

Chapter 3

Objects and JUnit

Goals
This chapter is mostly about using objects and getting comfortable with sending messages to objects.

Several new types implemented as Java classes are introduced to show just a bit of Java’s extensive

library of classes. This small subset of classes will then be used in several places throughout this

textbook. You will begin to see that programs have many different types of objects. After studying this

chapter, you will be able to:

 Use existing types by constructing objects

 Be able to use existing methods by reading method headings and documentation

 Introduce assertions with JUnit

 Evaluate Boolean expressions that result in true or false.

3.1 Find the Objects
Java has two types of values: primitive values and reference values. Only two of Java’s eight primitive

types (int and double) and only one of Java’s reference types (the Scanner class) have been shown so

far. Whereas a primitive variable stores only one value, a reference variable stores a reference to an object

that may have many values. Classes allow programmers to model real-world entities, which usually have

more values and operations than primitives.

 Although the Java programming language has only eight primitive types, Java also come with

thousands of reference types (implemented as Java classes). Each new release of Java tends to add new

reference types. For example, instances of the Java String class store collections of characters to

represent names and addresses in alphabets from around the world. Other classes create windows,

buttons, and input areas of a graphical user interface. Other classes represent time and calendar dates. Still

other Java classes provide the capability of accessing databases over networks using a graphical user

interface. Even then, these hundreds of classes do not supply everything that every programmer will ever

need. There are many times when programmers discover they need their own classes to model things in

their applications. Consider the following system from the domain of banking:

The Bank Teller Specification

Implement a bank teller application to allow bank customers to access bank accounts

through unique identification. A customer, with the help of the teller, may complete

any of the following transactions: withdraw money, deposit money, query account

balances, and see the most recent 10 transactions. The system must maintain the

correct balances for all accounts. The system must be able to process one or more

transactions for any number of customers.

Chapter 3: Objects and JUnit

32

You are not asked to implement this system now. However, you should be able to pick out some things

(objects) that are relevant to this system. This is the first step in the analysis phase of object-oriented

software development. One simple tool for finding objects that potentially model a solution is to write

down the nouns and noun phrases in the problem statement. Then consider each as a candidate object that

might eventually represent part of the system. The objects used to build the system come from sources

such as

 the problem statement

 an understanding of the problem domain (knowledge of the system that the problem

statement may have missed or taken for granted)

 the words spoken during analysis

 the classes that come with the programming language

The objects should model the real world if possible. Here are some candidate objects:

Candidate Objects to Model a Solution

bank teller transaction

customers most recent 10 transactions

bank account window

Here is a picture to give an impression of the major objects in the bank teller system. The BankTeller

will accomplish this by getting help from many other objects.

We now select one of these objects BankAccount.

BankAccount Objects

Implementing a BankAccount type as a Java class gives us the ability to have many (thousands of)

BankAccount objects. Each instance of BankAccount represents an account at a bank. Using your

knowledge of the concept of a bank account, you might recognize that each BankAccount object should

have its own account number and its own account balance. Other values could be part of every

BankAccount object: a transaction list, a personal identification number (PIN), and a mother’s maiden

name, for example. You might visualize other banking methods, such as creating a new account, making

deposits, making withdrawals, and accessing the current balance. There could also be many other banking

messages—applyInterest and printStatement, for example.

 As a preview to a type as a collection of methods and data, here is the BankAccount type

implemented as a Java class and used in the code that follows. The Java class with methods and variables

to implement a new type will be discussed in Chapters 4 (Methods) and 10 (Classes). Consider this class

to be a blueprint that can be used to construct many BankAccount objects. Each BankAccount object

BankTeller

Coordinates activities

AccountList

A collection of BankAccounts

BankAccount

One customer's account

TransactionList

A log of all transactions

Transaction

One withdrawal or deposit

33

will have its their own balance and ID. Each BankAccount will understand the same four messages:

getID, getBalance, deposit, and withdraw.

// A type that models a very simple account at a bank.
public class BankAccount {

 // Values that each object "remembers":
 private String ID;
 private double balance;

 // The constructor:
 public BankAccount(String initID, double initBalance) {
 ID = initID;
 balance = initBalance;
 }

 // The four methods:
 public String getID() {
 return ID;
 }

 public double getBalance() {
 return balance;
 }

 public void deposit(double depositAmount) {
 balance = balance + depositAmount;
 }

 public void withdraw(double withdrawalAmount) {
 balance = balance - withdrawalAmount;
 }
}

This BankAccount type has been intentionally kept simple for ease of study. The available BankAccount

messages include—but are not limited to—withdraw, deposit, getID, and getBalance. Each will

store an account ID and a balance.

 Instances of BankAccount are constructed with two arguments to help initialize these two values.

You can supply two initial values in the following order:

1. a sequence of characters (a string) to represent the account identifier (a name, for example)

2. a number to represent the initial account balance

Here is one desired object construction that has two arguments for the purpose of initializing the two

desired values:

 BankAccount anAccount = new BankAccount("Chris", 125.50);

The construction of new objects (the creation of new instances) requires the keyword new with the class

name and any required initial values between parentheses to help initialize the state of the object. The

general form for creating an instance of a class:

General Form: Constructing objects (initial values are optional)

class-name object-name = new class-name(initial-value(s));

Every object has

1. a name (actually a reference variable that stores a reference to the object)

2. state (the set of values that the object remembers)

3. messages (the things objects can do and reveal)

Every instance of a class will have a reference variable to provide access to the object. Every instance of a

class will have its own unique state. In addition, every instance of a class will understand the same set of

messages. For example, given this object construction,

BankAccount anotherAccount = new BankAccount("Justin", 60.00);

Chapter 3: Objects and JUnit

34

we can derive the following information:

1. name: anotherAccount

2. state: an account ID of "Justin" and a balance of 60.00

3. messages: anotherAccount understands withdraw, deposit, getBalance, …

Other instances of BankAccount will understand the same set of messages. However, they will have their

own separate state. For example, after another BankAccount construction,

 BankAccount theNewAccount = new BankAccount("Kim", 1000.00);

theNewAccount has its own ID of "Kim" and its own balance of 1000.00.

 The three characteristics of an object can be summarized with diagrams. This class diagram

represents one class.

BankAccount

String ID

double balance

BankAccount(String ID, double balance)

withdraw(double amt)

deposit(double amt)

double getBalance()

String getID()

A class diagram lists the class name in the topmost compartment. The instance variables appear in the

compartment below it. The bottom compartment captures the methods.

 Objects can also be summarized in instance diagrams.

anAccount

ID = "Chris"
balance = 125.50

anotherAccount

ID = "Justin"
balance = 60.00

newAccount

ID = "Kim"
balance = 1000.00

These

three object diagrams describe the current state of three different BankAccount objects. One class can be

used to make have many objects, each with its own separate state (set of values).

Sending Messages to Objects

In order for objects to do something, your code must send messages to them. A message is a request for

the object to provide one of it services through a method.

General Form: Sending a message to an object

object-name.message-name(argument1, argument2, ...)

Some messages ask for the state of the object. Other messages ask an object to do something, For

example, each BankAccount object was designed to have the related operations withdraw, deposit,

getBalance, and getID. These messages ask the two different BankAccount objects to return

information:

 anAccount.getID();
 anAccount.getBalance();
 anotherAccount.getID();
 anotherAccount.getBalance();

These messages ask two different BankAccount objects to do something:

35

 anAccount.withdraw(40.00);

 anAccount.deposit(100.00);

 anotherAccount.withdraw(20.00);

 anotherAccount.deposit(157.89);

The optional arguments—expressions between the parentheses—are the values required by the method

to fulfill its responsibility. For example, withdraw needs to know how much money to withdraw. On the

other hand, getBalance doesn’t need any arguments to return the current balance of the BankAccount

object. The output below indicates deposit and withdraw messages modify the account balances in an

expected manner:

// Construct two objects and send messages to them.
public class ShowTwoBankAccountObjects {

 public static void main(String[] args) {

 BankAccount b1 = new BankAccount("Kim", 123.45);
 BankAccount b2 = new BankAccount("Chris", 500.00);

 System.out.println("Initial values");
 System.out.println(b1.getID() + ": " + b1.getBalance());
 System.out.println(b2.getID() + ": " + b2.getBalance());

 b1.deposit(222.22);
 b1.withdraw(20.00);
 b2.deposit(55.55);
 b2.withdraw(10.00);
 System.out.println();
 System.out.println("Value after deposit and withdraw messages");
 System.out.println(b1.getID() + ": " + b1.getBalance());
 System.out.println(b2.getID() + ": " + b2.getBalance());
 }
}

Output
Initial values

Kim: 123.45
Chris: 500.0

Value after deposit and withdraw messages
Kim: 325.67
Chris: 545.55

3.2 Making Assertions about Objects with JUnit
The println statements in the program above reveal the changing state of objects. However, in such

examples, many lines can separate the output from the messages that affect the objects. This makes it a bit

awkward to match up the expected result with the code that caused the changes. The current and changing

state of objects can be observed and confirmed by making assertions. An assertion is a statement that can

relay the current state of an object or convey the result of a message to an object. Assertions can be made

with methods such assertEquals.

General Form: JUnit's assertEquals method for int and double values

 assertEquals(int expected, int actual);

 assertEquals(double expected, double actual, double errorTolerance);

Examples to assert integer expressions:

 assertEquals(2, 5 / 2);
 assertEquals(14, 39 % 25);

Chapter 3: Objects and JUnit

36

Examples to assert a floating point expression:

 assertEquals(325.67, b1.getBalance(), 0.001);
 assertEquals(545.55, b2.getBalance(), 0.001);

With assertEquals, an assertion will be true—or will "pass"—if the expected value equals the actual

value. When comparing floating-point values, a third argument is needed to represent the error tolerance,

which is the amount by which two real numbers may differ and still be equal. (Due to round off error, and

the fact that numbers are stored in base 2 (binary) rather than in base 10 (decimal), two expressions that

we consider “equal” may actually differ by a very small amount. This textbook will often use the very

small error tolerance of 1e-14 or 0.00000000000001. This means that the following two numbers would

be considered equal within 1e-14:

 assertEquals(1.23456789012345, 1.23456789012346, 1e-14);

In contrast, these numbers are not considered equal when using an error factor of 1e-14.

 assertEquals(1.23456789012345, 1.23456789012347, 1e-14);

So using 1e14 ensures two values are equals to 13 decimal places, which is about as close as you can get.

JUnit assertions allow us to place the expected value next to messages that reveal the actual state. This

makes it easer to demonstrate the behavior of objects and to learn about new types. Later, you will see

how assertions help in designing and testing your own Java classes, by making sure they have the correct

behavior.

The assertEquals method is in the Assert class of org.junit. The Assert class needs to be imported

(shown later) or assertEquals needs to be qualified (shown next).

 // Construct two BankAccount objects
 BankAccount anAccount = new BankAccount("Kim", 0.00);
 BankAccount anotherAccount = new BankAccount("Chris", 500.00);

 // These assertions pass

 org.junit.Assert.assertEquals(0.00, anAccount.getBalance(), 1e-14);

 org.junit.Assert.assertEquals("Kim", anAccount.getID());
 org.junit.Assert.assertEquals("Chris", anotherAccount.getID());
 org.junit.Assert.assertEquals(500.00, anotherAccount.getBalance(), 1e-14);

 // Send messages to the BankAccount objects
 anAccount.deposit(222.22);
 anAccount.withdraw(20.00);
 anotherAccount.deposit(55.55);
 anotherAccount.withdraw(10.00);

 // These assertions pass
 org.junit.Assert.assertEquals(202.22, anAccount.getBalance(), 1e-14);
 org.junit.Assert.assertEquals(545.55, anotherAccount.getBalance(), 1e-14);

To make these assertions, you must have access to the JUnit testing framework, which is available in

virtually all Java development environments. Eclipse does. Then assertions like those above can be placed

in methods preceded by @Test. These methods are known as test methods. They are most often used to

test a new method. The test methods here demonstrate some new types. A test method begins in a very

specific manner:

 @org.junit.Test
 public void testSomething() { // more to come

Much like the main method, test methods are called from another program (JUnit). Test methods need

things from the org.junit packages. This code uses fully qualified names .

37

public class FirstTest {

 @org.junit.Test // Marks this as a test method.

 public void testDeposit() {
 BankAccount anAccount = new BankAccount("Kim", 0.00);
 anAccount.deposit(123.45);

 org.junit.Assert.assertEquals(123.45, anAccount.getBalance(), 0.01);

 }
}

Adding imports shortens code in all test methods. This feature allows programmers to write the method

name without the class to which the method belongs. The modified class shows that imports reduce the

amount of code by org.junit.Assert and ord.junit for every test method and assertion, which is a

good thing since much other code that is required.

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class FirstTest {

 @Test // Marks this as a test method.
 public void testDeposit() {
 BankAccount anAccount = new BankAccount("Kim", 0.00);
 anAccount.deposit(123.45);
 assertEquals(123.45, anAccount.getBalance());
 }

 @Test // Marks this as a test method.
 public void testWithdraw() {
 BankAccount anotherAccount = new BankAccount("Chris", 500.00);
 anotherAccount.withdraw(160.01);
 assertEquals(339.99, anotherAccount.getBalance());
 }

} // End unit test for BankAccount

Running JUnit

An assertion passes when the actual value equals the expected value in assertEquals.

 assertEquals(4, 9 / 2); // Assertion passes

An assertion failes when the actual values does not equal the expected value.

 assertEquals(4.5, 9 / 2, 1e-14); // Assertion fails

With integrated development environments such as Eclipse, Netbeans, Dr. Java, BlueJ, when an assertion

fails, you see a red bar. For example, this screenshot of Eclipse shows a red bar.

Chapter 3: Objects and JUnit

38

The expected and actual values are shown in the lower left corner when the code in FirstTest.java is run as a JUnit

test. Changing the testDeposit method to have the correct expected value results in a green bar, indicating all

assertions have passed successfully. Here is JUnit's window when all assertions pass:

Red bar

Green bar

39

assertTrue and assertFalse

JUnit Assert class has several other methods to demonstrate and test code. The assertTrue assertion

passes if its Boolean expression argument evaluates to true. The assertFalse assertion passes if the

Boolean expression evaluates to false.

// Use two other Assert methods: assertTrue and assertFalse
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class SecondTest {

 @Test
 public void showAssertTrue() {
 int quiz = 98;
 assertTrue(quiz >= 60);
 }

 @Test
 public void showAssertFalse() {
 int quiz = 55;
 assertFalse(quiz >= 60);
 }
}

The three Assert methods assertEquals, assertTrue, and assertFalse cover most of what

we'll need.

3.3 String Objects
Java provides a String type to store a sequence of characters, which can represent an address or a name,

for example. Sometimes a programmer is interested in the current length of a String (the number of

characters). It might also be necessary to discover if a certain substring exists in a string. For example,

is the substring ", " included in the string "Last, First". and if so, where does substring "the"

begin? Java’s String type, implemented as a Java class, provides a large number of methods to help

with such problems required knowledge of the string value. You will use String objects in many

programs.

Each String object stores a collection of zero or more characters. String objects can be constructed in

two ways.

General Form: Constructing String objects in two different ways

String identifier = new String(string-literal);

String identifier = string-literal;

Examples

String stringReference = new String("A String Object");

String anotherStringReference = "Another";

String length

For more specific examples, consider two length messages sent to two different String objects. Both

messages evaluate to the number of characters in the String.

Chapter 3: Objects and JUnit

40

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class StringTest {

 @Test
 public void showLength() {
 String stringReference = new String("A String Object");
 String anotherStringReference = "Another";
 // These assertions pass
 assertEquals(15, stringReference.length());
 assertEquals(7, anotherStringReference.length());
 }

 // . . . more test methods will appear below
}

String charAt

A charAt message returns the character located at the index passed as an int argument. Notice that

String objects have zero-based indexing. The first character is located at index 0, and the second

character is located at index 1, or charAt(1).

 @Test
 public void showcharAt() {
 String stringReference = new String("A String");

 assertEquals('A', stringReference.charAt(0)); // Evaluates to 'A'
 assertEquals('r', stringReference.charAt(4)); // Evaluates to 'r'

 int len = stringReference.length() - 1;
 assertEquals('g', stringReference.charAt(len)); // The last char
 }

String indexOf

An indexOf message sent to a String object returns the index of the first character where the String

argument is found. For example, "no-yes".indexOf("yes") returns 3. If the String argument does

not exist, indexOf returns -1.

 @Test
 public void showIndexOf() {
 String stringReference = new String("A String Object");
 assertEquals(3, stringReference.indexOf("tri"));
 assertEquals(-1, stringReference.indexOf("not here"));
 }

Concatenation with the + operator

Programmers often make one String object from two separate strings with the + operator, that

concatenates (connects) two or more strings into one string.

 @Test
 public void showConcatenate() {
 String firstName = "Kim";
 String lastName = "Madison";
 String fullName = lastName + ", " + firstName;
 assertEquals("Madison, Kim", fullName);
 }

41

String substring
A substring message returns the part of a string indexed by the beginning index through the ending index

- 1.

 @Test
 public void showSubString() {
 String str = "Smiles a Lot";
 assertEquals("mile", str.substring(1, 5));
 }

String toUpperCase and toLowerCase

A toUpperCase message sent to a String object returns a new string that is the uppercase equivalent of

the receiver of the message. A toLowerCase message returns a new string with all uppercase letters in

lowercase.

 @Test

 public void testToUpperCase() {
 String str = new String("MiXeD cAsE!");
 assertEquals("MIXED CASE!", str.toUpperCase());
 assertEquals("mixed case!", str.toLowerCase());
 assertEquals("MiXeD cAsE!", str); // str did not change!
 }

Although it may sound like toUpperCase and toLowerCase modify String objects, they do not.

Once constructed, String objects can not be changed. String objects are immutable. Simply put,

there are no String messages that can modify the state of a String object. The final assertion

above shows that str.equals("MiXeD cAsE!") still, even after the other two messages were

sent. Strings are immutable to save memory. Java also supplies StringBuilder, a string type

that has methods that do modify the objects.
 Use an assignment if you want to change the String reference to refer to a different String.

 @Test

 public void showHowToUpperCaseWithAssignment() {
 String str = new String("MiXeD cAsE!");
 str = str.toUpperCase();
 assertEquals("MIXED CASE!", str); // str references a new string
 }

Comparing Strings with equals

JUnit's assertEquals method uses Java's equals method to compare the strings. This is the way to see

if two String objects have the same sequence of characters. It is case sensitive.

 @Test
 public void showStringEquals() {
 String s1 = new String("Casey");
 String s2 = new String("Casey");
 String s3 = new String("CaSEy");
 assertTrue(s1.equals(s2));
 assertFalse(s1.equals(s3));

 }

Avoid using == to compare strings. The results can be surprising.

 @Test
 public void showCompareStringsWithEqualEqual() {
 String s1 = new String("Casey");
 assertTrue(s1 == "Casey"); // This assertion fails.
 }

The == with objects compares references, not the values of the objects. The above code generates two

Chapter 3: Objects and JUnit

42

different String objects that just happen to have the same state. Use the equals method of String. The

equals method was designed to compare the actual values of the string the characters, not the reference

values.

 @Test
 public void showCompareStringWithEquals() {
 String s1 = "Casey";
 assertTrue(s1.equals("Casey")); // This assertion passes.
 }

Self-Check

3-1 Each of the lettered lines has an error. Explain why.

 BankAccount b1 = new BankAccount("B. "); // a
 BankAccount b2("The ID", 500.00); // b
 BankAccount b3 = new Account("N. Li", 200.00); // c
 b1.deposit(); // d
 b1.deposit("100.00"); // e
 b1.Deposit(100.00); // f
 withdraw(100); // g
 System.out.println(b4.getID()); // h
 System.out.println(b1.getBalance); // I

3-2 What values makes these assertions pass (fill in the blanks)?

 @Test public void testAcct() {
 BankAccount b1 = new BankAccount("Kim", 0.00);
 BankAccount b2 = new BankAccount("Chris", 500.00);
 assertEquals(, b1.getID());
 assertEquals(, b2.getID());
 b1.deposit(222.22);
 b1.withdraw(20.00);
 assertEquals(, b1.getBalance(), 0.001);
 b2.deposit(55.55);
 b2.withdraw(10.00);
 assertEquals(, b2.getBalance(), 0.001);

 }
}

3-3 What value makes this assertion pass?
 String s1 = new String("abcdefghi");
 assertEquals(, s1.indexOf("g"));

3-4 What value makes this assertion pass?
 String s2 = "abcdefghi";
 assertEquals(, s2.substring(4, 6));

3-5 Write an expression to store the middle character of a String into a char variable named mid. If there

is an even number of characters, store the char to the right of the middle. For example, the middle

character of "abcde" is 'c' and of "Jude" is 'd'.

3-6 For each of the following messages, if there is something wrong, write “error”; otherwise, write the

value of the expression.

 String s = new String("Any String");

 a. length(s) d. s.indexOf(" ")

 b. s.length e. s.substring(2, 5)

 c. s(length) f. s.substring("tri")

43

Answers to Self-Checks

3-1 -a Missing the second argument in the object construction. Add the starting balance—a number.

 -b Missing = new BankAccount.

 -c Change Account to BankAccount.

 -d Missing a numeric argument between (and).

 -e Argument type wrong. pass a number, not a String.

 -f Deposit is not a method of BankAccount. Change D to d.

 -g Need an object and a dot before withdraw.

 -h b4 is not a BankAccount object. It was never declared to be anything.

 -i Missing ().

3-2 a? "Kim"

b? "Chris"

c? 202.22

d? 545.55

3-3 6

3-4 "ef"

3-5 String aString = "abcde";
int midCharIndex = aString.length() / 2;
char mid = aString.charAt(midCharIndex);

3-6 -a error -d 3

 -b error -e y S

 -c error -f error (wrong type of argument)

Chapter 3: Objects and JUnit

44

