false;
 boolean able = false;
 double credits = 28.5;
 double hours = 9.5;
 // Assign true or false to all three boolean variables
 ready = hours >= 8.0;
 willing = credits > 20.0;
 able = credits <= 32.0;

 System.out.println("ready: " + ready);
 System.out.println("willing: " + willing);
 System.out.println("able: " + able);

Output

ready: true

willing: true

able: true

Self-Check

2-9 Evaluate the following expressions to their correct value.

 int j = 4;
 int k = 7;

a. (j + 4) == k e. j < k

b. j == 0 f. j == 4

c. j >= k g. j == (j + k - j)

d. j != k h. (k - 5) <= (j + 2)

25

Chapter 2: Java Fundamentals

Boolean Operators

Java has three boolean operators! to represent logical not, ¦¦ to represent logical or, and && to represent

logical and. These three Boolean operators allow us to write more complex boolean expressions to

express our intentions. For example, this boolean expression shows the boolean “and” operator (&&)

applied to two boolean operands to determine if test is in the range of 0 through 100 inclusive.

 (test >= 0) && (test <= 100)

Used in assertions, this Boolean expression evaluates to true when test is 97 and false when test is 977:

When test is 97 When test is 977

(test >= 0) && (test <= 100) (test >= 0) && (test <= 100)

(97 >= 0) && (97 <= 100) (977 >= 0) && (977 <= 100)

 true && true true && false

 true false

Since there are only two Boolean values, true and false, the following table shows every possible

combination of Boolean values and operators !, ¦¦, and &&:

! boolean “not” operator

Expression Result

! false true

! true false

¦¦ boolean “or” operator

Expression Result
true ¦¦ true true
true ¦¦ false true
false ¦¦ true true
false ¦¦ false false

&& boolean “and” operator

Expression Result
true && true true
true && false false
false && true false
false && false false

Precedence Rules

Programming languages have operator precedence rules governing the order in which operators are

applied to operands. For example, in the absence of parentheses, the relational operators >= and <= are

evaluated before the && operator. Most operators are grouped (evaluated) in a left-to-right order:

a/b/c/d is equivalent to (((a/b)/c)/d).

 Table 6.1 lists some (though not all) of the Java operators in order of precedence. The dot . and ()

operators are evaluated first (have the highest precedence), and the assignment operator = is evaluated

last. This table shows all of the operators used in this textbook (however, there are more).

26

Precedence rules for operators some levels of priorities are not shown

Precedence Operator Description Associativity

1 . Member reference Left to right

 () Method call

2 ! Unary logical complement (”not”) Right to left

 + Unary plus

 - Unary minus

3 new Constructor of objects

4 * Multiplication Left to right

 / Division

 % Remainder

5 + Addition (for int and double) Left to right

 + String concatenation

 - Subtraction

7 < Less than Left to right

 <= Less than or equal to

 > Greater than

 >= Greater than or equal to

8 == Equal Left to right

 != Not equal

12 && Boolean “and” Left to right

13 ¦¦ Boolean “or” Left to right

15 = Assignment Right to left

These elaborate precedence rules are difficult to remember. If you are unsure, use parentheses to clarify

these precedence rules. Using parentheses makes the code more readable and therefore more

understandable that is more easily debugged and maintained.

Self-Check

2-10 Evaluate the following expressions to true or false:

a. false ¦¦ true

b. true && false

c. (1 * 3 == 4 ¦¦ 2 != 2)

d. false ¦¦ true && false

e 3 < 4 && 3 != 4

f. !false && !true

g. (5 + 2 > 3 * 4) && (11 < 12)

h. ! ((false && true) ¦¦ false)

2-11 Write an expression that is true only when an int variable named score is in the range

of 1 through 10 inclusive.

Errors
There are several categories of errors encountered when programming:

 syntax errors—errors that occur when compiling source code into byte code

 intent errors—the program does what you typed, not what you intended

 exception—errors that occur as the program executes

When programming, you will be writing source code using the syntax for the Java programming

language. This source code is translated into byte code by the compiler, and is then stored in a .class

file. The byte code is the same for each computer system.

For this byte code to execute, another program, called the Java virtual machine (JVM), translates the Java

byte code into instructions understood by that computer. This extra step is necessary for one of the main

advantages of Java: the same program can run in any computing environment! A computer might be

27

Chapter 2: Java Fundamentals

running Windows, MacOS, Solaris, Unix, or Linux—each computer system has its own Java virtual

machine program. Having a particular Java virtual machine for each computer system also allows the

same Java .class file to be transported around the Internet. The following figure shows the levels of

translation needed in order to get executable programs to run on most computers.

From Source Code to a Program that Runs on Many Computers

1. The programmer translates algorithms into Java source code.

2. The compiler translates the source code into byte code.

3. The Java virtual machine translates byte code into the instructions understood by the computer

system (Solaris, Unix, Linux, Mac OS, or Windows).

Syntax Errors Detected at Compile Time

When you are compiling source code or running your program on a computer, errors may crop up. The

easiest errors to detect and fix are the errors generated by the compiler. These are syntax errors that

occur during compile time, the time at which the compiler is examining your source code to detect and

report errors, and/or to attempt to generate executable byte code from error-free source code.

 A programming language requires strict adherence to its own set of formal syntax rules. It is not

difficult for programmers to violate these syntax rules! All it takes is one missing { or ; to foul things up.

As you are writing your source code, you will often use the compiler to check the syntax of the code you

wrote. While the Java compiler is translating source code into byte code so that it can run on a computer,

it is also locating and reporting as many errors as possible. If you have any syntax errors, the byte code

will not be generated—the program simply cannot run. If you are using the Eclipse integrated

development, you will see compile time errors as you type, sometimes because you haven't finished what

you were doing. To get a properly running program, you need to first correct ALL of your syntax errors.

 Compilers generate many error messages. However, it is your source code that is the origin of these

errors. Small typographical (and human) mistakes can be responsible for much larger roadblocks, from

the compiler’s perspective. Whenever your compiler appears to be nagging you, remember that the

compiler is there to help you correct your errors!

 The following program attempts to show several errors that the compiler should detect and report.

Because error messages generated by compilers vary among systems, the reasons for the errors below are

indexed with numbers to explanations that follow. Your system will certainly generate quite different

error messages.

// This program attempts to convert pounds to UK notation.
// Several compile time errors have been intentionally retained.

public class CompileTimeErrors {

 public static void main(String[] args) {

 System.out.println("Enter weight in pounds: ") 

 int pounds = keyboard.nextInt();

 System.out.print("In the U.K. you weigh);

 System.out.print(Pounds / 14 + " stone, "pounds % 14);

 }
}

28

 A semicolon (;) is missing

 keyboard was not declared

 A double quote (") is missing

 pounds was written as Pounds

 The extra expressions require a missing concatenation symbol (+)

Syntax errors take some time to get used to, so try to be patient and observe the location where the syntax

error occurred. The error is usually near the line where the error was detected, although you may have to

fix preceding lines. Always remember to fix the first error first. An error that was reported on line 10

might be the result of a semicolon that was forgotten on line 5. The corrected source code, without error,

is given next, followed by an interactive dialog (user input and computer output):

// This program converts pounds to the UK weight measurement.

import java.util.Scanner;

public class ErrorFree {

 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter weight in pounds: ");
 int pounds = keyboard.nextInt();
 System.out.print("In the U.K. you weigh ");
 System.out.println((pounds / 14) + " stone, " + (pounds % 14));
 }
}

Dialog
Enter weight in pounds: 146

In the U.K. you weigh 10 stone, 6

A different type of error occurs when String[] args is omitted from the main method:

 public static void main()

When the program tries to run, it looks for a method named main with (String[] identifier). If

you forget to write String[] args, you would get the error below shown after the program begins. The

same error occurs if main has an uppercase M.

 Exception in thread "main" java.lang.NoSuchMethodError: main

This type of error, which occurs while the program is running, is known as an exception.

Exceptions

After your program compiles with no syntax errors, you will get a .class file containing the byte code that

can be run on the Java virtual machine. The virtual machine can be invoked by issuing a Java command

with the .class file name. For example, entering the command java ErrorFree at your operating system

prompt will run the above program, assuming that you have a Java runtime environment (jre) installed on

your computer and that the file ErrorFree.class exists.

 However, when a program runs, errors may still occur. If the user enters a string that is supposed to

be a number, what is the program to do? If the user enters "1oo" instead of "100" for example, is the

program supposed to assume that the user meant 100? What should happen when the user enters "Kim"

instead of a number? What should happen when an arithmetic expression results in division by zero? Or

when there is an attempt to read from a file on a disk, but there is no disk in the drive, or the file name is

wrong? Such events that occur while the program is running are known as exceptions.

One exception was shown above. The main method was valid, so the code compiled. However, when the

program ran, Java’s runtime environment was unable to locate a main method with String[] args. The

error could not be discovered until the user ran the program, at which time Java began attempted to locate

29

Chapter 2: Java Fundamentals

the beginning of the program. If Java cannot find a method with the following line of code, a runtime

exception occurs and the program terminates prematurely.

 public static void main(String[] args)

Now consider another example of an exception that occurs while the program is running. The output for

the following code indicates that Java does not allow integer division by zero. The compiler does a lot of

things, but it does not check the values of variables. If, at runtime, the denominator in a division happens

to be 0, an ArithmeticException occurs.

public class AnArithmeticException {

 public static void main(String[] args) {
 // Integer division by zero throws an ArithmeticException
 int numerator = 5;
 int denominator = 0;
 int quotient = numerator / denominator; // A runtime error
 System.out.println("This message will not execute.");

 }
}

Output
Exception in thread "main" java.lang.ArithmeticException: / by zero

 at A.main(A.java:8)

When you encounter one of these exceptions, consider the line number (7) where the error occurred. The

reason for the exception (/ by zero) and the name of the exception (ArithmeticException) are two

other clues to help you figure out what went wrong.

Intent Errors (Logic Errors)

Even when no syntax errors are found and no runtime errors occur, the program still may not execute

properly. A program may run and terminate normally, but it may not be correct. Consider the following

program:

// This program finds the average given the sum and the size
import java.util.Scanner;

public class IntentError {

 public static void main(String[] args) {
 double sum = 0.0;
 double average = 0.0;
 int number = 0;
 Scanner keyboard = new Scanner(System.in);
 // Input:
 System.out.print("Enter sum: ");
 sum = keyboard.nextDouble();
 System.out.print("Enter number: ");
 number = keyboard.nextInt();
 // Process
 average = number / sum;
 // Output

 System.out.println("Average: " + average);
 }
}

Dialog
Enter sum: 291

Enter number: 3

Average: 0.010309278350515464

30

Such intent errors occur when the program does what was typed, not what was intended. The compiler

cannot detect such intent errors. The expression number / sum is syntactically correct—the compiler

just has no way of knowing that this programmer intended to write sum / number instead.

Intent errors, also known as logic errors, are the most insidious and usually the most difficult errors to

correct. They also may be difficult to detect—the user, tester, or programmer may not even know they

exist! Consider the program controlling the Therac 3 cancer radiation therapy machine. Patients received

massive overdoses of radiation resulting in serious injuries and death, while the indicator displayed

everything as normal. Another infamous intent error involved a program controlling a probe that was

supposed to go to Venus. Simply because a comma was missing in the Fortran source code, an American

Viking Venus probe burnt up in the sun. Both programs had compiled successfully and were running at

the time of the accidents. However, they did what the programmers had written—obviously not what was

intended.

Answers to Self-Check Questions
2-1 -a VALID -i Periods (.) are not allowed.

 -b can’t start an identifier with digit 1 -j VALID

 -c VALID -k Can’t start identifiers with a digit.

 -d . is a special symbol. -l A space is not allowed.

 -e A space is not allowed. -m VALID but not very clear

 -f VALID -n VALID but not very clear

 -g () are not allowed. -o / is not allowed.

 -h VALID -p VALID (but don't use it, Java already does)

2-2 Which of the following are valid Java comments?

 -a // Is this a comment? Yes

 -b / / Is this a comment? No, there is a space between the slashes

 -c /* Is this a comment? No, the closing */ is missing

 -d /* Is this a comment? */ Yes

2-3 a VALID e VALID

 b attempts to assign a floating-point to an int. f valid

 c attempts to assign a string to an int g attempts to assign a string to a double.

 d VALID h VALID

2-4 import java.util.Scanner;
 public class RelativeError { // Your class name may vary
 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter relativeError [0.0 through 1.0]: ");
 double relativeError = keyboard.nextDouble();
 System.out.print("You entered: " + relativeError);
 }

}

2-5 4.6
 -2.2
 4.08

2-6 a. 10.00
 Enter sale: 10.00
 Sale: 10.0
 Tax: 0.7
 Total: 10.7

b. 12.34
Enter sale: 12.34
Sale: 12.34
Tax: 0.8638
Total: 13.2038

c. 100.00
Enter sale: 100.00
Sale: 100.0
Tax: 7.0
Total: 107.0

2.7

-a 10.5 -d -0.75

-b 1.75 -e 0.5

-c 3.5 -f 1.0

2-8
-a 0 -f 2

-b 0.55556 -g 2.1

-c 0.55556 -h 1.5

-d 10 -i 0.0 5/9 is 0, 0*18.0 is 0.0

-e 12 -j 10.0

2-9

-a false -e true

 -b false -f true

-c false -g false

-d true -h true

 2-10 a. true

 b. false

 c. false

 d. false

e true

f. false

g. false

h. true

2-11 (score >= 1) && (score <= 10)

