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A Linked Structure 
 

 

 

 

This chapter demonstrates the OurList interface implemented with a class that uses a linked structure 

rather than the array implementation of the previous chapter. The linked version introduces another data 

structure for implementing collection classes: the singly linked structure. 

 

Goals 

 Show a different way to elements in a collection class 

 See how nodes can be linked 

 Consider the differences from arrays in order to such as sequencing through elements that are no 

longer in contiguous memory 

 

 

17.1    A Linked Structure 
A collection of elements can be stored within a linked structure by storing a reference to elements in a 

node and a reference to another node of the same type. The next node in a linked structure also stores a 

reference to data and a reference to yet another node. There is at least one variable to locate the 

beginning, which is named first here 

  first 

  

 

 

 

         null Joe Sue Kim 

 
A linked structure with three nodes  

 

Each node is an object with two instance variables: 

 
1. A reference to the data of the current node  ("Joe", "Sue", and "Kim" above) 

2. A reference to the next element in the collection, indicated by the arrows 

 
The node with the reference value of null indicates the end of the linked structure. Because there is 

precisely one link from every node, this is a singly linked structure. (Other linked structures have more 

than one link to other nodes.)  

 A search for an element begins at the node referenced by the external reference first. The second 

node can be reached through the link from the first node. Any node can be referenced in this sequential 

fashion. The search stops at the null terminator, which indicates the end. These nodes may be located 

anywhere in available memory. The elements are not necessarily contiguous memory locations as with 
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arrays. Interface OurList will now be implemented using many instances of the private inner class 

named Node.  
 

/** 
 * OurLinkedList is a class that uses an singly linked structure to  
 * store a collection of elements as a list. This is a growable coll- 
 * ection that uses a linked structure for the backing data storage.  
 */ 
public class OurLinkedList<E> implements OurList<E> { 
  // This private inner class is accessible only within OurLinkedList. 
  // Instances of class Node will store a reference to the same  
  // type used to construct an OurLinkedList<Type>.  
  private class Node  { 
    // These instance variables can be accessed within OurLinkedList<E> 
    private E data;     
    private Node next;  
 
    public Node(E element) { 
      data = element; 
      next = null; 
    } 
  } // end class Node 
 
  // TBA: OurLinkedList instance variables and methods 
 
} // end class OurLinkedList  

 
The Node instance variable data is declared as Object in order to allow any type of element to be stored 

in a node. The instance variable named next is of type Node. This allows one Node object to refer to 

another instance of the same Node class. Both of these instance variables will be accessible from the 

methods of the enclosing class (OurLinkedList) even though they have private access.  

We will now build a linked structure storing a collection of three String objects. We let the Node 

reference first store a reference to a Node with "one" as the data. 

 
  // Build the first node and keep a reference to this first node 
  Node first = new Node("one"); 

    
 
 

 
 

 

 null 

 first 

"one" 

 
The following construction stores a reference to the string "second". However, this time, the reference 

to the new Node object is stored into the next field of the Node referenced by first. This effectively 

adds a new node to the end of the list. 
 

 // Construct a second node referenced by the first node's next  
 first.next = new Node("Second"); 
  

 

 

 

 

 

first "Second" "one"  null 

 
 

The code above directly assigned a reference to the next instance variable. This unusual direct reference 

to a private instance variable makes the implementation of OurLinkedList than having a separate class 

as some textbooks use. Since Node is intimately tied to this linked structure  and it has been made an 

inner class  you will see many permitted assignments to both of Node's private instance variables, data 

and next. 

public Node(Object objectReference) { 
  data = objectReference; 
  next = null; 
} 
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 This third construction adds a new Node to the end of the list.  The next field is set to refer to this 

new node by referencing it with the dot notation first.next.next.  
 
  // Construct a third node referenced by the second node's next 
  Node temp = new Node("Third"); 
  // Replace null with the reference value of temp (pictured as an arrow) 
  first.next.next = temp; 
 

The following picture represents this hard coded (not general) list:  
 

 

 

 

 

 

first 

"Second" "one"  null "Third" 

temp 

                                                                                                                                                        
                                                                          
                                                                                  first.next.next 
 

The Node reference variable named first is not an internal part of the linked structure. The purpose of 

first is to find the beginning of the list so algorithms can find an insertion point for a new element, for 

example.  

 In a singly linked structure, the instance variable data of each Node refers to an object in memory, 

which could be of any type. The instance variable next of each Node object references another node 

containing the next element in the collection. One of these Node objects stores null to mark the end of 

the linked structure. The null value should only exist in the last node.  

Self-Check 
Use this linked structure to answer the questions that follow. 

 

 

 

 

 

 

17-1 What is the value of first.data? 

17-2  What is the value of first.next.data? 

17-3 What is the value of first.next.next.next.data? 

17-4 What is the value of first.next.next.next? 

Each node stores a reference to the element 

A linked structure would be pictured more accurately with the data field shown to reference an object 

somewhere else in memory.  
 

 

 

 

 

 
 

 

first 

"one" "Second" "Third" 

Three linked nodes 

The elements referenced 

from the linked nodes 

 null 

 
 

 

"Bob" 

first 

"Chris" 

"Zorro" 

"Yean" 
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However, it is more convenient to show linked structures with the value of the element written in the 

node, especially if the elements are strings. This means that even though both parts store a reference value 

(exactly four bytes of memory to indicate a reference to an object), these structures are often pictured with 

a box dedicated to the data value, as will be done in the remainder of this chapter.  The reference 

values, pictured as arrows, are important. If one of these links becomes misdirected, the program will not 

be able to find elements in the list. 

Traversing a Linked Structure 

Elements in a linked structure can be accessed in a sequential manner. Analogous to a changing int 

subscript to reference all elements in an array, a changing Node variable can reference all elements in a 

singly linked structure. In the following for loop, the Node reference begins at the first node and is 

updated with next until it becomes null. 
 
for (Node ref = first; ref != null; ref = ref.next) { 
  System.out.println(ref.data.toString()); 

Output 

one 
Second 
Third 

 

When the loop begins, first is not null, thus neither is ref. The Node object ref refers to the 

first node.  
 

 

 

 

 

 

 

 

 

 

 null 
first 

ref 

"one" "Second" "Third" 

LinkNode ref = first; 

 
 

At this point, ref.data returns a reference to the object referenced by the data field—in this case, the 

string "one". To get to the next element, the for loop updates the external pointer ref to refer to the next 

node in the linked structure. The first assignment of ref = ref.next sets ref to reference the second 

node. 

 

 

 

 

 

 

 

  

 null 

first 

ref 

"one" "Second" "Third" 

ref = ref.next; 

 
 

At the end of the next loop iteration, ref = ref.next sets ref to reference the third node. 
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 null 
first 

ref 

"one" "Second" "Third" 

ref = ref.next; 

 
And after one more ref = ref.next, the external reference named ref is assigned null.  

 
 

 

 

 

ref 

null 

 
 

 

At this point, the for loop test ref != null is false. The traversal over this linked structure is 

complete.  

 With an array, the for loop could be updating an integer subscript until the value is beyond the index 

of the last meaningful element (index == n for example). With a linked structure, the for loop updates 

an external reference (a Node reference named ref here) so it can reference all nodes until it finds the 

next field to be null.  

 This traversal represents a major difference between a linked structure and an array. With an array, 

subscript [2] directly references the third element. This random access is very quick and it takes just one 

step. With a linked structure, you must often use sequential access by beginning at the first element and 

visiting all the nodes that precede the element you are trying to access. This can make a difference in the 

runtime of certain algorithms and drive the decision of which storage mechanism to use.  

 

17.2 Implement OurList with a Linked Structure  
Now that the inner private class Node exists, consider a class that implements OurList. This class 

will provide the same functionality as OurArrayList with a different data structure. The storage 

mechanism will be a collection of Node objects. The algorithms will change to accommodate this new 

underlying storage structure known as a singly linked structure. The collection class that implements 

ADT OurList along with its methods and linked structure is known as a linked list. 

 This OurLinkedList class uses an inner Node class with two additional constructors (their use will 

be shown later). It also needs the instance variable first to mark the beginning of the linked structure. 
 
// A type-safe Collection class to store a list of any type element 
public class OurLinkedList<E> implements OurList<E> { 
  
  // This private inner class is only known within OurLinkedList. 
  // Instances of class Node will store a reference to an  
  // element and a reference to another instance of Node.  
  private class Node  { 
 
    // Store one element of the type specified during construction 
    private E data;    
    // Store a reference to another node with the same type of data 
    private Node next;  
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    // Allows Node n = new Node(); 

    public Node() { 
      data = null; 
      next = null; 
    } 
 
    // Allows Node n = new Node("Element"); 
    public Node(E element) { 
      data = element; 
      next = null; 
    } 
 
    // Allows Node n = new Node("Element", first); 
    public Node(E element, Node nextReference) { 
      data = element; 
      next = nextReference; 
    } 
 
  } /////// end inner class Node ////////// 
 
  // Instance variables for OurLinkedList 

  private Node first; 
 
  private int size; 
 
  // Construct an empty list with size 0 
  public OurLinkedList() { 
    first = null; 
    size = 0; 
  } 
 
  // more to come … 
} 

After construction, the picture of memory shows first with a null value written as a diagonal line.  

 
  OurLinkedList<String> list = new OurLinkedList<String>(); 

 

                                           An empty list: 
 

 
 

 

The first method isEmpty returns true when first is null. 
  

  /** 
   * Return true when no elements are in this list 
   */  
  public boolean isEmpty() { 
    return first == null; 
  } 

Adding Elements to a Linked Structure 

This section explores the algorithms to add to a linked structure in the following ways:  
  

 Inserting an element at the beginning of the list 

 Inserting an element at the end of the list 

 Inserting an element anywhere in the list at a given position 

 

To insert an element as the first element in a linked list that uses an external reference to the first node, 

the algorithm distinguishes these two possibilities: 
 

1. the list is empty  

2. the list is not empty 

first 

 

The diagonal line 

signifies  the null value 
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If the list is empty, the insertion is relatively easy. Consider the following code that inserts a new String 

object at index zero of an empty list. A reference to the new Node object with "one" will be assigned to 

first. 
 

  OurLinkedList<String> stringList = new OurLinkedList<String>(); 
  stringList.addFirst("one"); 
 

         first 

 

 

 

 

"one" 

 
/** Add an element to the beginning of this list. 
  * O(1) 
  * @param element The new element to be added at index 0. 
  */ 
  public void addFirst(E element) {  
    // The beginning of an addFirst operation  

    if (this.isEmpty()) {  
      first = new Node(element); 
      // ...  
 

When the list is not empty, the algorithm must still make the insertion at the beginning; first must still 

refer to the new first element. You must also take care of linking the new element to the rest of the list. 

Otherwise, you lose the entire list! Consider adding a new first element (to a list that is not empty) with 

this message:  
 

  stringList.addFirst("two"); 
 

This can be accomplished by constructing a new Node with the zero-argument constructor that sets both 

data and next to null. Then the reference to the soon to be added element is stored in the data field 

(again E can represent any reference type). 
 

    else { 
      // the list is NOT empty 

      Node temp = new Node(); // data and next are null 
      temp.data = element;    // Store reference to element 

 

There are two lists now, one of which is temporary. 

 
 

 

 

 

 

"one" "two" temp first 

 
The following code links the node that is about to become the new first so that it refers to the element 

that is about to become the second element in the linked structure.  
 
   temp.next = first; // 2 Nodes refer to the node with "one" 
  } 

 

 

 

 

 

 

 
 

 

Now move first to refer to the Node object referenced by first and increment size. 

"one" "two" 
temp first 
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      first = temp; 

    }  // end method addFirst 
    size++; 
  } // end addFirst 
 
 

 

 

 

 

 

temp 
"one" "two" 

first 

 
 

After "two" is inserted at the front, the local variable temp is no longer needed in the picture. The list 

can also be drawn like this since the local variable temp will no longer exist after the method finishes: 

 

          

 

 

 

 
 

first 

"one" "two" 

 
This size method can now return the number of elements in the collection (providing the other add 

methods also increment size when appropriate). 
 
 /** 
   * Return the number of elements in this list 
   */   
  public int size() { 
    return size;  
  } 
 

Self-Check 

17-5  Draw a picture of memory after each of the following sets of code executes: 
 

a.      OurLinkedList<String> aList = new OurLinkedList<String>(); 
 

b.  OurLinkedList<String> aList = new OurLinkedList<String>(); 

    aList.addFirst("Chris"); 
 

c.   OurLinkedList<Integer> aList = new OurLinkedList<Integer>(); 
    aList.addFirst(1); 

 aList.addFirst(2); 
 

addFirst(E) again 

The addFirst method used an if…else statement to check if the reference to the beginning of the list 

needed to be changed. Then several other steps were required. Now imagine changing the addFirst 

method using the two-argument constructor of the Node class.  
 

   public Node(Object element, Node nextReference) { 
    data = element; 
    next = nextReference;   
  } 
 

To add a new node at the beginning of the linked structure, you can initialize both Node instance 

variables. This new two-argument constructor takes a Node reference as a second argument. The current 
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value of first is stored into the new Node's next field. The new node being added at index 0 now links 

to the old first.  
 

 /** Add an element to the beginning of this list. 
   * @param element The new element to be added at the front. 
   * Runtime O(1) 
   */ 
  public void addFirst(E element) { 
    first = new Node(element, first); 
    size++; 
  } 

 

To illustrate, consider the following message to add a third element to the existing list of two nodes (with 

"two" and "one"): stringList.addFirst("tre");  

  
 

 

 

 
 

 

first  

"one" "two" 

 
 
The following initialization executes in addFirst: 
 
  first = new Node(element, first); 
 

This invokes the two-argument constructor of class Node: 

 
public Node(Object element, Node nextReference) { 
  data = element; 
  next = nextReference; 
} 
 

This constructor generates the Node object pictured below with a reference to "tre" in data. It also 

stores the value of first in its next field. This means the new node (with "tre") has its next field 

refer to the old first of the list.    

     
  

 

 

 

 

 

 

   

first 

? 
"one" 

"tre"  

"two" 

new Node("tre", first); 

 
 

Then after the construction is finished, the reference to the new Node is assigned to first. Now first 

refers to the new Node object. The element "tre" is now at index 0. 

    

 

 

   

 

 

 

 

first 

"two" "one" 

"tre"  

first = 

 
 

The following code illustrates that addFirst will work even when the list is empty. You end up with a 
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new Node whose reference instance variable next has been set to null and where first references the 

only element in the list.  
 
OurLinkedList<String> anotherList = new OurLinkedList<String>(); 
anotherList.addFirst("Was Empty"); 
   

       Before                                        After 
 
 

 

 

first first 

"Was Empty" 

 
Since the addFirst method essentially boils down to two assignment statements, no matter how large 

the list, addFirst is O(1).  

 

E get(int) 

OurList specifies a get method that emulates the array square bracket notation [] for getting a reference 

to a specific index. This implementation of the get method will throw an 

IllegalArgumentException if the argument index is outside the range of 0 through size()-1. 

This avoids returning null or other meaningless data during a get when the index is out of range.  
 
 /** 
   * Return a reference to the element at index getIndex 
   * O(n) 
   */ 
  public E get(int getIndex) { 
  // Verify insertIndex is in the range of 0..size()-1 
  if (getIndex < 0 || getIndex >= this.size()) 
    throw new IllegalArgumentException("" + getIndex); 

   

Finding the correct node is not the direct access available to an array. A loop must iterate through the 

linked structure. 
  

    Node ref = first; 
    for (int i = 0; i < getIndex; i++)  
      ref = ref.next; 
    return ref.data;   
  } // end get 

 

When the temporary external reference ref points to the correct element, the data of that node will be 

returned. It is now possible to test the addFirst and get methods. First, let's make sure the method 

throws an exception when the index to get is out of range. First we’ll try get(0) on an empty list.  
 
  @Test(expected = IllegalArgumentException.class) 
  public void testGetExceptionWhenEmpty() { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.get(0); // We want get(0) to throw an exception 
  } 

 

Another test method ensures that the indexes just out of range do indeed throw exceptions. 

 
  @Test(expected = IllegalArgumentException.class) 
  public void testGetExceptionWhenIndexTooBig() { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addFirst("B"); 
    list.addFirst("A"); 
    list.get(2); // should throw an exception 
  } 
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  @Test(expected = IllegalArgumentException.class) 
  public void testGetExceptionWhenIndexTooSmall () { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addFirst("B"); 
    list.addFirst("A"); 
    list.get(-1); // should throw an exception 
  } 
 

This test for addFirst will help to verify it works correctly while documenting the desired behavior. 
 
  @Test 
  public void testAddFirstAndGet() { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addFirst("A"); 
    list.addFirst("B"); 
    list.addFirst("C"); 
    // Assert that all three can be retrieved from the expected index 
    assertEquals("C", list.get(0)); 
    assertEquals("B", list.get(1)); 
    assertEquals("A", list.get(2)); 

  } 

Self-Check 

17-6 Which one of the following assertions would fail: a, b, c, or d? 
     

  OurLinkedList<String> list = new OurLinkedList<String>(); 
  list.addFirst("El"); 
  list.addFirst("Li"); 
  list.addFirst("Jo"); 
  list.addFirst("Cy"); 
  assertEquals("El", list.get(3));  // a. 
  assertEquals("Li", list.get(2));  // b. 
  assertEquals("JO", list.get(1));  // c. 
  assertEquals("Cy", list.get(0));  // d. 

 

String toString() 

Programmers using an OurLinkedList object may be interested in getting a peek at the current state of 

the list or finding an element in the list. To do this, the list will also have to be traversed.  

 This algorithm in toString begins by storing a reference to the first node in the list and updating it 

until it reaches the desired location. A complete traversal begins at the node reference by first and ends at 

the last node (where the next field is null). The loop traverses the list until ref becomes null. This is 

the only null value stored in a next field in any proper list. The null value denotes the end of the list. 
 
/**  
  * Return a string with all elements in this list. 
  * @returns One String that concatenation of toString versions of all  
  * elements in this list separated by ", " and bracketed with "[  ]". 
  */ 
  public String toString() { 
    String result = "["; 
    if (! this.isEmpty()) { // There is at least one element 
      // Concatenate all elements except the last 
      Node ref = first; 
      while (ref.next != null) { 
        // Concatenate the toString version of each element 
        result = result + ref.data.toString() + ", "; 
        // Bring loop closer to termination 
        ref = ref.next; 
      } 
      // Concatenate the last element (if size > 0) but without ", " 
      result += ref.data.toString(); 
    } 
    // Always concatenate the closing square bracket 
    result += "]"; 
    return result; 
  } 
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Notice that each time through the while loop, the variable ref changes to reference the next element. 

The loop keeps going as long as ref does not refer to the last element (ref.next != null) . 

 Modified versions of the for loop traversal will be used to insert an element into a linked list at a 

specific index, to find a specific element, and to remove elements.  

The add(int, E) Method 

Suppose a linked list has the three strings "M", "F", and "J": 
 
OurLinkedList<String> list = new OurLinkedList<String>(); 
list.add(0, "M"); 
list.add(1, "F"); 
list.add(2, "J"); 
assertEquals("[M, F, J]", list.toString()); 

 

The linked structure generated by the code above would look like this: 
 

 

 

 

 

first  "M"  "F"  "J" 

 

This message inserts a fourth string into the 3rd position, at index 2, where "J" is now: 
 
list.add(2, "A"); // This has zero based indexing--index 2 is 3rd spot 
assertEquals("[M, F, A, J]", list.toString()); 
 

Since the three existing nodes do not necessarily occupy contiguous memory locations in this list, the 

elements in the existing nodes need not be shifted as did the array data structure. However, you will need 

a loop to count to the insertion point. Once again, the algorithm will require a careful adjustment of links 

in order to insert a new element. Below, we will see how to insert "A" at index 2.  

 

 
 

 

 

first  

 "M"  "F" 

 "A" 
 "J" 

 

The following algorithm inserts an element into a specific location in a linked list. After ensuring that the 

index is in the correct range, the algorithm checks for the special case of inserting at index 0, where the 

external reference first must be adjusted. 

 

if the index is out of range 

     throw an exception 

else if the new element is to be inserted at index 0 

   addFirst(element) 

else { 

   Find the place in the list to insert 

   construct a new node with the new element in it 

   adjust references of existing Node objects to accommodate the insertion 

} 

 
 

This algorithm is implemented as the add method with two arguments. It requires the index where that 

new element is to be inserted along with the object to be inserted. If either one of the following conditions 

exist, the index is out of range: 
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1. a negative index   

2. an index greater than the size() of the list 
 

The add method first checks if it is appropriate to throw an exception  when  insertIndex is out of 

range. 
 
/** Place element at the insertIndex specified.  
  * Runtime: O(n) 
  * @param element The new element to be added to this list 
  * @param insertIndex The location where the new element will be added 
  * @throws IllegalArgumentException if insertIndex is out of range 
  */ 
  public void add(int insertIndex, E element) { 
    // Verify insertIndex is in the range of 0..size()-1 
    if (insertIndex < 0 || insertIndex > this.size()) 
      throw new IllegalArgumentException("" + insertIndex); 

 
The method throws an IllegalArgumentException if the argument is less than zero or greater than 

the number of elements. For example, when the size of the list is 4, the only legal arguments would be 0, 

1, 2, or 3 and 4 (inserts at the end of the list). For example, the following message generates an exception 

because the largest index allowed with “insert element at” in a list of four elements is 4. 
 

list.add(5, "Y"); 

Output 

java.lang.IllegalArgumentException: 5 

If insertIndex is in range, the special case to watch for is if the insertAtIndex equals 0. This is the 

one case when the external reference first must be adjusted.  
 
  if (insertIndex == 0) {  
    // Special case of inserting before the first element. 
    addFirst(element); 

  } 
 

The instance variable first must be changed if the new element is to be inserted before all other 

elements. It is not enough to simply change the local variables. The addFirst method shown earlier 

conveniently takes the correct steps when insertIndex==0.  

 If the insertIndex is in range, but not 0, the method proceeds to find the correct insertion point. 

Let's return to a list with three elements, built with these messages: 
 
  OurLinkedList<String> list = new OurLinkedList<String>(); 
  list.add(0, "M"); 
  list.add(1, "F"); 
  list.add(2, "J"); 
 

 

 

 

 

 

first 

 "M"  "F"  "J" 

 
 

This message inserts a new element at index 2, after "F" and before "J". 
 
list.add(2, "A"); // We're using zero based indexing, so 2 is 3rd spot 
 

This message causes the Node variable ref (short for reference) to start at first and get. This external 

reference gets updated in the for loop.  
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  else { 
    Node ref = first; 
    for (int index = 1; index < insertIndex; index++) { 
      // Stop when ref refers to the node before the insertion point  
      ref = ref.next; 
    } 
    ref.next = new Node(element, ref.next); 
  } 
 

The loop leaves ref referring to the node before the node where the new element is to be inserted. Since 

this is a singly linked list (and can only go forward from first to back) there is no way of going in the 

opposite direction once the insertion point is passed. So, the loop must stop when ref refers to the node 

before the insertion point. 

 

 

 
 

 
 

 
 
 

Finding the insertion position. When index is 2, insert after "F" and before "J"  

first  

 "M"  "F"  "J" 

ref 

 
 

The insertion can now be made with the Node constructor that takes a Node reference as a second 

argument. 
 
ref.next = new Node(element, ref.next); 

   

 

 

 

 

 

 

 

 
 

                                                           Inserting at index 2 

first 

 "M"  "F"  "J" 

ref 

 "A" 

  
Consider the insertion of an element at the end of a linked list. The for loop advances ref until it refers to the last 

node in the list, which currently has the element "J". The following picture provides a trace of ref using this message  
 
  list.add(list.size(), "LAST"); 
 

 

 

 

 

 

 

 

"M" "F" "A" "J" 

first 

ref 

 
 

If the list has 1,000 elements, this loop requires 999 (or in general n-1) operations.  
 
  for (int index = 1; index < insertIndex - 1; index++) { 
    ref = ref.next; 
  } 
 

Once the insertion point is found, with ref pointing to the correct node, the new element can be added 

with one assignment and help from the Node class. 
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  ref.next = new Node(element, ref.next); 

 

 

 

 

 

 

 

 
 

 

 

ref 

"M" "F"  "A" "J"  

first  

"LAST"  

 
The new node's next field becomes null in the Node constructor. This new node, with "LAST" in it, 

marks the new end of this list. 

 

Self-Check 
17-7 Which of the add messages (there may be more than one) would throw an exception when sent 

immediately after the message list.add(0, 4);? 

 
OurLinkedList<Integer> list = new OurLinkedList<Integer> (); 
list.add(0, 1); 
list.add(0, 2); 
list.add(0, 3); 
list.add(0, 4); 
 

  a. list.add(-1, 5); 

  b. list.add(3, 5); 

  c.  list.add(5, 5); 
  d. list.add(4, 5); 
 

addLast 

The addLast method is easily implemented in terms of add. It could have implemented the same 

algorithm separately, however it is considered good design to avoid repeated code and use an existing 

method if possible. 
 
/**  
  * Add an element to the end of this list. 
  * Runtime: O(n) 
  * @param element The element to be added as the new end of the list. 
  */ 
  public void addLast(E element) { 
    // This requires n iterations to determine the size before the 
    // add method loops size times to get a reference to the last  
    // element in the list. This is n + n operations, which is O(n). 
    add(size(), element); 
  } 
 

The addLast algorithm can be modified to run O(1) by adding an instance variable that maintains an 

external reference to the last node in the linked list. Modifying this method is left as a programming 

exercise. 
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Removing from a Specific Location: removeElementAt(int) 
 

Suppose a linked list has these three elements: 
 

 

 

 

 

first 

 "M"  "F"  "J" 

 
Removing the element at index 1 is done with a removeElementAt message.  
 
    assertEquals("[M, F, J]", list.toString());  
  list.removeElementAt(1);  
  assertEquals("[M, J]", list.toString());  

 

The linked list should look like this after the node with "F" is reclaimed by Java's garbage collector. There 

are no more references to this node, so it is no longer needed. 

 

   

 

 

 

 

 
 "M"  "F"  "J" 

first 

 
 

Assuming the index of the element to be removed is in the correct range of 0 through size()-1, the 

following algorithm should work with the current implementation: 
 

  if removal index is out of range 

       throw an exception 

  else if the removal is the node at the first  

     change first to refer to the second element  (or make the list empty if size()==1) 

  else  { 

     Get a reference to the node before the node to be removed  

     Send the link around the node to be removed 
  }  

 
A check is first made to avoid removing elements that do not exist, including removing index 0 from an 

empty list. Next up is checking for the special case of removing the first node at index 0 ("one" in the 

structure below). Simply send first.next "around" the first element so it references the second 

element. The following assignment updates the external reference first to refer to the next element.  
  
 first = first.next; 
 

 

 

 

 

 

 

 

"J" "A" "F" "M" 

first 

"LAST" "1st" 

 

This same assignment will also work when there is only one element in the list. 
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first 

"1st" 

 
With the message list.removeElementAt(0) on a list of size 1, the old value of first is replaced with 

null, making this an empty list. 
 

 

 

 
 

first 

"1st" 

 
Now consider list.removeElementAt(2) ("F") from the following list: 

 
  first 

 

 

 

"J" "A" "F" "M" "LAST" 

 
The following assignment has the Node variable ref refer to the same node as first: 
 
  Node ref = first; 
 

ref then advances to refer to the node just before the node to be removed.  
 
  for (int index = 1; index < removalIndex; index++) // 1 iteration only 
    ref = ref.next; 
 

 

 

 

 

 

 

"J" "A" "F" "M" 

first 

ref 

"LAST" 

 

Then the node at index 1 ("A") will have its next field adjusted to move around the node to be removed 

("F").  The modified list will look like this: 
 

 

 

 
 

 
 
 

"J"  "A"  "F"  "M"  

first  

ref  

"LAST"  

 
Since there is no longer a reference to the node with "F", the memory for that node will be reclaimed by 

Java's garbage collector. When the method is finished, the local variable ref also disappears and the list 

will look like this: 
 

 

 

 

 

 

"J" "A" "M" 

first 

"LAST" 
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The removeElementAt method is left as a programming exercise.  

 

Deleting an element from a Linked List: remove 

When deleting an element from a linked list, the code in this particular class must recognize these two 

cases: 

1. Deleting the first element from the list (a special case again) 

2. Deleting an interior node from the list (including the last node) 

 
When deleting the first node from a linked list, care must be taken to ensure that the rest of the list is not 

destroyed. The adjustment to first is again necessary so that all the other methods work (and the object 

is not in a corrupt state). This can be accomplished by shifting the reference value of first to the second 

element of the list (or to null if there is only one element). One assignment will do this: 
 
  first = first.next; 

 

Now consider removing a specific element that may or may not be stored in an interior node. As with 

removeElementAt, the code will look to place a reference to the node just before the node to be 

removed. So to remove "M", the link to the node before M is needed. This is the node with "A". 
 
  list.remove("M"); 
 

 

 
 

 
 
                              previous node   Node to be deleted  

first  

 "J"  "A"  "M" "LAST" 

 
 

At this point, the next field in the node with "A" can be "sent around" the node to be removed ("M"). 

Assuming the Node variable named ref is storing the reference to the node before the node to be deleted, 

the following assignment effectively removes a node and its element "M" from the structure: 
 
  ref.next = ref.next.next; 

 

 

 

 
 

 

 

Deleting a specific internal node, in this case "M"  

ref 

first  

 "J"   "A"   "M"  "LAST"  

 

 

This results in the removal of an element from the interior of the linked structure. The memory used to 

store the node with "M" will be reclaimed by Java's garbage collector.  

 The trick to solving this problem is comparing the data that is one node ahead. Then you must make a 

reference to the node before the found element (assuming it exists in the list). The following code does 

just that. It removes the first occurrence of the objectToRemove found in the linked list. It uses the 

class's equals method to make sure that the element located in the node equals the state of the object 

that the message intended to remove. First, a check is made for an empty list. 
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/** Remove element if found using the equals method for type E. 

  * @param The object to remove from this list if found 
  */ 
  public boolean remove(E element) { 
    boolean result = true; 
 
    // Don't attempt to remove an element from an empty list 
    if (this.isEmpty()) 
      result = false; 
 

The following code takes care of the special case of removing the first element when the list is not 

empty:6 
 
    else { 
      // If not empty, begin to search for an element that equals obj 
      // Special case: Check for removing first element  
      if (first.data.equals(element)) 
        first = first.next; 
 

 

 

 
 

 
 

ref 

first  

 "J"  "A"  "M" "LAST" 

 
 

Checking for these special cases has an added advantage. The algorithm can now assume that there is at 

least one element in the list. It can safely proceed to look one node ahead for the element to remove. A 

while loop traverses the linked structure while comparing objectToRemove to the data in the node 

one element ahead. This traversal will terminate when either of these two conditions occur: 
 

1. The end of the list is reached. 

2. An item in the next node equals the element to be removed.  
 

The algorithm assumes that the element to be removed is in index 1 through size()-1 (or it's not there 

at all). This allows the Node variable named ref to "peek ahead" one node. Instead of comparing 

objectToRemove to ref.data, objectToRemove is compared to ref.next.data. 
 

  else {  
    // Search through the rest of the list 
    Node ref = first; 
    // Look ahead one node 
    while ((ref.next != null) && !(element.equals(ref.next.data))) 
      ref = ref.next; 

 

This while loop handles both loop termination conditions. The loop terminates when ref's next field is 

null (the first expression in the loop test). The loop will also terminate when the next element 

(ref.next.data) in the list equals(objectToRemove), the element to be removed. Writing the test 

for null before the equals message avoids null pointer exceptions. Java's guaranteed short circuit 

boolean evaluation will not let the expression after && execute when the first subexpression (ref.next 

!= null) is false. 

 

Self-Check 
17-8  What can happen if the subexpressions in the loop test above are reversed? 

 
        while (!(objectToRemove.equals(ref.next.data))  
                 && (ref.next != null)) 

 



200 

 

 

 

At the end of this loop, ref would be pointing to one of two places:  
 

1. the node just before the node to be removed, or  

2. the last element in the list.  

 

In the latter case, no element "equaled" objectToRemove. Because there are two ways to terminate the 

loop, a test is made to see if the removal element was indeed in the list. The link adjustment to remove a 

node executes only if the loop terminated before the end of the list was reached. The following code 

modifies the list only if objectToRemove was found. 
 
    // Remove node if found (ref.next != null).  However, if 
    // ref.next is null, the search stopped at end of list. 
    if (ref.next == null) 
      return false;  // Got to the end without finding element 
    else { 
      ref.next = ref.next.next; 

      return true; 
    } 
  } // end remove(E element) 
 

Self-Check 

17-9   In the space provided, write the expected value that would make the assertions pass: 
 

    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addLast("A"); 
    list.insertElementAt(0, "B"); 
    list.addFirst("C"); 
    assertEquals(______________, list.toString());  // a. 
    list.remove("B"); 
    assertEquals(______________, list.toString());  // b. 
    list.remove("A"); 
    assertEquals(______________, list.toString());  // c. 
    list.remove("Not Here"); 

    assertEquals(______________, list.toString());  // d. 
    list.remove("C"); 
    assertEquals(______________, list.toString());  // e. 
 

 

17-10 What must you take into consideration when executing the following code? 
 
    if (current.data.equals("CS 127B")) 
      current.next.data = "CS 335"; 
 
 

17.3 When to use Linked Structures 
The one advantage of a linked implementation over an array implementation may be constrained to the 

growth and shrink factor when adding elements. With an array representation, growing an array during 

add and shrinking an array during remove requires an additional temporary array of contiguous memory 

be allocated. Once all elements are copied, the memory for the temporary array can be garbage collected. 

However, for that moment, the system has to find a large contiguous block of memory. In a worst case 

scenario, this could potentially cause an OutOfMemoryException.  

 When adding to a linked list, the system allocates the needed object and reference plus an additional 4 

bytes overhead for the next reference value. This may work on some systems better than an array 

implementation, but it is difficult to predict which is better and when.  

 The linked list implementation also may be more time efficient during inserts and removes. With an 

array, removing the first element required n assignments. Removing from a linked list requires only one 
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assignment. Removing an internal node may also run a bit faster for a linked implementation, since the 

worst case rarely occurs. With an array, the worst case always occurs—n operations are needed no matter 

which element is being removed. With a linked list, it may be more like n/2 operations. 

 Adding another external reference to refer to the last element in a linked list would make the addLast 

method run O(1), which is as efficient as an array data structure. A linked list can also be made to have 

links to the node before it to allow two-way traversals and faster removes  a doubly linked list. This 

structure could be useful in some circumstances. 

 A good place to use linked structures will be shown in the implementation of the stack and queue data 

structures in later chapters. In both collections, access is limited to one or both ends of the collection. 

Both grow and shrink frequently, so the memory and time overhead of shifting elements are avoided 

(however, an array can be used as efficiently with a few tricks). 

 Computer memory is another thing to consider when deciding which implementation of a list to use. 

If an array needs to be "grown" during an add operation, for a brief time there is a need for twice as many 

reference values. Memory is needed to store the references in the original array. An extra temporary array 

is also needed. For example, if the array to be grown has an original capacity of 50,000 elements, there 

will be a need for an additional 200,000 bytes of memory until the references in the original array are 

copied to the temporary array. Using a linked list does not require as much memory to grow. The linked 

list needs as many references as the array does for each element, however at grow time the linked list can 

be more efficient in terms of memory (and time). The linked list does not need extra reference values 

when it grows.  

 Consider a list of 10,000 elements. A linked structure implementation needs an extra reference value 

(next) for every element. That is overhead of 40,000 bytes of memory with the linked version. An array-

based implementation that stores 10,000 elements with a capacity of 10,000 uses the same amount of 

memory. Imagine the array has 20 unused array locations  there would be only 80 wasted bytes. 

However, as already mentioned, the array requires double the amount of overhead when growing itself. 

Linked lists provide the background for another data structure called the binary tree structure in a later 

chapter. 

 

When not to use Linked Structures 

If you want quick access to your data, a linked list will not be that helpful when the size of the collection 

is big. This is because accessing elements in a linked list has to be done sequentially. To maintain a fixed 

list that has to be queried a lot, the algorithm needs to traverse the list each time in order to get to the 

information. So if a lot of set and gets are done, the array version tends to be faster. The access is O(1) 

rather than O(n). Also, if you have information in an array that is sorted, you can use the more efficient 

binary search algorithm to locate an element. 

 A rather specific time to avoid linked structures (or any dynamic memory allocations) is when 

building software for control systems on aircraft. The United States Federal Aviation Association (FAA) 

does not allow it because it's not safe to have a airplane system run out of memory in flight. The code 

must work with fixed arrays. All airline control code is carefully reviewed to ensure that allocating 

memory at runtime is not present. With Java, this would mean there could never be any existence of new. 

 One reason to use the linked version of a list over an array-based list is when the collection is very 

large and there are frequent add and removal messages that trigger the grow array and shrink array loops. 

However, this could be adjusted by increasing the GROW_SHRINK_INCREMENT from 20 to some higher 

number. Here is a comparison of the runtimes for the two collection classes implemented over this and the 

previous chapter. 
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 OurArrayList OurLinkedList 

get and set O(1) O(n) 

remove removeElementAt O(n) O(n) 

find
1
 O(n) O(n) 

add(int index, Object el)  O(n) O(n) 

size
2
 O(1) O(n) 

addFirst  O(n) O(1) 

addLast
3
 O(1) O(n) 

 

One advantage of arrays is the get and set operations of OurArrayList are an order of magnitude 

better than the linked version. So why study singly linked structures?  

 
1. The linked structure is a more appropriate implementation mechanism for the stacks and 

queues of the next chapter. 

2. Singly linked lists will help you to understand how to implement other powerful and efficient 

linked structures (trees and skip lists, for example). 

 
When a collection is very large, you shouldn't use either of the collection classes shown in this chapter, or 

even Java's ArrayList or LinkedList classes in the java.util package. There are other data 

structures such as hash tables, heaps, and trees for large collections. These will be discussed later in this 

book. In the meantime, the implementations of a list interface provided insights into the inner workings of 

collections classes and two storage structures. You have looked at collections from both sides now. 

Self-Check 
17-11  Suppose you needed to organize a collection of student information for your school’s 

administration. There are approximately 8,000 students in the university with no significant 

growth expected in the coming years. You expect several hundred lookups on the collection 

everyday. You have only two data structures to store the data, and array and a linked structure. 

Which would you use? Explain. 

 

  

                                                 
1
 find could be improved to O(log n) if the data structure is changed to an ordered and sorted list. 

2
size could be improved to O(1) if the SimpleLinkedList maintained a separate instance variable for the number of 

element in the list (add 1during inserts subtract 1 during successful removes) 
3
 addLast with SimpleLinkedList could be improved by maintaining an external reference to the last element in the 

list. 
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Answers to Self-Checks 
17-1 first.data.equals("Bob") 

17-2 first.next.data ("Chris"); 

17-3 first.next.next.next.data.equals("Zorro"); 

17-4 first.next.next.next refers to a Node with a reference to "Zorro" and null in its next field. 

17-5 drawing of memory 

a. 

 
 

 

 

first 

 
b. 
 
 

 

 

 
 

first 

"Chris" 

 
c. 

 
 

 

 

 
 

first 

1 2 

 
 

17-6  c  would fail  ("JO" should be "Jo") 

 

17-7 which would throw an exception 

   -a- IndexOutOfBoundsException 

   -c- the largest valid index is currently 4 

   -d- Okay since the largest index can be the size, which is 4 in this case 

 

17-8 if switched, ref would move one Node too far and cause a NullPointerException 

 

17-9 assertions - listed in correct order 
 
     OurLinkedList<String> list = new OurLinkedList<String>(); 
     list.addLast("A"); 
     list.insertElementAt(0, "B"); 
     list.addFirst("C"); 
 
     assertEquals(__"[C, B, A]"__, list.toString()); // a.  
 
     list.remove("B"); 

     assertEquals(___"[C, A]"__, list.toString());  // b. 
 
     list.remove("A"); 
     assertEquals(____"[C]"_____, list.toString()); // c. 
 
     list.remove("Not Here"); 
     assertEquals(____"[C]"_____, list.toString()); // d. 
                          
     list.remove("C"); 
     assertEquals(_____"[]"_____, list.toString()); // e. 
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17-10 Whether or not a node actually exists at current.next. It could be null.  

 

17-11 An array so the more efficient binary search could be used rather than the sequential search 

necessary with a linked structure. 


